Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 77.254
Filtrer
1.
Nat Commun ; 15(1): 6552, 2024 Aug 02.
Article de Anglais | MEDLINE | ID: mdl-39095423

RÉSUMÉ

DNA double-strand break repair by homologous recombination has a specialised role in meiosis by generating crossovers that enable the formation of haploid germ cells. This requires meiosis-specific MEILB2-BRME1, which interacts with BRCA2 to facilitate loading of recombinases onto resected DNA ends. Here, we report the crystal structure of the MEILB2-BRME1 2:2 core complex, revealing a parallel four-helical assembly that recruits BRME1 to meiotic double-strand breaks in vivo. It forms an N-terminal ß-cap that binds to DNA, and a MEILB2 coiled-coil that bridges to C-terminal ARM domains. Upon BRCA2-binding, MEILB2-BRME1 2:2 complexes dimerize into a V-shaped 2:4:4 complex, with rod-like MEILB2-BRME1 components arranged at right-angles. The ß-caps located at the tips of the MEILB2-BRME1 limbs are separated by 25 nm, allowing them to bridge between DNA molecules. Thus, we propose that BRCA2 induces MEILB2-BRME1 to function as a DNA clamp, connecting resected DNA ends or homologous chromosomes to facilitate meiotic recombination.


Sujet(s)
Protéine BRCA2 , Cassures double-brin de l'ADN , Méiose , Protéine BRCA2/métabolisme , Protéine BRCA2/composition chimique , Protéine BRCA2/génétique , Humains , ADN/métabolisme , ADN/composition chimique , Liaison aux protéines , Recombinaison homologue , Animaux , Cristallographie aux rayons X , Protéines de liaison à l'ADN/métabolisme , Protéines de liaison à l'ADN/composition chimique , Protéines de liaison à l'ADN/génétique , Souris , Modèles moléculaires
2.
Int J Mol Sci ; 25(15)2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-39125980

RÉSUMÉ

RNA polymerase II (Pol II) dysfunction is frequently implied in human disease. Understanding its functional mechanism is essential for designing innovative therapeutic strategies. To visualize its supra-molecular interactions with genes and nascent RNA, we generated a human cell line carrying ~335 consecutive copies of a recombinant ß-globin gene. Confocal microscopy showed that Pol II was not homogeneously concentrated around these identical gene copies. Moreover, Pol II signals partially overlapped with the genes and their nascent RNA, revealing extensive compartmentalization. Using a cell line carrying a single copy of the ß-globin gene, we also tested if the binding of catalytically dead CRISPR-associated system 9 (dCas9) to different gene regions affected Pol II transcriptional activity. We assessed Pol II localization and nascent RNA levels using chromatin immunoprecipitation and droplet digital reverse transcription PCR, respectively. Some enrichment of transcriptionally paused Pol II accumulated in the promoter region was detected in a strand-specific way of gRNA binding, and there was no decrease in nascent RNA levels. Pol II preserved its transcriptional activity in the presence of DNA-bound dCas9. Our findings contribute further insight into the complex mechanism of mRNA transcription in human cells.


Sujet(s)
RNA polymerase II , Transcription génétique , Globines bêta , Humains , RNA polymerase II/métabolisme , RNA polymerase II/génétique , Globines bêta/génétique , Globines bêta/métabolisme , ADN/métabolisme , ADN/génétique , Régions promotrices (génétique) , Protéine-9 associée à CRISPR/métabolisme , Protéine-9 associée à CRISPR/génétique , Systèmes CRISPR-Cas , ARN/génétique , ARN/métabolisme , /génétique , ARN messager/génétique , ARN messager/métabolisme , Lignée cellulaire
3.
Methods Mol Biol ; 2846: 17-34, 2024.
Article de Anglais | MEDLINE | ID: mdl-39141227

RÉSUMÉ

ChIP-qPCR offers the opportunity to identify interactions of DNA-binding proteins such as transcription factors and their respective DNA binding sites. Thereby, transcription factors can interfere with gene expression, resulting in up- or downregulation of their target genes. Utilizing ChIP, it is possible to identify specific DNA binding sites that are bound by the DNA-binding proteins in dependence on treatment or prevailing conditions. During ChIP, DNA-binding proteins are reversibly cross-linked to their DNA binding sites and the DNA itself is fragmented. Using bead-captured antibodies, the target proteins are isolated while still binding their respective DNA response element. Using quantitative PCR, these DNA fragments are amplified and quantified. In this protocol, DNA binding sites of the glucocorticoid receptor are identified by treatment with the synthetic glucocorticoid Dexamethasone in murine bone marrow-derived macrophages.


Sujet(s)
Immunoprécipitation de la chromatine , Récepteurs aux glucocorticoïdes , Récepteurs aux glucocorticoïdes/métabolisme , Récepteurs aux glucocorticoïdes/génétique , Animaux , Immunoprécipitation de la chromatine/méthodes , Souris , Sites de fixation , Réaction de polymérisation en chaine en temps réel/méthodes , Liaison aux protéines , Dexaméthasone/pharmacologie , Macrophages/métabolisme , Macrophages/effets des médicaments et des substances chimiques , ADN/métabolisme , ADN/génétique , Protéines de liaison à l'ADN/métabolisme
4.
Methods Mol Biol ; 2846: 35-45, 2024.
Article de Anglais | MEDLINE | ID: mdl-39141228

RÉSUMÉ

Chromatin immunoprecipitation (ChIP) coupled to qPCR or sequencing is a crucial experiment to determine direct transcriptional regulation under the control of specific transcriptional factors or co-regulators at loci-specific or pan-genomic levels.Here we provide a reliable method for processing ChIP from adipocytes or frozen adipose tissue collection, isolation of nuclei, cross-linking of protein-DNA complexes, chromatin shearing, immunoprecipitation, and DNA purification. We also discuss critical steps for optimizing the experiment to perform a successful ChIP in lipid-rich cells/tissues.


Sujet(s)
Adipocytes , Tissu adipeux , Immunoprécipitation de la chromatine , ADN , Facteurs de transcription , Adipocytes/métabolisme , Adipocytes/cytologie , Tissu adipeux/métabolisme , Tissu adipeux/cytologie , Immunoprécipitation de la chromatine/méthodes , ADN/métabolisme , ADN/génétique , Facteurs de transcription/métabolisme , Humains , Animaux , Liaison aux protéines , Chromatine/métabolisme , Chromatine/génétique
5.
Methods Mol Biol ; 2846: 1-16, 2024.
Article de Anglais | MEDLINE | ID: mdl-39141226

RÉSUMÉ

For the genome-wide mapping of histone modifications, chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing remains the benchmark method. While crosslinked ChIP can be used for all kinds of targets, native ChIP is predominantly used for strong and direct DNA interactors like histones and their modifications. Here we describe a native ChIP protocol that can be used for cells and tissue material.


Sujet(s)
Immunoprécipitation de la chromatine , Histone , Immunoprécipitation de la chromatine/méthodes , Histone/métabolisme , Histone/génétique , Humains , Code histone , Séquençage nucléotidique à haut débit/méthodes , Maturation post-traductionnelle des protéines , Animaux , Chromatine/métabolisme , Chromatine/génétique , ADN/génétique , ADN/métabolisme , Séquençage après immunoprécipitation de la chromatine/méthodes
6.
Methods Mol Biol ; 2846: 123-132, 2024.
Article de Anglais | MEDLINE | ID: mdl-39141233

RÉSUMÉ

DNA-protein interactions play fundamental roles in diverse biological functions. The gene-centered method is used to identify the upstream regulators of defined genes. In this study, we developed a novel method for capturing the proteins that bind to certain chromatin fragments or DNA sequences, which is called reverse chromatin immunoprecipitation (R-ChIP). This technology uses a set of specific DNA probes labeled with biotin to isolate chromatin or DNA fragments, and the DNA-associated proteins are then analyzed using mass spectrometry. This method can capture DNA-associated proteins with sufficient quantity and purity for identification.


Sujet(s)
Immunoprécipitation de la chromatine , Chromatine , ADN , Immunoprécipitation de la chromatine/méthodes , Chromatine/métabolisme , Chromatine/génétique , ADN/métabolisme , ADN/génétique , Humains , Protéines de liaison à l'ADN/métabolisme , Protéines de liaison à l'ADN/génétique , Spectrométrie de masse/méthodes , Liaison aux protéines , Sondes d'ADN/génétique
7.
Methods Mol Biol ; 2846: 151-167, 2024.
Article de Anglais | MEDLINE | ID: mdl-39141235

RÉSUMÉ

Cleavage Under Targets and Release Using Nuclease (CUT&RUN) is a method to detect specific interactions between DNA and DNA-associated proteins. It is valuable for the characterization of the binding of transcription factors or co-regulators genome wide. Furthermore, it can be used for epigenetic profiling, chromatin accessibility assessment, and identification of regulatory elements. Compared to the more commonly used chromatin immunoprecipitation (ChIP), CUT&RUN has several advantages including an in situ approach as well as no need for sonication. However, the biggest advantage is the reduced cell amounts that are required for CUT&RUN, which makes it more attractive for experiments with limited cell numbers. In this chapter, we describe a reliable CUT&RUN protocol for macrophages that can be performed within 2 days and includes a library preparation so that the sample can be directly sequenced.


Sujet(s)
Macrophages , Macrophages/métabolisme , Animaux , ADN/métabolisme , ADN/génétique , Immunoprécipitation de la chromatine/méthodes , Souris , Chromatine/métabolisme , Chromatine/génétique , Humains , Protéines de liaison à l'ADN/métabolisme , Facteurs de transcription/métabolisme
8.
Methods Mol Biol ; 2846: 63-89, 2024.
Article de Anglais | MEDLINE | ID: mdl-39141230

RÉSUMÉ

Chromatin immunoprecipitation in combination with next-generation sequencing (ChIP-Seq) allows probing of protein-DNA binding in a rapid and genome-wide fashion. Herein we describe the required steps to preprocess ChIP-Seq data and to analyze the differential binding of proteins to DNA for perturbation experiments. In these experiments, different conditions are compared to find the underlying biological mechanisms caused by the stimulus or treatment. In addition, we provide a sample analysis using the steps outlined in the chapter.


Sujet(s)
Séquençage après immunoprécipitation de la chromatine , Protéines de liaison à l'ADN , ADN , Séquençage nucléotidique à haut débit , Liaison aux protéines , Séquençage après immunoprécipitation de la chromatine/méthodes , ADN/métabolisme , ADN/génétique , Protéines de liaison à l'ADN/métabolisme , Protéines de liaison à l'ADN/génétique , Séquençage nucléotidique à haut débit/méthodes , Humains , Sites de fixation , Immunoprécipitation de la chromatine/méthodes , Biologie informatique/méthodes , Analyse de séquence d'ADN/méthodes , Logiciel
9.
Methods Mol Biol ; 2846: 91-107, 2024.
Article de Anglais | MEDLINE | ID: mdl-39141231

RÉSUMÉ

ChIP-exo is a powerful tool for achieving enhanced sensitivity and single-base-pair resolution of transcription factor (TF) binding, which utilizes a combination of chromatin immunoprecipitation (ChIP) and lambda exonuclease digestion (exo) followed by high-throughput sequencing. ChIP-nexus (chromatin immunoprecipitation experiments with nucleotide resolution through exonuclease, unique barcode, and single ligation) is an updated and simplified version of the original ChIP-exo method, which has reported an efficient adapter ligation through the DNA circularization step. Building upon an established method, we present a protocol for generating NGS (next-generation sequencing) ready and high-quality ChIP-nexus library for glucocorticoid receptor (GR). This method is specifically optimized for bone marrow-derived macrophage (BMDM) cells. The protocol is initiated by the formation of DNA-protein cross-links in intact cells. This is followed by chromatin shearing, chromatin immunoprecipitation, ligation of sequencing adapters, digestion of adapter-ligated DNA using lambda exonuclease, and purification of single-stranded DNA for circularization and library amplification.


Sujet(s)
Immunoprécipitation de la chromatine , ADN , Séquençage nucléotidique à haut débit , Macrophages , Récepteurs aux glucocorticoïdes , Animaux , Récepteurs aux glucocorticoïdes/métabolisme , Récepteurs aux glucocorticoïdes/génétique , Souris , Macrophages/métabolisme , ADN/métabolisme , ADN/génétique , Séquençage nucléotidique à haut débit/méthodes , Immunoprécipitation de la chromatine/méthodes , Liaison aux protéines , Sites de fixation
10.
Methods Mol Biol ; 2846: 169-179, 2024.
Article de Anglais | MEDLINE | ID: mdl-39141236

RÉSUMÉ

Chromatin immunoprecipitation followed by sequencing (ChIP-Seq) allows for the identification of genomic targeting of DNA-binding proteins. Cleavage Under Targets and Release Using Nuclease (CUT&RUN) modifies this process by including a nuclease to digest DNA around a protein of interest. The result is a higher signal-to-noise ratio and decreased required starting material. This allows for high-fidelity sequence identification from as few as 500 cells, enabling chromatin profiling of precious tissue samples or primary cell types, as well as less abundant chromatin-binding proteins: all at significantly increased throughput.


Sujet(s)
Épigenèse génétique , Humains , Immunoprécipitation de la chromatine/méthodes , Séquençage après immunoprécipitation de la chromatine/méthodes , ADN/métabolisme , ADN/génétique , Chromatine/métabolisme , Chromatine/génétique , Animaux , Protéines de liaison à l'ADN/métabolisme , Protéines de liaison à l'ADN/génétique
11.
EMBO Rep ; 25(8): 3202-3220, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39095610

RÉSUMÉ

In eukaryotes, DNA is packaged into chromatin with the help of highly conserved histone proteins. Together with DNA-binding proteins, posttranslational modifications (PTMs) on these histones play crucial roles in regulating genome function, cell fate determination, inheritance of acquired traits, cellular states, and diseases. While most studies have focused on individual DNA-binding proteins, chromatin proteins, or histone PTMs in bulk cell populations, such chromatin features co-occur and potentially act cooperatively to accomplish specific functions in a given cell. This review discusses state-of-the-art techniques for the simultaneous profiling of multiple chromatin features in low-input samples and single cells, focusing on histone PTMs, DNA-binding, and chromatin proteins. We cover the origins of the currently available toolkits, compare and contrast their characteristic features, and discuss challenges and perspectives for future applications. Studying the co-occurrence of histone PTMs, DNA-binding proteins, and chromatin proteins in single cells will be central for a better understanding of the biological relevance of combinatorial chromatin features, their impact on genomic output, and cellular heterogeneity.


Sujet(s)
Chromatine , Protéines de liaison à l'ADN , Histone , Maturation post-traductionnelle des protéines , Histone/métabolisme , Chromatine/métabolisme , Chromatine/génétique , Humains , Protéines de liaison à l'ADN/métabolisme , Protéines de liaison à l'ADN/génétique , Animaux , ADN/métabolisme , ADN/génétique
12.
Nat Commun ; 15(1): 6984, 2024 Aug 14.
Article de Anglais | MEDLINE | ID: mdl-39143123

RÉSUMÉ

Transcription factors specifically bind to their consensus sequence motifs and regulate transcription efficiency. Transcription factors are also able to non-specifically contact the phosphate backbone of DNA through electrostatic interaction. The homeodomain of Meis1 TALE human transcription factor (Meis1-HD) recognizes its target DNA sequences via two DNA contact regions, the L1-α1 region and the α3 helix (specific binding mode). This study demonstrates that the non-specific binding mode of Meis1-HD is the energetically favored process during DNA binding, achieved by the interaction of the L1-α1 region with the phosphate backbone. An NMR dynamics study suggests that non-specific binding might set up an intermediate structure which can then rapidly and easily find the consensus region on a long section of genomic DNA in a facilitated binding process. Structural analysis using NMR and molecular dynamics shows that key structural distortions in the Meis1-HD-DNA complex are induced by various single nucleotide mutations in the consensus sequence, resulting in decreased DNA binding affinity. Collectively, our results elucidate the detailed molecular mechanism of how Meis1-HD recognizes single nucleotide mutations within its consensus sequence: (i) through the conformational features of the α3 helix; and (ii) by the dynamic features (rigid or flexible) of the L1 loop and the α3 helix. These findings enhance our understanding of how single nucleotide mutations in transcription factor consensus sequences lead to dysfunctional transcription and, ultimately, human disease.


Sujet(s)
ADN , Simulation de dynamique moléculaire , Protéine du site-1 d'intégration des virus myéloïdes écotropiques , Liaison aux protéines , Protéine du site-1 d'intégration des virus myéloïdes écotropiques/métabolisme , Protéine du site-1 d'intégration des virus myéloïdes écotropiques/génétique , Humains , ADN/métabolisme , ADN/composition chimique , ADN/génétique , Sites de fixation , Protéines à homéodomaine/métabolisme , Protéines à homéodomaine/génétique , Protéines à homéodomaine/composition chimique , Mutation , Séquence consensus , Séquence nucléotidique
13.
Nat Commun ; 15(1): 7081, 2024 Aug 17.
Article de Anglais | MEDLINE | ID: mdl-39152168

RÉSUMÉ

DSS1, essential for BRCA2-RAD51 dependent homologous recombination (HR), associates with the helical domain (HD) and OB fold 1 (OB1) of the BRCA2 DSS1/DNA-binding domain (DBD) which is frequently targeted by cancer-associated pathogenic variants. Herein, we reveal robust ss/dsDNA binding abilities in HD-OB1 subdomains and find that DSS1 shuts down HD-OB1's DNA binding to enable ssDNA targeting of the BRCA2-RAD51 complex. We show that C-terminal helix mutations of DSS1, including the cancer-associated R57Q mutation, disrupt this DSS1 regulation and permit dsDNA binding of HD-OB1/BRCA2-DBD. Importantly, these DSS1 mutations impair BRCA2/RAD51 ssDNA loading and focus formation and cause decreased HR efficiency, destabilization of stalled forks and R-loop accumulation, and hypersensitize cells to DNA-damaging agents. We propose that DSS1 restrains the intrinsic dsDNA binding of BRCA2-DBD to ensure BRCA2/RAD51 targeting to ssDNA, thereby promoting optimal execution of HR, and potentially replication fork protection and R-loop suppression.


Sujet(s)
Protéine BRCA2 , Réplication de l'ADN , ADN simple brin , ADN , Recombinaison homologue , Mutation , Rad51 Recombinase , Protéine BRCA2/métabolisme , Protéine BRCA2/génétique , Protéine BRCA2/composition chimique , Humains , ADN/métabolisme , Rad51 Recombinase/métabolisme , Rad51 Recombinase/génétique , ADN simple brin/métabolisme , ADN simple brin/génétique , Homéostasie , Liaison aux protéines , Protéines de liaison à l'ADN/métabolisme , Protéines de liaison à l'ADN/génétique , Domaines protéiques , Lignée cellulaire tumorale , Altération de l'ADN , Proteasome endopeptidase complex
14.
Nat Commun ; 15(1): 6636, 2024 Aug 06.
Article de Anglais | MEDLINE | ID: mdl-39107287

RÉSUMÉ

Synthetic DNA motifs form the basis of nucleic acid nanotechnology. The biochemical and biophysical properties of these motifs determine their applications. Here, we present a detailed characterization of switchback DNA, a globally left-handed structure composed of two parallel DNA strands. Compared to a conventional duplex, switchback DNA shows lower thermodynamic stability and requires higher magnesium concentration for assembly but exhibits enhanced biostability against some nucleases. Strand competition and strand displacement experiments show that component sequences have an absolute preference for duplex complements instead of their switchback partners. Further, we hypothesize a potential role for switchback DNA as an alternate structure in sequences containing short tandem repeats. Together with small molecule binding experiments and cell studies, our results open new avenues for switchback DNA in biology and nanotechnology.


Sujet(s)
ADN , Conformation d'acide nucléique , Thermodynamique , ADN/composition chimique , ADN/métabolisme , Magnésium/composition chimique , Magnésium/métabolisme , Nanotechnologie/méthodes , Humains
15.
Int J Mol Sci ; 25(15)2024 Jul 26.
Article de Anglais | MEDLINE | ID: mdl-39125714

RÉSUMÉ

As part of the field of DNA methylation identification, this study tackles the challenge of enhancing recognition performance by introducing a specialized deep learning framework called DeepPGD. DNA methylation, a crucial biological modification, plays a vital role in gene expression analyses, cellular differentiation, and the study of disease progression. However, accurately and efficiently identifying DNA methylation sites remains a pivotal concern in the field of bioinformatics. The issue addressed in this paper is the presence of methylation in DNA, which is a binary classification problem. To address this, our research aimed to develop a deep learning algorithm capable of more precisely identifying these sites. The DeepPGD framework combined a dual residual structure involving Temporal convolutional networks (TCNs) and bidirectional long short-term memory (BiLSTM) networks to effectively extract intricate DNA structural and sequence features. Additionally, to meet the practical requirements of DNA methylation identification, extensive experiments were conducted across a variety of biological species. The experimental results highlighted DeepPGD's exceptional performance across multiple evaluation metrics, including accuracy, Matthews' correlation coefficient (MCC), and the area under the curve (AUC). In comparison to other algorithms in the same domain, DeepPGD demonstrated superior classification and predictive capabilities across various biological species datasets. This significant advancement in algorithmic prowess not only offers substantial technical support, but also holds potential for research and practical implementation within the DNA methylation identification domain. Moreover, the DeepPGD framework shows potential for application in genomics research, biomedicine, and disease diagnostics, among other fields.


Sujet(s)
Algorithmes , Biologie informatique , Méthylation de l'ADN , Apprentissage profond , Humains , Biologie informatique/méthodes , , ADN/génétique , ADN/métabolisme
16.
Int J Mol Sci ; 25(15)2024 Jul 26.
Article de Anglais | MEDLINE | ID: mdl-39125763

RÉSUMÉ

In clinics, chemotherapy is often combined with surgery and radiation to increase the chances of curing cancers. In the case of glioblastoma (GBM), patients are treated with a combination of radiotherapy and TMZ over several weeks. Despite its common use, the mechanism of action of the alkylating agent TMZ has not been well understood when it comes to its cytotoxic effects in tumor cells that are mostly non-dividing. The cellular response to alkylating DNA damage is operated by an intricate protein network involving multiple DNA repair pathways and numerous checkpoint proteins that are dependent on the type of DNA lesion, the cell type, and the cellular proliferation state. Among the various alkylating damages, researchers have placed a special on O6-methylguanine (O6-mG). Indeed, this lesion is efficiently removed via direct reversal by O6-methylguanine-DNA methyltransferase (MGMT). As the level of MGMT expression was found to be directly correlated with TMZ efficiency, O6-mG was identified as the critical lesion for TMZ mode of action. Initially, the mode of action of TMZ was proposed as follows: when left on the genome, O6-mG lesions form O6-mG: T mispairs during replication as T is preferentially mis-inserted across O6-mG. These O6-mG: T mispairs are recognized and tentatively repaired by a post-replicative mismatched DNA correction system (i.e., the MMR system). There are two models (futile cycle and direct signaling models) to account for the cytotoxic effects of the O6-mG lesions, both depending upon the functional MMR system in replicating cells. Alternatively, to explain the cytotoxic effects of alkylating agents in non-replicating cells, we have proposed a "repair accident model" whose molecular mechanism is dependent upon crosstalk between the MMR and the base excision repair (BER) systems. The accidental encounter between these two repair systems will cause the formation of cytotoxic DNA double-strand breaks (DSBs). In this review, we summarize these non-exclusive models to explain the cytotoxic effects of alkylating agents and discuss potential strategies to improve the clinical use of alkylating agents.


Sujet(s)
Cassures double-brin de l'ADN , Réparation de l'ADN , Humains , Réparation de l'ADN/effets des médicaments et des substances chimiques , Cassures double-brin de l'ADN/effets des médicaments et des substances chimiques , Alkylation , Témozolomide/pharmacologie , ADN/métabolisme , Antinéoplasiques alcoylants/pharmacologie , Animaux , Glioblastome/métabolisme , Glioblastome/anatomopathologie , Glioblastome/génétique , O(6)-methylguanine-DNA methyltransferase/métabolisme , O(6)-methylguanine-DNA methyltransferase/génétique
17.
Int J Mol Sci ; 25(15)2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-39125963

RÉSUMÉ

The negative environmental and social impacts of food waste accumulation can be mitigated by utilizing bio-refineries' approach where food waste is revalorized into high-value products, such as prodigiosin (PG), using microbial bioprocesses. The diverse biological activities of PG position it as a promising compound, but its high production cost and promiscuous bioactivity hinder its wide application. Metal ions can modulate the electronic properties of organic molecules, leading to novel mechanisms of action and increased target potency, while metal complex formation can improve the stability, solubility and bioavailability of the parent compound. The objectives of this study were optimizing PG production through bacterial fermentation using food waste, allowing good quantities of the pure natural product for further synthesizing and evaluating copper(II) and zinc(II) complexes with it. Their antimicrobial and anticancer activities were assessed, and their binding affinity toward biologically important molecules, bovine serum albumin (BSA) and DNA was investigated by fluorescence emission spectroscopy and molecular docking. The yield of 83.1 mg/L of pure PG was obtained when processed meat waste at 18 g/L was utilized as the sole fermentation substrate. The obtained complexes CuPG and ZnPG showed high binding affinity towards target site III of BSA, and molecular docking simulations highlighted the affinity of the compounds for DNA minor grooves.


Sujet(s)
Complexes de coordination , Cuivre , ADN , Simulation de docking moléculaire , Prodigiosine , Sérumalbumine bovine , Zinc , Prodigiosine/composition chimique , Prodigiosine/métabolisme , Prodigiosine/pharmacologie , Cuivre/composition chimique , Cuivre/métabolisme , Zinc/métabolisme , Zinc/composition chimique , Sérumalbumine bovine/composition chimique , Sérumalbumine bovine/métabolisme , ADN/métabolisme , ADN/composition chimique , Animaux , Complexes de coordination/composition chimique , Complexes de coordination/pharmacologie , Humains , Bovins , Antinéoplasiques/pharmacologie , Antinéoplasiques/composition chimique , Sites de fixation
18.
Elife ; 132024 Aug 14.
Article de Anglais | MEDLINE | ID: mdl-39141555

RÉSUMÉ

Metal-ion-dependent nucleases play crucial roles in cellular defense and biotechnological applications. Time-resolved crystallography has resolved catalytic details of metal-ion-dependent DNA hydrolysis and synthesis, uncovering the essential roles of multiple metal ions during catalysis. The histidine-metal (His-Me) superfamily nucleases are renowned for binding one divalent metal ion and requiring a conserved histidine to promote catalysis. Many His-Me family nucleases, including homing endonucleases and Cas9 nuclease, have been adapted for biotechnological and biomedical applications. However, it remains unclear how the single metal ion in His-Me nucleases, together with the histidine, promotes water deprotonation, nucleophilic attack, and phosphodiester bond breakage. By observing DNA hydrolysis in crystallo with His-Me I-PpoI nuclease as a model system, we proved that only one divalent metal ion is required during its catalysis. Moreover, we uncovered several possible deprotonation pathways for the nucleophilic water. Interestingly, binding of the single metal ion and water deprotonation are concerted during catalysis. Our results reveal catalytic details of His-Me nucleases, which is distinct from multi-metal-ion-dependent DNA polymerases and nucleases.


Sujet(s)
ADN , Histidine , Histidine/métabolisme , Histidine/composition chimique , ADN/métabolisme , ADN/composition chimique , Cristallographie aux rayons X , Catalyse , Métaux/métabolisme , Métaux/composition chimique , Hydrolyse , Cations divalents/métabolisme , Modèles moléculaires
19.
DNA Repair (Amst) ; 141: 103731, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39089193

RÉSUMÉ

DNA replication is remarkably accurate with estimates of only a handful of mutations per human genome per cell division cycle. Replication stress caused by DNA lesions, transcription-replication conflicts, and other obstacles to the replication machinery must be efficiently overcome in ways that minimize errors and maximize completion of DNA synthesis. Replication fork reversal is one mechanism that helps cells tolerate replication stress. This process involves reannealing of parental template DNA strands and generation of a nascent-nascent DNA duplex. While fork reversal may be beneficial by facilitating DNA repair or template switching, it must be confined to the appropriate contexts to preserve genome stability. Many enzymes have been implicated in this process including ATP-dependent DNA translocases like SMARCAL1, ZRANB3, HLTF, and the helicase FBH1. In addition, the RAD51 recombinase is required. Many additional factors and regulatory activities also act to ensure reversal is beneficial instead of yielding undesirable outcomes. Finally, reversed forks must also be stabilized and often need to be restarted to complete DNA synthesis. Disruption or deregulation of fork reversal causes a variety of human diseases. In this review we will describe the latest models for reversal and key mechanisms of regulation.


Sujet(s)
Réplication de l'ADN , Humains , Réparation de l'ADN , ADN/métabolisme , Helicase/métabolisme , Helicase/génétique , Animaux , Instabilité du génome ,
20.
DNA Repair (Amst) ; 141: 103740, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39096696

RÉSUMÉ

An organism's genomic DNA must be accurately duplicated during each cell cycle. DNA synthesis is catalysed by DNA polymerase enzymes, which extend nucleotide polymers in a 5' to 3' direction. This inherent directionality necessitates that one strand is synthesised forwards (leading), while the other is synthesised backwards discontinuously (lagging) to couple synthesis to the unwinding of duplex DNA. Eukaryotic cells possess many diverse polymerases that coordinate to replicate DNA, with the three main replicative polymerases being Pol α, Pol δ and Pol ε. Studies conducted in yeasts and human cells utilising mutant polymerases that incorporate molecular signatures into nascent DNA implicate Pol ε in leading strand synthesis and Pol α and Pol δ in lagging strand replication. Recent structural insights have revealed how the spatial organization of these enzymes around the core helicase facilitates their strand-specific roles. However, various challenging situations during replication require flexibility in the usage of these enzymes, such as during replication initiation or encounters with replication-blocking adducts. This review summarises the roles of the replicative polymerases in bulk DNA replication and explores their flexible and dynamic deployment to complete genome replication. We also examine how polymerase usage patterns can inform our understanding of global replication dynamics by revealing replication fork directionality to identify regions of replication initiation and termination.


Sujet(s)
Réplication de l'ADN , Humains , ADN/métabolisme , ADN/biosynthèse , DNA-directed DNA polymerase/métabolisme , Animaux , DNA polymerase II/métabolisme , Eucaryotes/enzymologie , Eucaryotes/génétique , DNA polymerase III/métabolisme , Cellules eucaryotes/métabolisme , Cellules eucaryotes/enzymologie , DNA polymerase I/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE