Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 3.798
Filtrer
1.
PLoS One ; 19(9): e0310601, 2024.
Article de Anglais | MEDLINE | ID: mdl-39288122

RÉSUMÉ

Non-enzymatic spontaneous deamination of 5-methylcytosine, producing thymine, is the proposed etiology of cancer mutational signature 1, which is the most predominant signature in all cancers. Here, the proposed mutational process was reconstituted using synthetic DNA and purified proteins. First, single-stranded DNA containing 5-methylcytosine at CpG context was incubated at an elevated temperature to accelerate spontaneous DNA damage. Then, the DNA was treated with uracil DNA glycosylase to remove uracil residues that were formed by deamination of cytosine. The resulting DNA was then used as a template for DNA synthesis by yeast DNA polymerase δ. The DNA products were analyzed by next-generation DNA sequencing, and mutation frequencies were quantified. The observed mutations after this process were exclusively C>T mutations at CpG context, which was very similar to signature 1. When 5-methylcytosine modification and uracil DNA glycosylase were both omitted, C>T mutations were produced on C residues in all sequence contexts, but these mutations were diminished by uracil DNA glycosylase-treatment. These results indicate that the CpG>TpG mutations were produced by the deamination of 5-methylcytosine. Additional mutations, mainly C>G, were introduced by yeast DNA polymerase ζ on the heat-damaged DNA, indicating that G residues of the templates were also damaged. However, the damage on G residues was not converted to mutations with DNA polymerase δ or ε.


Sujet(s)
5-Méthyl-cytosine , Température élevée , Mutation , Uracil-DNA glycosidase , 5-Méthyl-cytosine/métabolisme , Uracil-DNA glycosidase/métabolisme , Uracil-DNA glycosidase/génétique , Altération de l'ADN , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , Désamination , Humains , Ilots CpG , DNA polymerase III/métabolisme , DNA polymerase III/génétique , ADN simple brin/métabolisme , ADN simple brin/génétique
2.
Microb Biotechnol ; 17(9): e70008, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39287571

RÉSUMÉ

DNA damage occurs when cells encounter exogenous and endogenous stresses such as long periods of desiccation, ionizing radiation and genotoxic chemicals. Efforts have been made to detect DNA damage in vivo and in vitro to characterize or quantify the damage level. It is well accepted that single-stranded DNA (ssDNA) is one of the important byproducts of DNA damage to trigger the downstream regulation. A recent study has revealed that PprI efficiently recognizes ssDNA and cleaves DdrO at a specific site on the cleavage site region (CSR) loop in the presence of ssDNA, which enables the radiation resistance of Deinococcus. Leveraging this property, we developed a quantitative DNA damage detection method in vitro based on fluorescence resonance energy transfer (FRET). DdrO protein was fused with eYFP and eCFP on the N-terminal and C-terminal respectively, between which the FRET efficiency serves as an indicator of cleavage efficiency as well as the concentration of ssDNA. The standard curve between the concentration of ssDNA and the FRET efficiency was constructed, and application examples were tested, validating the effectiveness of this method.


Sujet(s)
Altération de l'ADN , ADN simple brin , Deinococcus , Transfert d'énergie par résonance de fluorescence , Transfert d'énergie par résonance de fluorescence/méthodes , Deinococcus/génétique , Deinococcus/effets des radiations , ADN simple brin/génétique , ADN simple brin/métabolisme , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , Protéines de fusion recombinantes/génétique , Protéines de fusion recombinantes/métabolisme , Protéines luminescentes/génétique , Protéines luminescentes/métabolisme
3.
Curr Protoc ; 4(9): e1125, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39228270

RÉSUMÉ

In vitro amplification of single-stranded oligonucleotide libraries presents a significant challenge due to the potential for excessive byproduct formation. This phenomenon largely affects the quality of the ssDNAs created using the most commonly used methods, e.g., asymmetric PCR, biotin-streptavidin separation, or lambda exonuclease digestion of dsDNA. Here, we describe an improved protocol that combines primer-blocked asymmetric PCR (PBA-PCR) with emulsion PCR and a cost-effective downstream process that altogether alleviates byproduct formation without distorting the sequence space of the ssDNA library. In PBA-PCR, the reaction mixture is complemented with a 3'-phosphate-blocked limiting primer that decreases mispriming, thus reducing polymerization of DNA byproducts. The downstream process includes mixing of the PBA-PCR product with excess reverse complement of the 3'-phosphate-blocked limiting primer and removal of dsDNA strands via biotin-streptavidin separation, yielding purified ssDNAs. In conclusion, we have devised a universally applicable approach for simple and cost-effective production of ssDNA libraries and unique ssDNA sequences with on-demand labeling. Our protocol could be beneficial for a variety of uses, such as generating aptamer libraries for SELEX, creating unique molecular identifiers for a wide range of sequencing applications, providing donor DNA for CRISPR-Cas9 systems, developing scaffold nanostructures, and enabling DNA-based data storage. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Amplification of ssDNA libraries using PBA-PCR Alternate Protocol 1: Amplification of ssDNA libraries using emulsion PBA-PCR with a simplified extraction of PBA-PCR products Basic Protocol 2: Purification of PBA-PCR products to remove dsDNA and conversion of 3'-blocked primer to double-stranded complexes Alternate Protocol 2: Purification of PBA-PCR products to remove both dsDNA and blocking primers from the reaction mixture Support Protocol: Analysis of PBA-PCR products by gel electrophoresis.


Sujet(s)
Analyse coût-bénéfice , Amorces ADN , ADN simple brin , Réaction de polymérisation en chaîne , ADN simple brin/génétique , ADN simple brin/composition chimique , ADN simple brin/isolement et purification , Réaction de polymérisation en chaîne/méthodes , Réaction de polymérisation en chaîne/économie , Amorces ADN/génétique
4.
Sci Rep ; 14(1): 20476, 2024 09 03.
Article de Anglais | MEDLINE | ID: mdl-39227621

RÉSUMÉ

Single-strand DNA-binding proteins SSB/RPA are ubiquitous and essential proteins that bind ssDNA in bacteria/eukaryotes and coordinate DNA metabolic processes such as replication, repair, and recombination. SSB protects ssDNA from degradation by nucleases, while also facilitating/regulating the activity of multiple partner proteins involved in DNA processes. Using Spi- assay, which detects aberrantly excised λ prophage from the E. coli chromosome as a measure of illegitimate recombination (IR) occurrence, we have shown that SSB inhibits IR in several DSB resection pathways. The conditional ssb-1 mutation produced a higher IR increase at the nonpermissive temperature than the recQ inactivation. A double ssb-1 recQ mutant had an even higher level of IR, while showing reduced homologous recombination (HR). Remarkably, the ssb gene overexpression complemented recQ deficiency in suppressing IR, indicating that the SSB function is epistatic to RecQ. Overproduced truncated SSBΔC8 protein, which binds to ssDNA, but does not interact with partner proteins, only partially complemented recQ and ssb-1 mutations, while causing an IR increase in otherwise wild-type bacteria, suggesting that ssDNA binding of SSB is required but not sufficient for effective IR inhibition, which rather entails interaction with RecQ and likely some other protein(s). Our results depict SSB as the main genome caretaker in E. coli, which facilitates HR while inhibiting IR. In enabling high-fidelity DSB repair under physiological conditions SSB is assisted by RecQ helicase, whose activity it controls. Conversely, an excess of SSB renders RecQ redundant for IR suppression.


Sujet(s)
ADN simple brin , Protéines de liaison à l'ADN , Protéines Escherichia coli , Escherichia coli , RecQ helicases , Escherichia coli/génétique , Escherichia coli/métabolisme , Protéines Escherichia coli/métabolisme , Protéines Escherichia coli/génétique , Protéines de liaison à l'ADN/métabolisme , Protéines de liaison à l'ADN/génétique , RecQ helicases/métabolisme , RecQ helicases/génétique , ADN simple brin/métabolisme , ADN simple brin/génétique , Recombinaison génétique , Mutation , Recombinaison homologue
5.
Mol Cell ; 84(17): 3237-3253.e6, 2024 Sep 05.
Article de Anglais | MEDLINE | ID: mdl-39178861

RÉSUMÉ

Homology search is a central step of DNA double-strand break (DSB) repair by homologous recombination (HR). How it operates in cells remains elusive. We developed a Hi-C-based methodology to map single-stranded DNA (ssDNA) contacts genome-wide in S. cerevisiae, which revealed two main homology search phases. Initial search conducted by short Rad51-ssDNA nucleoprotein filaments (NPFs) is confined in cis by cohesin-mediated chromatin loop folding. Progressive growth of stiff NPFs enables exploration of distant genomic sites. Long-range resection drives this transition from local to genome-wide search by increasing the probability of assembling extensive NPFs. DSB end-tethering promotes coordinated search by opposite NPFs. Finally, an autonomous genetic element on chromosome III engages the NPF, which stimulates homology search in its vicinity. This work reveals the mechanism of the progressive expansion of homology search that is orchestrated by chromatin organizers, long-range resection, end-tethering, and specialized genetic elements and that exploits the stiff NPF structure conferred by Rad51 oligomerization.


Sujet(s)
Cassures double-brin de l'ADN , ADN fongique , ADN simple brin , Rad51 Recombinase , Réparation de l'ADN par recombinaison , Protéines de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/métabolisme , ADN simple brin/métabolisme , ADN simple brin/génétique , Rad51 Recombinase/métabolisme , Rad51 Recombinase/génétique , ADN fongique/génétique , ADN fongique/métabolisme , Protéines chromosomiques nonhistones/métabolisme , Protéines chromosomiques nonhistones/génétique , Chromatine/métabolisme , Chromatine/génétique , Protéines du cycle cellulaire/métabolisme , Protéines du cycle cellulaire/génétique ,
6.
Nat Commun ; 15(1): 6852, 2024 Aug 10.
Article de Anglais | MEDLINE | ID: mdl-39127768

RÉSUMÉ

Cis-regulatory elements (CREs) are pivotal in orchestrating gene expression throughout diverse biological systems. Accurate identification and in-depth characterization of functional CREs are crucial for decoding gene regulation networks during cellular processes. In this study, we develop Kethoxal-Assisted Single-stranded DNA Assay for Transposase-Accessible Chromatin with Sequencing (KAS-ATAC-seq) to quantitatively analyze the transcriptional activity of CREs. A main advantage of KAS-ATAC-seq lies in its precise measurement of ssDNA levels within both proximal and distal ATAC-seq peaks, enabling the identification of transcriptional regulatory sequences. This feature is particularly adept at defining Single-Stranded Transcribing Enhancers (SSTEs). SSTEs are highly enriched with nascent RNAs and specific transcription factors (TFs) binding sites that define cellular identity. Moreover, KAS-ATAC-seq provides a detailed characterization and functional implications of various SSTE subtypes. Our analysis of CREs during mouse neural differentiation demonstrates that KAS-ATAC-seq can effectively identify immediate-early activated CREs in response to retinoic acid (RA) treatment. Our findings indicate that KAS-ATAC-seq provides more precise annotation of functional CREs in transcription. Future applications of KAS-ATAC-seq would help elucidate the intricate dynamics of gene regulation in diverse biological processes.


Sujet(s)
Facteurs de transcription , Animaux , Souris , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique , Transcription génétique , Éléments activateurs (génétique)/génétique , Chromatine/métabolisme , Chromatine/génétique , Sites de fixation , Humains , ADN simple brin/génétique , ADN simple brin/métabolisme , Séquençage après immunoprécipitation de la chromatine/méthodes , Transposases/métabolisme , Transposases/génétique , Éléments de régulation transcriptionnelle , Trétinoïne/pharmacologie , Trétinoïne/métabolisme , Régulation de l'expression des gènes , Différenciation cellulaire/génétique , Analyse de séquence d'ADN/méthodes , Séquences d'acides nucléiques régulatrices/génétique
7.
Nat Commun ; 15(1): 7081, 2024 Aug 17.
Article de Anglais | MEDLINE | ID: mdl-39152168

RÉSUMÉ

DSS1, essential for BRCA2-RAD51 dependent homologous recombination (HR), associates with the helical domain (HD) and OB fold 1 (OB1) of the BRCA2 DSS1/DNA-binding domain (DBD) which is frequently targeted by cancer-associated pathogenic variants. Herein, we reveal robust ss/dsDNA binding abilities in HD-OB1 subdomains and find that DSS1 shuts down HD-OB1's DNA binding to enable ssDNA targeting of the BRCA2-RAD51 complex. We show that C-terminal helix mutations of DSS1, including the cancer-associated R57Q mutation, disrupt this DSS1 regulation and permit dsDNA binding of HD-OB1/BRCA2-DBD. Importantly, these DSS1 mutations impair BRCA2/RAD51 ssDNA loading and focus formation and cause decreased HR efficiency, destabilization of stalled forks and R-loop accumulation, and hypersensitize cells to DNA-damaging agents. We propose that DSS1 restrains the intrinsic dsDNA binding of BRCA2-DBD to ensure BRCA2/RAD51 targeting to ssDNA, thereby promoting optimal execution of HR, and potentially replication fork protection and R-loop suppression.


Sujet(s)
Protéine BRCA2 , Réplication de l'ADN , ADN simple brin , ADN , Recombinaison homologue , Mutation , Rad51 Recombinase , Protéine BRCA2/métabolisme , Protéine BRCA2/génétique , Protéine BRCA2/composition chimique , Humains , ADN/métabolisme , Rad51 Recombinase/métabolisme , Rad51 Recombinase/génétique , ADN simple brin/métabolisme , ADN simple brin/génétique , Homéostasie , Liaison aux protéines , Protéines de liaison à l'ADN/métabolisme , Protéines de liaison à l'ADN/génétique , Domaines protéiques , Lignée cellulaire tumorale , Altération de l'ADN , Proteasome endopeptidase complex
8.
Talanta ; 280: 126706, 2024 Dec 01.
Article de Anglais | MEDLINE | ID: mdl-39153257

RÉSUMÉ

In this study, a porous carbon derived from a metal-organic framework (PCMOF) as a target-responsive material functionalized with Nocardia particular antisense ssDNA oligonucleotide (ssDNA capture probe) was developed to construct a simple genosensor based on biogatekeeper strategy for sensitive detection of Nocardia in complex biological samples. The PCMOF with suitable pores volume was used to encapsulate electroactive dye methylene blue (MB), and the ssDNA capture probe was used as a gatekeeper to cap PCMOF. Without the presence of Nocardia target, the electrochemical signal of trapped MB was high. Upon adding the target, the hybridization of ssDNA capture probe and target led to the formation of a probe-target double-stranded (dsDNA) structure which dissociated from PCMOF and allowed MB molecules to be released. Therefore, the electrochemical signal of the genosensor decreased. The detection of Nocardia was accomplished by observing variations in the MB peak current intensity in a dose-dependent manner. For this genosensor, a linearity range from 10-18 to 10-7 M for synthetic ssDNA target and 10 to 108 copies/mL for two standard isolates, Nocardia farcinica PTCC 1309 and Nocardia brasiliensis ATCC 19296 as well as for clinical isolates (identified as Nocardia otitidiscaviarum) was observed, respectively. The detection limit (DL) values were 0.54 aM for synthetic ssDNA target and 5, 7, and 4 copies/mL for N. farcinica, N. brasiliensis, and N. otitidiscaviarum, respectively. This genosensor was also characterized by good specificity, reproducibility, and stability.


Sujet(s)
Techniques de biocapteur , Carbone , ADN simple brin , Techniques électrochimiques , Nocardia , Nocardia/génétique , Nocardia/isolement et purification , Carbone/composition chimique , Techniques électrochimiques/méthodes , Techniques de biocapteur/méthodes , Porosité , ADN simple brin/composition chimique , ADN simple brin/génétique , Réseaux organométalliques/composition chimique , Limite de détection , Humains , Bleu de méthylène/composition chimique , ADN bactérien/génétique , ADN bactérien/analyse
9.
Proc Natl Acad Sci U S A ; 121(34): e2402262121, 2024 Aug 20.
Article de Anglais | MEDLINE | ID: mdl-39145931

RÉSUMÉ

Homologous recombination (HR) is essential for the maintenance of genome stability. During HR, Replication Protein A (RPA) rapidly coats the 3'-tailed single-strand DNA (ssDNA) generated by end resection. Then, the ssDNA-bound RPA must be timely replaced by Rad51 recombinase to form Rad51 nucleoprotein filaments that drive homology search and HR repair. How cells regulate Rad51 assembly dynamics and coordinate RPA and Rad51 actions to ensure proper HR remains poorly understood. Here, we identified that Rtt105, a Ty1 transposon regulator, acts to stimulate Rad51 assembly and orchestrate RPA and Rad51 actions during HR. We found that Rtt105 interacts with Rad51 in vitro and in vivo and restrains the adenosine 5' triphosphate (ATP) hydrolysis activity of Rad51. We showed that Rtt105 directly stimulates dynamic Rad51-ssDNA assembly, strand exchange, and D-loop formation in vitro. Notably, we found that Rtt105 physically regulates the binding of Rad51 and RPA to ssDNA via different motifs and that both regulations are necessary and epistatic in promoting Rad51 nucleation, strand exchange, and HR repair. Consequently, disrupting either of the interactions impaired HR and conferred DNA damage sensitivity, underscoring the importance of Rtt105 in orchestrating the actions of Rad51 and RPA. Our work reveals additional layers of mechanisms regulating Rad51 filament dynamics and the coordination of HR.


Sujet(s)
ADN simple brin , Rad51 Recombinase , Réparation de l'ADN par recombinaison , Protéine A de réplication , Protéines de Saccharomyces cerevisiae , Rad51 Recombinase/métabolisme , Protéine A de réplication/métabolisme , Protéine A de réplication/génétique , ADN simple brin/métabolisme , ADN simple brin/génétique , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/génétique , Liaison aux protéines
10.
Talanta ; 279: 126665, 2024 Nov 01.
Article de Anglais | MEDLINE | ID: mdl-39116728

RÉSUMÉ

Mucin 1 (MUC1) is frequently overexpressed in various cancers and is essential for early cancer detection. Current methods to detect MUC1 are expensive, time-consuming, and require skilled personnel. Therefore, developing a simple, sensitive, highly selective MUC1 detection sensor is necessary. In this study, we proposed a novel "signal-on-off" strategy that, in the presence of MUC1, synergistically integrates catalytic hairpin assembly (CHA) with DNA tetrahedron (Td)-based nonlinear hybridization chain reaction (HCR) to enhance the immobilization of electrochemically active methylene blue (MB) on magnetic nanoparticles (MNP), marking the MB signal "on". Concurrently, the activation of CRISPR-Cas12a by isothermal amplification products triggers the cleavage of single-stranded DNA (ssDNA) at the electrode surface, resulting in a reduction of MgAl-LDH@Fc-AuFe-MIL-101 (containing ferrocene, Fc) on the electrode, presenting the "signal-off" state. Both MB and MgAl-LDH@Fc-AuFe-MIL-101 electrochemical signals were measured and analyzed. Assay parameters were optimized, and sensitivity, stability, and linear range were assessed. Across a concentration spectrum of MUC1 spanning from 10 fg/mL to 100 ng/mL, the MB and MgAl-LDH@Fc-AuFe-MIL-101 signals were calibrated with each other, demonstrating a "signal-on-off" dual electrochemical signaling pattern. This allows for the precise and quantitative detection of MUC1 in clinical samples, offering significant potential for medical diagnosis.


Sujet(s)
Techniques de biocapteur , Systèmes CRISPR-Cas , Techniques électrochimiques , Mucine-1 , Hybridation d'acides nucléiques , Mucine-1/analyse , Mucine-1/génétique , Techniques électrochimiques/méthodes , Humains , Techniques de biocapteur/méthodes , Systèmes CRISPR-Cas/génétique , Bleu de méthylène/composition chimique , Nanoparticules de magnétite/composition chimique , ADN simple brin/composition chimique , ADN simple brin/génétique , Électrodes , Limite de détection , Or/composition chimique
11.
Nat Commun ; 15(1): 7375, 2024 Aug 27.
Article de Anglais | MEDLINE | ID: mdl-39191785

RÉSUMÉ

PARP inhibitors (PARPi), known for their ability to induce replication gaps and accelerate replication forks, have become potent agents in anticancer therapy. However, the molecular mechanism underlying PARPi-induced fork acceleration has remained elusive. Here, we show that the first PARPi-induced effect on DNA replication is an increased replication fork rate, followed by a secondary reduction in origin activity. Through the systematic knockdown of human DNA polymerases, we identify POLA1 as mediator of PARPi-induced fork acceleration. This acceleration depends on both DNA polymerase α and primase activities. Additionally, the depletion of POLA1 increases the accumulation of replication gaps induced by PARP inhibition, sensitizing cells to PARPi. BRCA1-depleted cells are especially susceptible to the formation of replication gaps under POLA1 inhibition. Accordingly, BRCA1 deficiency sensitizes cells to POLA1 inhibition. Thus, our findings establish the POLA complex as important player in PARPi-induced fork acceleration and provide evidence that lagging strand synthesis represents a targetable vulnerability in BRCA1-deficient cells.


Sujet(s)
Protéine BRCA1 , DNA primase , Réplication de l'ADN , ADN simple brin , Inhibiteurs de poly(ADP-ribose) polymérases , Humains , Inhibiteurs de poly(ADP-ribose) polymérases/pharmacologie , DNA primase/métabolisme , DNA primase/génétique , Protéine BRCA1/métabolisme , Protéine BRCA1/génétique , Réplication de l'ADN/effets des médicaments et des substances chimiques , ADN simple brin/métabolisme , ADN simple brin/génétique , DNA-directed DNA polymerase/métabolisme , DNA-directed DNA polymerase/génétique , Lignée cellulaire tumorale , DNA polymerase I
12.
Nat Commun ; 15(1): 7197, 2024 Aug 21.
Article de Anglais | MEDLINE | ID: mdl-39169038

RÉSUMÉ

Templated DNA repair that occurs during homologous recombination and replication stress relies on RAD51. RAD51 activity is positively regulated by BRCA2 and the RAD51 paralogs. The Shu complex is a RAD51 paralog-containing complex consisting of SWSAP1, SWS1, and SPIDR. We demonstrate that SWSAP1-SWS1 binds RAD51, maintains RAD51 filament stability, and enables strand exchange. Using single-molecule confocal fluorescence microscopy combined with optical tweezers, we show that SWSAP1-SWS1 decorates RAD51 filaments proficient for homologous recombination. We also find SWSAP1-SWS1 enhances RPA diffusion on ssDNA. Importantly, we show human sgSWSAP1 and sgSWS1 knockout cells are sensitive to pharmacological inhibition of PARP and APE1. Lastly, we identify cancer variants in SWSAP1 that alter Shu complex formation. Together, we show that SWSAP1-SWS1 stimulates RAD51-dependent high-fidelity repair and may be an important new cancer therapeutic target.


Sujet(s)
ADN simple brin , Rad51 Recombinase , Protéine A de réplication , Rad51 Recombinase/métabolisme , Rad51 Recombinase/génétique , Humains , ADN simple brin/métabolisme , ADN simple brin/génétique , Protéine A de réplication/métabolisme , Protéine A de réplication/génétique , Réparation de l'ADN , Liaison aux protéines , Recombinaison homologue , Imagerie de molécules uniques , Inhibiteurs de poly(ADP-ribose) polymérases/pharmacologie , DNA-(apurinic or apyrimidinic site) lyase/métabolisme , DNA-(apurinic or apyrimidinic site) lyase/génétique
13.
Mol Cell ; 84(16): 3026-3043.e11, 2024 Aug 22.
Article de Anglais | MEDLINE | ID: mdl-39178838

RÉSUMÉ

Abasic sites are DNA lesions repaired by base excision repair. Cleavage of unrepaired abasic sites in single-stranded DNA (ssDNA) can lead to chromosomal breakage during DNA replication. How rupture of abasic DNA is prevented remains poorly understood. Here, using cryoelectron microscopy (cryo-EM), Xenopus laevis egg extracts, and human cells, we show that RAD51 nucleofilaments specifically recognize and protect abasic sites, which increase RAD51 association rate to DNA. In the absence of BRCA2 or RAD51, abasic sites accumulate as a result of DNA base methylation, oxidation, and deamination, inducing abasic ssDNA gaps that make replicating DNA fibers sensitive to APE1. RAD51 assembled on abasic DNA prevents abasic site cleavage by the MRE11-RAD50 complex, suppressing replication fork breakage triggered by an excess of abasic sites or POLθ polymerase inhibition. Our study highlights the critical role of BRCA2 and RAD51 in safeguarding against unrepaired abasic sites in DNA templates stemming from base alterations, ensuring genomic stability.


Sujet(s)
Protéine BRCA2 , Altération de l'ADN , Réparation de l'ADN , Réplication de l'ADN , ADN simple brin , Rad51 Recombinase , Xenopus laevis , Humains , Rad51 Recombinase/métabolisme , Rad51 Recombinase/génétique , Protéine BRCA2/génétique , Protéine BRCA2/métabolisme , Animaux , ADN simple brin/métabolisme , ADN simple brin/génétique , Cryomicroscopie électronique , , Méthylation de l'ADN , DNA-directed DNA polymerase/métabolisme , DNA-directed DNA polymerase/génétique , Protéine homologue de MRE11/métabolisme , Protéine homologue de MRE11/génétique , Protéines de liaison à l'ADN/métabolisme , Protéines de liaison à l'ADN/génétique
14.
Nat Commun ; 15(1): 6843, 2024 Aug 10.
Article de Anglais | MEDLINE | ID: mdl-39122671

RÉSUMÉ

Despite the potential of small molecules and recombinant proteins to enhance the efficiency of homology-directed repair (HDR), single-stranded DNA (ssDNA) donors, as currently designed and chemically modified, remain suboptimal for precise gene editing. Here, we screen the biased ssDNA binding sequences of DNA repair-related proteins and engineer RAD51-preferred sequences into HDR-boosting modules for ssDNA donors. Donors with these modules exhibit an augmented affinity for RAD51, thereby enhancing HDR efficiency across various genomic loci and cell types when cooperated with Cas9, nCas9, and Cas12a. By combining with an inhibitor of non-homologous end joining (NHEJ) or the HDRobust strategy, these modular ssDNA donors achieve up to 90.03% (median 74.81%) HDR efficiency. The HDR-boosting modules targeting an endogenous protein enable a chemical modification-free strategy to improve the efficacy of ssDNA donors for precise gene editing.


Sujet(s)
ADN simple brin , Édition de gène , Rad51 Recombinase , Réparation de l'ADN par recombinaison , ADN simple brin/métabolisme , ADN simple brin/génétique , Humains , Édition de gène/méthodes , Rad51 Recombinase/métabolisme , Rad51 Recombinase/génétique , Systèmes CRISPR-Cas , Cellules HEK293 , Protéines associées aux CRISPR/métabolisme , Protéines associées aux CRISPR/génétique , Protéine-9 associée à CRISPR/métabolisme , Protéine-9 associée à CRISPR/génétique , Protéines bactériennes/métabolisme , Protéines bactériennes/génétique , Endodeoxyribonucleases/métabolisme , Endodeoxyribonucleases/génétique , Réparation de l'ADN par jonction d'extrémités
15.
Nat Commun ; 15(1): 6197, 2024 Jul 23.
Article de Anglais | MEDLINE | ID: mdl-39043663

RÉSUMÉ

Replication stress compromises genomic integrity. Fork blocking lesions such as those induced by cisplatin and other chemotherapeutic agents arrest replication forks. Repriming downstream of these lesions represents an important mechanism of replication restart, however the single stranded DNA (ssDNA) gaps left behind, unless efficiently filled, can serve as entry point for nucleases. Nascent strand gaps can be repaired by BRCA-mediated homology repair. Alternatively, gaps can also be filled by translesion synthesis (TLS) polymerases. How these events are regulated is still not clear. Here, we show that PARP10, a poorly-characterized mono-ADP-ribosyltransferase, is recruited to nascent strand gaps to promote their repair. PARP10 interacts with the ubiquitin ligase RAD18 and recruits it to these structures, resulting in the ubiquitination of the replication factor PCNA. PCNA ubiquitination, in turn, recruits the TLS polymerase REV1 for gap filling. We show that PARP10 recruitment to gaps and the subsequent REV1-mediated gap filling requires both the catalytic activity of PARP10, and its ability to interact with PCNA. We moreover show that PARP10 is hyperactive in BRCA-deficient cells, and its inactivation potentiates gap accumulations and cytotoxicity in these cells. Our work uncovers PARP10 as a regulator of ssDNA gap filling, which promotes genomic stability in BRCA-deficient cells.


Sujet(s)
Réparation de l'ADN , Réplication de l'ADN , ADN simple brin , Protéines de liaison à l'ADN , Poly(ADP-ribose) polymerases , Antigène nucléaire de prolifération cellulaire , Ubiquitin-protein ligases , Ubiquitination , Humains , Antigène nucléaire de prolifération cellulaire/métabolisme , Ubiquitin-protein ligases/métabolisme , Ubiquitin-protein ligases/génétique , Protéines de liaison à l'ADN/métabolisme , Protéines de liaison à l'ADN/génétique , ADN simple brin/métabolisme , ADN simple brin/génétique , Poly(ADP-ribose) polymerases/métabolisme , Poly(ADP-ribose) polymerases/génétique , Altération de l'ADN , Protéine BRCA2/métabolisme , Protéine BRCA2/génétique , Nucleotidyltransferases/métabolisme , Nucleotidyltransferases/génétique , Protéine BRCA1/métabolisme , Protéine BRCA1/génétique , Lignée cellulaire tumorale , Cellules HEK293 , , DNA-directed DNA polymerase , Protéines proto-oncogènes
16.
Bioconjug Chem ; 35(7): 1033-1043, 2024 Jul 17.
Article de Anglais | MEDLINE | ID: mdl-38963407

RÉSUMÉ

DNA-Encoded Libraries (DELs) allow the parallel screening of millions of compounds for various applications, including de novo discovery or affinity maturation campaigns. However, library construction and HIT resynthesis can be cumbersome, especially when library members present an unknown stereochemistry. We introduce a permutational encoding strategy suitable for the construction of highly pure single-stranded single-pharmacophore DELs, designed to distinguish isomers at the sequencing level (e.g., stereoisomers, regio-isomers, and peptide sequences). This approach was validated by synthesizing a mock 921,600-member 4-amino-proline single-stranded DEL ("DEL1"). While screening DEL1 against different targets, high-throughput sequencing results showed selective enrichment of the most potent stereoisomers, with enrichment factors that outperform conventional encoding strategies. The versatility of our methodology was additionally validated by encoding 24 scaffolds derived from different permutations of the amino acid sequence of a previously described cyclic peptide targeting Fibroblast Activation Protein (FAP-2286). The resulting library ("DEL2") was interrogated against human FAP, showing selective enrichment of five cyclic peptides. We observed a direct correlation between enrichment factors and on-DNA binding affinities. The presented encoding methodology accelerates drug discovery by facilitating library synthesis and streamlining HIT resynthesis while enhancing enrichment factors at the DEL sequencing level. This facilitates the identification of HIT candidates prior to medicinal chemistry and affinity maturation campaigns.


Sujet(s)
ADN simple brin , ADN simple brin/composition chimique , ADN simple brin/génétique , Banque de gènes , Découverte de médicament/méthodes , Stéréoisomérie , Humains , Peptides cycliques/composition chimique , Bibliothèques de petites molécules/composition chimique , Bibliothèques de petites molécules/pharmacologie , Séquence d'acides aminés
17.
J Microbiol Biotechnol ; 34(7): 1544-1549, 2024 Jul 28.
Article de Anglais | MEDLINE | ID: mdl-38956864

RÉSUMÉ

This study presents a fluorescent mechanism for two-step amplification by combining two widely used techniques, exponential amplification reaction (EXPAR) and catalytic hairpin assembly (CHA). Pseudomonas aeruginosa (P. aeruginosa) engaged in competition with the complementary DNA in order to attach to the aptamer that had been fixed on the magnetic beads. The unbound complementary strand in the liquid above was utilized as a trigger sequence to initiate the protective-EXPAR (p-EXPAR) process, resulting in the generation of a substantial quantity of short single-stranded DNA (ssDNA). The amplified ssDNA can initiate the second CHA amplification process, resulting in the generation of many double-stranded DNA (dsDNA) products. The CHA reaction was initiated by the target/trigger DNA, resulting in the release of G-quadruplex sequences. These sequences have the ability to bond with the fluorescent amyloid dye thioflavin T (ThT), generating fluorescence signals. The method employed in this study demonstrated a detection limit of 16 CFU/ml and exhibited a strong linear correlation within the concentration range of 50 CFU/ml to 105 CFU/ml. This method of signal amplification has been effectively utilized to create a fluorescent sensing platform without the need for labels, enabling the detection of P. aeruginosa with high sensitivity.


Sujet(s)
Aptamères nucléotidiques , Techniques de biocapteur , Colorants fluorescents , Limite de détection , Techniques d'amplification d'acides nucléiques , Pseudomonas aeruginosa , Pseudomonas aeruginosa/génétique , Pseudomonas aeruginosa/isolement et purification , Techniques d'amplification d'acides nucléiques/méthodes , Colorants fluorescents/composition chimique , Aptamères nucléotidiques/génétique , Aptamères nucléotidiques/composition chimique , Techniques de biocapteur/méthodes , ADN simple brin/génétique , G-quadruplexes , Fluorescence , ADN bactérien/génétique , Benzothiazoles
18.
Biotechnol J ; 19(7): e2400097, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38987221

RÉSUMÉ

DNA glycosylases are a group of enzymes that play a crucial role in the DNA repair process by recognizing and removing damaged or incorrect bases from DNA molecules, which maintains the integrity of the genetic information. The abnormal expression of uracil-DNA glycosylase (UDG), one of significant DNA glycosylases in the base-excision repair pathway, is linked to numerous diseases. Here, we proposed a simple UDG activity detection method based on toehold region triggered CRISPR/Cas12a trans-cleavage. The toehold region on hairpin DNA probe (HP) produced by UDG could induce the trans-cleavage of ssDNA with fluorophore and quencher, generating an obvious fluorescence signal. This protospacer adjacent motif (PAM)-free approach achieves remarkable sensitivity and specificity in detecting UDG, with a detection limit as low as 0.000368 U mL-1. Moreover, this method is able to screen inhibitors and measure UDG in complex biological samples. These advantages render it highly promising for applications in clinical diagnosis and drug discovery.


Sujet(s)
Systèmes CRISPR-Cas , Uracil-DNA glycosidase , Uracil-DNA glycosidase/métabolisme , Uracil-DNA glycosidase/génétique , Systèmes CRISPR-Cas/génétique , Humains , Protéines associées aux CRISPR/métabolisme , Protéines associées aux CRISPR/génétique , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , ADN simple brin/métabolisme , ADN simple brin/génétique
19.
ACS Synth Biol ; 13(8): 2492-2504, 2024 Aug 16.
Article de Anglais | MEDLINE | ID: mdl-39083642

RÉSUMÉ

Enzymatic DNA writing technologies based on the template-independent DNA polymerase terminal deoxynucleotidyl transferase (TdT) have the potential to advance DNA information storage. TdT is unique in its ability to synthesize single-stranded DNA de novo but has limitations, including catalytic inhibition by ribonucleotide presence and slower incorporation rates compared to replicative polymerases. We anticipate that protein engineering can improve, modulate, and tailor the enzyme's properties, but there is limited information on TdT sequence-structure-function relationships to facilitate rational approaches. Therefore, we developed an easily modifiable screening assay that can measure the TdT activity in high-throughput to evaluate large TdT mutant libraries. We demonstrated the assay's capabilities by engineering TdT mutants that exhibit both improved catalytic efficiency and improved activity in the presence of an inhibitor. We screened for and identified TdT variants with greater catalytic efficiency in both selectively incorporating deoxyribonucleotides and in the presence of deoxyribonucleotide/ribonucleotide mixes. Using this information from the screening assay, we rationally engineered other TdT homologues with the same properties. The emulsion-based assay we developed is, to the best of our knowledge, the first high-throughput screening assay that can measure TdT activity quantitatively and without the need for protein purification.


Sujet(s)
DNA nucleotidylexotransferase , DNA-directed DNA polymerase , Ingénierie des protéines , Ingénierie des protéines/méthodes , DNA-directed DNA polymerase/métabolisme , DNA-directed DNA polymerase/génétique , DNA-directed DNA polymerase/composition chimique , DNA nucleotidylexotransferase/métabolisme , DNA nucleotidylexotransferase/composition chimique , DNA nucleotidylexotransferase/génétique , Tests de criblage à haut débit/méthodes , ADN simple brin/génétique , ADN simple brin/métabolisme , Désoxyribonucléotides/métabolisme , Mutation
20.
J Biotechnol ; 393: 140-148, 2024 Sep 20.
Article de Anglais | MEDLINE | ID: mdl-39067578

RÉSUMÉ

Cyclic nucleic acids are biologically stable against nucleic acid exonucleases due to the absence of 5' and 3' termini. Studies of cyclic nucleic acids mainly focus on cyclic single-stranded nucleic acids. Cyclic single-stranded nucleic acids are further divided into circular RNA (circRNA) and circular single-stranded DNA (cssDNA). The synthesis methods of circRNA include lasso-driven cyclization, intron-paired cyclization, intron cyclization, intron complementary pairing-driven cyclization, RNA-binding protein-driven cyclization, and artificial synthesis depending on the source. Its main role is to participate in gene expression and the treatment of some diseases. Circular single-stranded DNA is mainly synthesized by chemical ligation, template-directed enzyme ligation, and new techniques for the efficient preparation of DNA single loops and topologies based on CircLigase. It is mainly used in rolling circle amplification (RCA) technology and in the bioprotection of circular aptamers and second messengers. This review focuses on the types, synthesis methods, and applications of cyclic single-stranded nucleic acids, providing a reference for further research on cyclic single-stranded nucleic acids.


Sujet(s)
ADN simple brin , ARN circulaire , ARN circulaire/génétique , ADN simple brin/génétique , ADN simple brin/composition chimique , ADN simple brin/métabolisme , ADN circulaire/génétique , ADN circulaire/composition chimique , Cyclisation , Techniques d'amplification d'acides nucléiques/méthodes , Humains
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE