Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 120
Filtrer
1.
Mol Nutr Food Res ; : e2400307, 2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-39091066

RÉSUMÉ

Aging can lead to a series of degenerative changes in skeletal muscle, which would negatively impact physical activity and the quality of life of the elderly. Wolfberry contains numerous bioactive substances. It's vital to further explore the mechanisms underlying its healthy effects on skeletal muscle function during aging progress. This study discusses the benefits and mechanisms of aqueous extract of wolfberry (AEW) to protect skeletal muscle from aging-related persistent DNA damage based on its anti-inflammatory activity. It is found that AEW improves muscle mass, strength, and endurance, modulates the expression of Atrogin-1, MyH, and MuRF-1, and decreases oxidative stress and inflammation levels in aging mice, which is consistent with the in vitro results. Mechanistically, AEW inhibits the pattern recognition receptors (PRRs) pathway induced by inflammatory gene activation, suggesting its potential in response to DNA damage. AEW is also observed to mitigate chromatin decompaction. Network pharmacology is conducted to analyze the potential targets of AEW in promoting DNA repair. In conclusion, the study shows the anti-aging effects of AEW on skeletal muscle by promoting DNA repair and reducing the transcriptional activity of inflammatory factors. AEW intake may become a potential strategy for strengthening skeletal muscle function in the elderly.

2.
J Fungi (Basel) ; 10(8)2024 Aug 06.
Article de Anglais | MEDLINE | ID: mdl-39194880

RÉSUMÉ

To delve into the growth and physiological adaptations exhibited by the economically vital black wolfberry (Lycium ruthenicum) upon inoculation with arbuscular mycorrhizal fungi (AMF) under varying levels of saline-alkaline stress A series of pot experiments were conducted in a gradient saline-alkaline environment (0, 200, 400 mM NaCl: NaHCO3 = 1:1). One-year-old cuttings of black wolfberry, inoculated with two AMF species-Funneliformis mosseae (Fm) and Rhizophagus intraradices (Ri)-served as the experimental material, enabling a comprehensive analysis of seedling biomass, chlorophyll content, antioxidant enzyme activities, and other crucial physiological parameters. This study demonstrated that both Fm and Ri could form a symbiotic relationship with the root of Lycium ruthenicum. Notably, Fm inoculation significantly bolstered the growth of the underground parts, while exhibiting a remarkable capacity to scavenge reactive oxygen species (ROS), thereby effectively mitigating membrane oxidative damage induced by stress. Additionally, Fm promoted the accumulation of abscisic acid (ABA) in both leaves and roots, facilitating the exclusion of excess sodium ions from cells. Ri Inoculation primarily contributed to an enhancement in the chlorophyll b (Chlb) content, vital for sustaining photosynthesis processes. Furthermore, Ri's ability to enhance phosphorus (P) absorption under stressful conditions ensured a steady influx of essential nutrients. These findings point to different strategies employed for Fm and Ri inoculation. To holistically assess the saline-alkaline tolerance of each treatment group, a membership function analysis was employed, ultimately ranking the salt tolerance as Fm > Ri > non-mycorrhizal (NM) control. This finding holds paramount importance for the screening of highly resilient Lycium ruthenicum strains and offers invaluable theoretical underpinnings and technical guidance for the remediation of saline-alkaline soils, fostering sustainable agricultural practices in challenging environments.

3.
Front Pharmacol ; 15: 1426944, 2024.
Article de Anglais | MEDLINE | ID: mdl-39027334

RÉSUMÉ

Wolfberry, esteemed as a traditional Chinese medicinal material and functional food, is replete with nutrients and boasts a diverse array of health benefits, including hypoglycemic, antitumor, antioxidant, anti-inflammatory, and immune-enhancing properties. Notably, inflammation is a pivotal factor in the onset and progression of numerous diseases. Despite this, there is a paucity of research on the comprehensive evaluation of the components found in different wolfberries, and the exploration of their primary active components is limited. To address this issue, we conducted a comprehensive targeted metabolomics analysis, employing statistical methods such as principal component analysis (PCA), orthogonal partial least squares discriminant analysis (OPLS-DA), KEGG pathway analysis, and volcano plots to delineate the compositional differences among red, black, and yellow wolfberries. Furthermore, we investigated the anti-inflammatory effects of their primary components through in vitro experiments. Our analysis revealed a total of 1,104 chemical compositions in the three wolfberries, with alkaloids, phenolic acids, flavonoids, and lipids being the predominant nutritional components. KEGG enrichment analysis indicated that these compositions were primarily involved in the biosynthesis of secondary metabolites, ABC transport, and galactose metabolism pathway. Moreover, our study demonstrated that quercetin exhibited dose-dependent anti-inflammatory activity in LPS-stimulated HUVECs. It effectively inhibited the production of inflammatory factors such as TNF-α, MCP-1, and IL-1ß, while also down-regulating the gene and protein expression levels of ICAM-1 and VCAM-1. In conclusion, our findings indicate that there are variations in compositions among the three wolfberries, with flavonoids being the most abundant, and in vitro studies also confirmed the anti-inflammatory potential of quercetin. It is worth noting that Lycium ruthenicum contains higher levels of antioxidant components and possesses greater nutritional value, providing valuable insights for the future development and utilization of the three wolfberries.

4.
Front Plant Sci ; 15: 1385980, 2024.
Article de Anglais | MEDLINE | ID: mdl-38693926

RÉSUMÉ

Resource-based water shortages, uncoordinated irrigation, and fertilization are prevalent challenges in agricultural production. The scientific selection of appropriate water and fertilizer management methods is important for improving the utilization efficiency of agricultural resources and alleviating agricultural non-point source pollution. This study focused on wolfberry and compared the effects of four irrigation levels [full irrigation (W0, 75%-85% θf), slight water deficit (W1, 65%-75% θf), moderate water deficit (W2, 55%-65% θf), and severe water deficit (W3, 45%-55% θf)] and four nitrogen application levels [no nitrogen application (N0, 0 kg·ha-1), low nitrogen application (N1, 150 kg·ha-1), medium nitrogen application (N2, 300 kg·ha-1), and high nitrogen application (N3, 450 kg·ha-1)] on soil nitrate nitrogen (NO3 --N) transport, plant nitrogen allocation, and soil nitrous oxide (N2O) emissions during the harvest period of wolfberry. And this study used CRITIC-entropy weights-TOPSIS model to evaluate 16 water and nitrogen regulation models comprehensively. The results revealed the following: (1) The NO3 --N content of the soil decreased with increasing horizontal distance from the wolfberry. It initially decreased, then increased, and finally decreased with an increase in soil depth. The average NO3 --N content in the 0-100 cm soil layer ranged from 3.95-13.29 mg·kg-1, indicating that W0 > W1, W2, W3, and N3 > N2 > N1 > N0. (2) The soil NO3 --N accumulation ranged from 64.45-215.27 kg·ha-1 under varying water and nitrogen levels, demonstrating a decreasing trend with increasing horizontal distance. The NO3 --N accumulation at each horizontal distance increased with increasing irrigation and nitrogen application. The NO3 --N accumulation of W0N3 treatment increased by 5.55%-57.60% compared with the other treatments. (3) The total nitrogen content and nitrogen uptake in all wolfberry organs were W1 > W0 > W2 > W3, and N2 > N3 > N1 > N0. The maximum total nitrogen content and nitrogen uptake in W1N2 treatment were 3.25% and 27.82 kg·ha-1 in the roots, 3.30% and 57.19 kg·ha-1 in the stems, 3.91% and 11.88 kg·ha-1 in the leaves, and 2.42% and 63.56 kg·ha-1 in the fruits, respectively. (4) The emission flux and total emission of N2O increased with increasing irrigation and nitrogen application. The emission flux exhibited a transient peak (116.39-177.91 ug·m-2·h-1) after irrigation. The intensity of N2O emissions initially decreased and then increased with an increase in the irrigation amount. It also initially increased with increasing nitrogen application amount, then decreased, and finally increased again. The maximum emission intensity was observed under the W3N3 treatment (0.23 kg·kg-1). The N2O emission coefficients ranged from 0.17%-0.39%, in the order of W0 > W1 > W2 > W3 (except for N1) and N1 > N2 > N3. (5) Under varying water and nitrogen concentrations, N2O emission flux showed a positive linear correlation with soil pore water content and NO3 --N content and a negative linear correlation with soil temperature. The comprehensive evaluation revealed that a slight water deficit (65%-75% θf) combined with medium nitrogen application (300 kg·ha-1) decreased soil NO3 --N leaching, increased nitrogen uptake, and reduced N2O emission. These findings can serve as a reference for improving the efficiency and reducing emissions of wolfberry in the Yellow River irrigation region of Gansu Province and in similar climate zones.

5.
Plant Dis ; : PDIS04240736SC, 2024 Aug 27.
Article de Anglais | MEDLINE | ID: mdl-38720537

RÉSUMÉ

Goji berries (Lycium barbarum and L. chinense) have a rich historical significance in traditional Chinese medicine and have gained popularity as a superfood in Western cultures. From 2021 to 2023, powdery mildew was observed on goji plants of both species in community and residential gardens in Yolo County, California (U.S.A.). Disease severity varied from 20 to 100% of infected leaves per plant. Powdery mildew was characterized by the presence of white fungal colonies on both sides of leaves and fruit sepals. Additionally, a brownish discoloration was observed in infected mature leaves, resulting in further defoliation. Morphologically, the fungus matched the description of Arthrocladiella mougeotii. The pathogen identity was confirmed by phylogenetic analyses of the rDNA internal transcribed spacer and the 28S rDNA gene sequences. Pathogenicity was confirmed by inoculating healthy L. barbarum plants using infected leaves and successfully reproducing powdery mildew symptoms after 28 days (22°C, 60% RH), with A. mougeotii colonies confirmed by morphology. Control leaves remained symptomless. Coinfection with Phyllactinia chubutiana was detected on plants from two separate gardens, with A. mougeotii observed first in late spring (May to June) and P. chubutiana later in the summer (July to August). These results revealed that both A. mougeotii and P. chubutiana constitute causal agents of powdery mildew on goji berry plants, often infecting the same plant tissues simultaneously. To our knowledge, this is the first report of A. mougeotii causing powdery mildew on L. barbarum and L. chinense in California, which provides a better understanding of the etiology of powdery mildew of goji plants.

6.
J Agric Food Chem ; 72(22): 12752-12761, 2024 Jun 05.
Article de Anglais | MEDLINE | ID: mdl-38779924

RÉSUMÉ

This study investigated the transformation of polyphenols, including free and bound polyphenols during the fermentation of wolfberry juice by Lactobacillus plantarum NCU137. Results indicated that fermentation significantly increased the free polyphenols content and released bound polyphenols, enhancing the antioxidant activity. Analysis showed that there were 19 free polyphenols, mainly scopoletin, pyrogallol, and dihydroferulic acid, and 16 bound polyphenols, especially p-coumaric acid, feruloyl hexoside, and caffeic acid. A significant correlation was observed between the generation and degradation of polyphenols, and specific bound polyphenols peaked during the 24-48 h fermentation. Furthermore, reduced surface roughness and galacturonic acid content in wolfberry residue, along with increased pectinase activity, suggested substantial pectin degradation in the cell wall, which may be associated with the release of polyphenols, due to pectin serving as carriers for bound polyphenols. The fermentation also increased polyphenol oxidase and peroxidase activity, contributing to polyphenol breakdown. These findings provide insights for improving wolfberry juice production.


Sujet(s)
Antioxydants , Fermentation , Jus de fruits et de légumes , Fruit , Lactobacillus plantarum , Lycium , Polyphénols , Lactobacillus plantarum/métabolisme , Lactobacillus plantarum/composition chimique , Polyphénols/métabolisme , Polyphénols/composition chimique , Antioxydants/métabolisme , Antioxydants/composition chimique , Jus de fruits et de légumes/analyse , Fruit/composition chimique , Fruit/métabolisme , Fruit/microbiologie , Lycium/composition chimique , Lycium/métabolisme , Pectine/métabolisme , Pectine/composition chimique
7.
Front Plant Sci ; 15: 1355832, 2024.
Article de Anglais | MEDLINE | ID: mdl-38721340

RÉSUMÉ

Lycium barbarum L., commonly known as wolfberry, is not only a traditional Chinese medicine but also a highly nutritious food. Its main nutrients include L. barbarum polysaccharide, flavonoid polyphenols, carotenoids, alkaloids, and other compounds, demonstrating its wide application value. This study investigated the effects of nitrogen application on the accumulation of the main nutrients and metabolites in wolfberry fruits under three different nitrogen application rates, namely, N1 (20% nitrogen (N) reduction, 540 kg·ha-2), N2 (medium N, 675 kg·ha-2), and N3 (20% nitrogen increase, 810 kg·ha-2,which is a local conventional nitrogen application amount.). Additionally, due to continuous branching, blossoming, and fruiting of wolfberry plants during the annual growth period, this research also explored the variation in nutritional composition among different harvesting batches. The contents of total sugar and polysaccharide in wolfberry fruit were determined by Fehling reagent method and phenol-sulfuric acid method, respectively;The content of betaine in fruit was determined by high-performance liquid chromatography,and the flavonoids and carotene in the wolfberry fruits were determined by spectrophotometry. Analysis of data over three consecutive years revealed that as nitrogen application increased, the total sugar content in wolfberry fruits initially decreased and then increased. The levels of L. barbarum polysaccharides, total flavonoids, and total carotenoids initially increased and then decreased, while the betaine content consistently increased. Different picking batches significantly impacted the nutrient content of wolfberry fruits. Generally, the first batch of summer wolfberry fruits had greater amounts of total sugar and flavonoids, whereas other nutrients peaked in the third batch. By employing a broadly targeted metabolomics approach, 926 different metabolites were identified. The top 20 differentially abundant metabolites were selected for heatmap generation, revealing that the contents of L-citrulline, 2-methylglutaric acid, and adipic acid increased proportionally to the nitrogen gradient. Conversely, the dibutyl phthalate and 2, 4-dihydroxyquinoline contents significantly decreased under high-nitrogen conditions. The remaining 15 differentially abundant metabolites, kaempferol-3-O-sophorosid-7-O-rhamnoside, trigonelline, and isorhamnosid-3-O-sophoroside, initially increased and then decreased with increasing nitrogen levels. Isofraxidin, a common differentially abundant metabolite across all treatments, is a coumarin that may serve as a potential biomarker for wolfberry fruit response to nitrogen. Differentially abundant metabolites were analyzed for GO pathway involvement, revealing significant enrichment in metabolic pathways and biosynthesis of secondary metabolites under different nitrogen treatments. In conclusion, a nitrogen application of 675 kg·ha-2, 20% less than the local farmers' actual application, was most beneficial for the quality of four-year-old Ningqi 7 wolfberry fruits. Consumers who purchase wolfberry-dried fruit for health benefits should not consider only the first batch of summer wolfberry fruits. These results offer a broader perspective for enhancing the quality and efficiency of the wolfberry industry.

8.
Front Plant Sci ; 15: 1310346, 2024.
Article de Anglais | MEDLINE | ID: mdl-38444537

RÉSUMÉ

Wolfberry, also known as goji berry or Lycium barbarum, is a highly valued fruit with significant health benefits and nutritional value. For more efficient and comprehensive usage of published L. barbarum genomic data, we established the Wolfberry database. The utility of the Wolfberry Genome Database (WGDB) is highlighted through the Genome browser, which enables the user to explore the L. barbarum genome, browse specific chromosomes, and access gene sequences. Gene annotation features provide comprehensive information about gene functions, locations, expression profiles, pathway involvement, protein domains, and regulatory transcription factors. The transcriptome feature allows the user to explore gene expression patterns using transcripts per kilobase million (TPM) and fragments per kilobase per million mapped reads (FPKM) metrics. The Metabolism pathway page provides insights into metabolic pathways and the involvement of the selected genes. In addition to the database content, we also introduce six analysis tools developed for the WGDB. These tools offer functionalities for gene function prediction, nucleotide and amino acid BLAST analysis, protein domain analysis, GO annotation, and gene expression pattern analysis. The WGDB is freely accessible at https://cosbi7.ee.ncku.edu.tw/Wolfberry/. Overall, WGDB serves as a valuable resource for researchers interested in the genomics and transcriptomics of L. barbarum. Its user-friendly web interface and comprehensive data facilitate the exploration of gene functions, regulatory mechanisms, and metabolic pathways, ultimately contributing to a deeper understanding of wolfberry and its potential applications in agronomy and nutrition.

9.
BMC Plant Biol ; 24(1): 82, 2024 Feb 02.
Article de Anglais | MEDLINE | ID: mdl-38302892

RÉSUMÉ

BACKGROUND: Wolfberry is well-known for its high nutritional value and medicinal benefits. Due to the continuous ripening nature of Goji berries and the fact that they can be commercially harvested within a few weeks, their phytochemical composition may change during the harvesting process at different periods. RESULT: The involved molecular mechanisms of difference in fruit quality of ripe Lycium barbarum L. harvested at four different periods were investigated by transcriptomic and metabolomics analyses for the first time. According to the results we obtained, it was found that the appearance quality of L. barbarum fruits picked at the beginning of the harvesting season was superior, while the accumulation of sugar substances in L. barbarum fruits picked at the end of the harvesting season was better. At the same time the vitamin C and carotenoids content of wolfberry fruits picked during the summer harvesting season were richer. Ascorbic acid, succinic acid, glutamic acid, and phenolic acids have significant changes in transcription and metabolism levels. Through the network metabolic map, we found that ascorbic acid, glutamic acid, glutamine and related enzyme genes were differentially accumulated and expressed in wolfberry fruits at different harvesting periods. Nevertheless, these metabolites played important roles in the ascorbate-glutathione recycling system. Ascorbic acid, phenolic substances and the ascorbate-glutathione recycling system have antioxidant effects, which makes the L. barbarum fruits harvested in the summer more in line with market demand and health care concepts. CONCLUSION: This study laid the foundation for understanding the molecular regulatory mechanisms of quality differences of ripe wolfberry fruits harvested at different periods, and provides a theoretical basis for enhancing the quality of L. barbarum fruits.


Sujet(s)
Lycium , Lycium/génétique , Lycium/métabolisme , Fruit/métabolisme , Analyse de profil d'expression de gènes , Métabolome , Acide ascorbique/métabolisme , Glutathion/métabolisme , Glutamates/métabolisme
10.
Chemosphere ; 353: 141561, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38417492

RÉSUMÉ

Carbofuran and acetamiprid pose the highest residual risk among pesticides found in wolfberries. This study aimed to degrade these pesticides in wolfberries using a multi-array dielectric barrier discharge plasma (DBD), evaluate the impact on safety and quality and explore their degradation mechanism. The results showed that DBD treatment achieved 90.6% and 80.9% degradation rates for carbofuran and acetamiprid, respectively, following a first-order kinetic reaction. The 120 s treatment successfully reduced pesticide contamination to levels below maximum residue limits. Treatment up to 180 s did not adversely affect the quality of wolfberries. QTOF/MS identification and degradation pathway analysis revealed that DBD broke down the furan ring and carbamate group of carbofuran, while replacing the chlorine atom and oxidizing the side chain of acetamiprid, leading to degradation. The toxicological evaluation showed that the degradation products were less toxic than undegraded pesticides. Molecular dynamics simulations revealed the reactive oxygen species (ROS) facilitated the degradation of pesticides through dehydrogenation and radical addition reactions. ROS type and dosage significantly affected the breakage of chemical bonds associated with toxicity (C4-O5 and C2-Cl1). These findings deepen insights into the plasma chemical degradation of pesticides.


Sujet(s)
Carbofurane , Lycium , Néonicotinoïdes , Pesticides , Carbofurane/toxicité , Espèces réactives de l'oxygène , Simulation de dynamique moléculaire , Pesticides/analyse
11.
Ecotoxicol Environ Saf ; 270: 115874, 2024 Jan 15.
Article de Anglais | MEDLINE | ID: mdl-38176181

RÉSUMÉ

Realizing eco-friendly, long-term, and low-risk aphid control on Lycium barbarum (medicinal cash crop) using a Cynanchum komarovii extracts and eucalyptus oil-loaded microcapsules (EOMCs) formulation compositions is viable. In this study, the aim is to optimize the composition of Cynanchum komarovii extracts and EOMCs formulation for effective control of aphids, the release of EOMCs was controlled by changing the cross-linking degree of the shell to match the aphid control characteristics of Cynanchum komarovii extracts. Four types of polyamines were used as cross-linking agents for the preparation of EOMCs by interfacial polymerization. The bioactivity, wettability, and field application efficacy of Cynanchum komarovii extracts and different EOMCs formulation compositions were evaluated. These EOMCs exhibited an encapsulation efficiency exceeding 85 %. The control efficiency of the formulation compositions of microcapsules with a moderate release rate and Cynanchum komarovii extracts on aphids remained at 62.86 %, while the control efficiency of the combination of microcapsules with the fastest and slowest rates with Cynanchum komarovii extracts was only 48.62 % and 57.11 %, respectively. The formulation compositions of Cynanchum komarovii extracts with all four types of EOMCs were found to be safe for Chinese wolfberry plants. Overall, by selecting appropriate polyamines during fabrication, the release rate can be effectively controlled to achieve sustainable and low-risk aphid control in Lycium barbarum through compounding with selected microcapsules.


Sujet(s)
Cynanchum , Lycium , Eucalyptol , Capsules , Gestion du risque , Chine , Polyamines
12.
Plant Biotechnol J ; 22(6): 1435-1452, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38194521

RÉSUMÉ

Wolfberry is a plant with medicinal and food values. However, its bioactive ingredients and the corresponding genetic bases have not been determined. Here, we de novo generated a chromosome-level genome assembly for wolfberry, yielding a genome sequence of ~1.77 Gb with contig N50 of 50.55 Mb and 39 224 predicted gene models. A variation map, using 307 re-sequenced accessions, was called based on this genome assembly. Furthermore, the fruit metabolome of these accessions was profiled using 563 annotated metabolites, which separated Lycium barbarum L. and non-L. barbarum L. The flavonoids, coumarins, alkaloids and nicotinic acid contents were higher in the former than in the latter. A metabolite-based genome-wide association study mapped 156 164 significant single nucleotide polymorphisms corresponding to 340 metabolites. This included 19 219 unique lead single nucleotide polymorphisms in 1517 significant association loci, of which three metabolites, flavonoids, betaine and spermidine, were highlighted. Two candidate genes, LbUGT (evm.TU.chr07.2692) and LbCHS (evm.TU.chr07.2738), with non-synonymous mutations, were associated with the flavonoids content. LbCHS is a structural gene that interacts with a nearby MYB transcription factor (evm.TU.chr07.2726) both in L. barbarum and L. ruthenicum. Thus, these three genes might be involved in the biosynthesis/metabolism of flavonoids. LbSSADH (evm.TU.chr09.627) was identified as possibly participating in betaine biosynthesis/metabolism. Four lycibarbarspermidines (E-G and O) were identified, and only the lycibarbarspermidines O content was higher in L. barbarum varieties than in non-L. barbarum varieties. The evm.TU.chr07.2680 gene associated with lycibarbarspermidines O was annotated as an acetyl-CoA-benzylalcohol acetyltransferase, suggesting that it is a candidate gene for spermidine biosynthesis. These results provide novel insights into the specific metabolite profile of non-L. barbarum L. and the genetic bases of flavonoids, betaine and spermidine biosynthesis/metabolism.


Sujet(s)
Bétaïne , Flavonoïdes , Étude d'association pangénomique , Lycium , Polymorphisme de nucléotide simple , Spermidine , Flavonoïdes/métabolisme , Lycium/génétique , Lycium/métabolisme , Spermidine/métabolisme , Bétaïne/métabolisme , Polymorphisme de nucléotide simple/génétique , Génome végétal/génétique , Fruit/génétique , Fruit/métabolisme
13.
Molecules ; 28(23)2023 Dec 01.
Article de Anglais | MEDLINE | ID: mdl-38067622

RÉSUMÉ

The following investigations describe the potential of handheld NIR spectroscopy and Raman imaging measurements for the identification and authentication of food products. On the one hand, during the last decade, handheld NIR spectroscopy has made the greatest progress among vibrational spectroscopic methods in terms of miniaturization and price/performance ratio, and on the other hand, the Raman spectroscopic imaging method can achieve the best lateral resolution when examining the heterogeneous composition of samples. The utilization of both methods is further enhanced via the combination with chemometric evaluation methods with respect to the detection, identification, and discrimination of illegal counterfeiting of food products. To demonstrate the solution to practical problems with these two spectroscopic techniques, the results of our recent investigations obtained for various industrial processes and customer-relevant product examples have been discussed in this article. Specifically, the monitoring of food extraction processes (e.g., ethanol extraction of clove and water extraction of wolfberry) and the identification of food quality (e.g., differentiation of cocoa nibs and cocoa beans) via handheld NIR spectroscopy, and the detection and quantification of adulterations in powdered dairy products via Raman imaging were outlined in some detail. Although the present work only demonstrates exemplary product and process examples, the applications provide a balanced overview of materials with different physical properties and manufacturing processes in order to be able to derive modified applications for other products or production processes.


Sujet(s)
Cacaoyer , Spectroscopie proche infrarouge , Cacaoyer/composition chimique , Aliments , Contrôle de qualité , Spectroscopie proche infrarouge/méthodes , Analyse spectrale Raman/méthodes
14.
Plant Dis ; 2023 Dec 04.
Article de Anglais | MEDLINE | ID: mdl-38050402

RÉSUMÉ

Fusarium nematophilum NQ8GII4 is an endophytic fungus isolated from the root of healthy wolfberry (Lycium barbarum). Previous studies have reported that NQ8GII4 could dwell in wolfberry roots and enhance the defense responses in wolfberry against root rot, which is caused by F. oxysporum. To further elucidate the molecular mechanism of wolfberry disease resistance induced by NQ8GII4, in the present study, we adopted RNA sequencing analysis to profile the transcriptome of wolfberry response to NQ8GII4 infestation over a time course of 3 and 7 days post-inoculation (dpi). Gene ontology (GO) enrichment analysis revealed that DEGs were enriched related to biological regulation, response to stimulus, signaling, detoxification, immune system process, transporter activity, electron carrier activity, transcription factor activity, nucleic acid binding transcription factor, and antioxidant activity. Through Kyoto encyclopedia of genes and genomes (KEGG) analysis, it was found that many of these DEGs were enriched in pathways related to plant-pathogen interactions, hormone signal transduction, and phenylpropanoid biosynthesis pathway in wolfberry. This suggests that innate immunity, phytohormone signaling, and numerous phenylpropanoid compounds, which comprise a complex defense network in wolfberry. Chloroplast 50S ribosomal proteins (50S RP) were consistently located at the core position of the response in wolfberry following infestation with NQ8GII4 analyzed by protein-protein interaction (PPI) network. This study elucidated the molecular mechanism underlying the interaction between NQ8GII4 and wolfberry, clarified the wolfberry immune response network to endophytic fungi infestation, identified candidate resistance genes in wolfberry, and provided a fundamental date for subsequent work.

15.
Food Res Int ; 174(Pt 1): 113547, 2023 12.
Article de Anglais | MEDLINE | ID: mdl-37986427

RÉSUMÉ

Lactic acid bacteria (LAB) fermentation is frequently employed to improve the nutritional, functional, and sensory characteristics of foods. Our study explored the effects of co-fermentation with Lacticaseibacillus paracasei ZH8 and Lactococcus lactis subsp. lactis YM313 on the physicochemical properties, antioxidant activity, and metabolomic profiles of wolfberry-longan juice (WLJ). Fermentation was carried out at 35 °C for 15 h. The results suggest that WLJ is a favorable substrate for LAB growth, reaching a total viable count exceeding 8 log CFU/mL after fermentation. LAB fermentation increased acidity, reduced the sugar content, and significantly impacted the juice color. The total phenolic and flavonoid contents of the WLJ and the antioxidant capacities based on 2,2-diphenyl-1-picrylhydrazyl (DPPH), ABTS radical scavenging abilities and FRAP were significantly improved by LAB fermentation. Nontargeted metabolomics analysis suggested that the contents of small molecule substances in WLJ were considerably affected by LAB fermentation. A total of 374 differential metabolites were identified in the juice before and after fermentation, with 193 significantly upregulated metabolites and 181 siginificantly downregulated metabolites. The regulation of metabolites is important for improving the flavor and functions of juices, such as L-eucylproline, Isovitexin, Netivudine, 3-Phenyllactic acid, vanillin, and ethyl maltol, ect. This study provides a theoretical foundation for developing plant-based foods fermented with LAB.


Sujet(s)
Lactobacillales , Lycium , Lactobacillales/métabolisme , Antioxydants/analyse , Fermentation , Jus de fruits et de légumes/analyse
16.
Genes (Basel) ; 14(10)2023 10 15.
Article de Anglais | MEDLINE | ID: mdl-37895292

RÉSUMÉ

GATA proteins are a class of zinc-finger DNA-binding proteins that participate in diverse regulatory processes in plants, including the development processes and responses to environmental stresses. However, a comprehensive analysis of the GATA gene family has not been performed in a wolfberry (Lycium barbarum L.) or other Solanaceae species. There are 156 GATA genes identified in five Solanaceae species (Lycium barbarum L., Solanum lycopersicum L., Capsicum annuum L., Solanum tuberosum L., and Solanum melongena L.) in this study. Based on their phylogeny, they can be categorized into four subfamilies (I-IV). Noticeably, synteny analysis revealed that dispersed- and whole-genome duplication contributed to the expansion of the GATA gene family. Purifying selection was a major force driving the evolution of GATA genes. Moreover, the predicted cis-elements revealed the potential roles of wolfberry GATA genes in phytohormone, development, and stress responses. Furthermore, the RNA-seq analysis identified 31 LbaGATA genes with different transcript profiling under salt stress. Nine candidate genes were then selected for further verification using quantitative real-time PCR. The results revealed that four candidate LbaGATA genes (LbaGATA8, LbaGATA19, LbaGATA20, and LbaGATA24) are potentially involved in salt-stress responses. In conclusion, this study contributes significantly to our understanding of the evolution and function of GATA genes among the Solanaceae species, including wolfberry.


Sujet(s)
Lycium , Solanum tuberosum , Lycium/génétique , Facteurs de transcription GATA/génétique , Stress salin/génétique , Stress physiologique/génétique , Solanum tuberosum/génétique
17.
Nutrients ; 15(19)2023 Sep 27.
Article de Anglais | MEDLINE | ID: mdl-37836464

RÉSUMÉ

Lycium ruthenicum Murray (LRM; commonly known as black goji berry or black wolfberry), a plant in the Solanaceae family, grows in the deserts of China's Qinghai-Tibet plateau. LRM is widely consumed in traditional Chinese medicine, and its fruits are frequently used as herbal remedies to treat heart disease, fatigue, inflammation, and other conditions. Many studies have reported that LRM is rich in functional phytochemicals, such as anthocyanins and polysaccharides, and has various pharmacological actions. This article reviews research on the biological and pharmacological effects of the constituents of LRM fruits. LRM has various pharmacological properties, such as antioxidant, anti-inflammatory, anti-radiation, immune-enhancing, anti-tumor, and protective effects. LRM has much promise as a dietary supplement for preventing many types of chronic metabolic disease.


Sujet(s)
Lycium , Humains , Lycium/composition chimique , Anthocyanes/analyse , Tibet , Antioxydants/métabolisme , Inflammation , Fruit/composition chimique
18.
Front Plant Sci ; 14: 1225028, 2023.
Article de Anglais | MEDLINE | ID: mdl-37877079

RÉSUMÉ

A two-year field trial was conducted to investigate the effects of partial substitution of chemical fertilizer (CF) by Trichoderma biofertilizer (TF) on nitrogen (N) use efficiency and associated mechanisms in wolfberry (Lycium chinense) in coastal saline land. As with plant biomass and fruit yield, apparent N use efficiency and plant N accumulation were also higher with TF plus 75% CF than 100% CF, indicating that TF substitution promoted plant growth and N uptake. As a reason, TF substitution stabilized soil N supply by mitigating steep deceases in soil NH4 +-N and NO3 -N concentrations in the second half of growing seasons. TF substitution also increased carbon (C) fixation according to higher photosynthetic rate (Pn) and stable 13C abundance with TF plus 75% CF than 100% CF. Importantly, leaf N accumulation significantly and positively related with Pn, biomass, and fruit yield, and structural equation modeling also confirmed the importance of the causal relation of N accumulation coupled with C fixation for biomass and yield formation. Consequently, physiological and agronomical N use efficiencies were significantly higher with TF plus 75% CF than 100% CF. Overall, partial substitution of CF by TF improved N use efficiency in wolfberry in coastal saline land by stabilizing soil N supply and coupling N accumulation with C fixation.

19.
Article de Anglais | MEDLINE | ID: mdl-37797462

RÉSUMÉ

A novel sample preparation method based on polarity grouping was developed for the comprehensive determination of 315 undesirable low-weight organic pollutants ranging from polar to weakly polar in wolfberry. The method involves the swelling of the sample in ammonium acetate buffer, two-phase extraction, three-phase extraction, and dispersive solid phase extraction (D-SPE) with the assistance of low-temperature centrifugation and analysis by ultrahigh performance liquid chromatography coupled with electrospray ionization tandem mass (UHPLC-ESI-MS-MS) by using the multiple reaction monitoring mode. The recoveries of the analytes with wide range of polarity were satisfactory. The matrix-fortified standard calibration curves were compared for quantification. The results of linearity were satisfactory with linear regression coefficients (R) ranging from 0.9901 to 1.000. The limits of quantification ranged from 1 µg/kg to 10.0 µg/kg, indicating the compliance of products with legal tolerances. The average recoveries for spiked wolfberry were in the range of 69.3 %-145.2 % with RSD values of 0.2 %-28.6 %. The inter-day precision was in the range of 0.2 %-27.0 %. For over 90 % of the analytes, the recoveries were 70 %-120 % with RSD values below 20 %. The application of this method in routine monitoring programs would imply a drastic reduction of both effort and time.


Sujet(s)
Lycium , Pesticides , Pesticides/analyse , Spectrométrie de masse en tandem/méthodes , Chromatographie en phase liquide , Extraction en phase solide , Chromatographie en phase liquide à haute performance/méthodes
20.
BMC Plant Biol ; 23(1): 456, 2023 Sep 29.
Article de Anglais | MEDLINE | ID: mdl-37770861

RÉSUMÉ

BACKGROUND: N6-methyladenosine (m6A) modification is the most abundant type of RNA modification in eukaryotic cells, playing pivotal roles in multiple plant growth and development processes. Yet the potential role of m6A in conferring the trait of male sterility in plants remains unknown. RESULTS: In this study, we performed RNA-sequencing (RNA-Seq) and m6A-sequencing (m6A-Seq) of RNAs obtained from the anther tissue of two wolfberry lines: 'Ningqi No.1' (LB1) and its natural male sterile mutant 'Ningqi No.5' (LB5). Based on the newly assembled transcriptome, we established transcriptome-wide m6A maps for LB1 and LB5 at the single nucleus pollen stage. We found that the gene XLOC_021201, a homolog of m6A eraser-related gene ALKBH10 in Arabidopsis thaliana, was significantly differentially expressed between LB1 and LB5. We also identified 1642 and 563 m6A-modified genes with hypermethylated and hypomethylated patterns, respectively, in LB1 compared with LB5. We found the hypermethylated genes significantly enriched in biological processes related to energy metabolism and lipid metabolism, while hypomethylation genes were mainly linked to cell cycle process, gametophyte development, and reproductive process. Among these 2205 differentially m6A methylated genes, 13.74% (303 of 2205) were differentially expressed in LB1 vis-à-vis LB5. CONCLUSIONS: This study constructs the first m6A transcriptome map of wolfberry and establishes an association between m6A and the trait of male sterility in wolfberry.


Sujet(s)
Infertilité masculine , Lycium , Mâle , Humains , Analyse de profil d'expression de gènes , Lycium/génétique , Transcriptome , ARN , Méthylation de l'ADN/génétique , Infertilité masculine/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE