Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 10.069
Filtrer
1.
Nat Commun ; 15(1): 6484, 2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-39090127

RÉSUMÉ

African swine fever virus (ASFV) is the causal agent of African swine fever (ASF), which is contagious and highly lethal to domestic pigs and wild boars. The genome of ASFV encodes many proteins important for ASFV life cycle. The functional importance of topoisomerase AsfvTopII has been confirmed by in vivo and in vitro assays, but the structure of AsfvTopII is poorly studied. Here, we report four AsfvTopII complex structures. The ATPase domain structures reveal the detailed basis for ATP binding and hydrolysis, which is shared by AsfvTopII and eukaryotic TopIIs. The DNA-bound structures show that AsfvTopII follows conserved mechanism in G-DNA binding and cleavage. Besides G-DNA, a T-DNA fragment is also captured in one AsfvTopII structure. Mutagenesis and in vitro assays confirm that Pro852 and the T-DNA-binding residue Tyr744 are important for the function of AsfvTopII. Our study not only advances the understanding on the biological function of AsfvTopII, but also provides a solid basis for the development of AsfvTopII-specific inhibitors.


Sujet(s)
Virus de la peste porcine africaine , Peste porcine africaine , Protéines virales , Virus de la peste porcine africaine/génétique , Virus de la peste porcine africaine/enzymologie , Animaux , Suidae , Peste porcine africaine/virologie , Protéines virales/métabolisme , Protéines virales/génétique , Protéines virales/composition chimique , Adénosine triphosphate/métabolisme , Modèles moléculaires , Liaison aux protéines , ADN viral/génétique , ADN viral/métabolisme , Cristallographie aux rayons X
2.
Subcell Biochem ; 104: 181-205, 2024.
Article de Anglais | MEDLINE | ID: mdl-38963488

RÉSUMÉ

Tailed double-stranded DNA bacteriophage employs a protein terminase motor to package their genome into a preformed protein shell-a system shared with eukaryotic dsDNA viruses such as herpesviruses. DNA packaging motor proteins represent excellent targets for antiviral therapy, with Letermovir, which binds Cytomegalovirus terminase, already licensed as an effective prophylaxis. In the realm of bacterial viruses, these DNA packaging motors comprise three protein constituents: the portal protein, small terminase and large terminase. The portal protein guards the passage of DNA into the preformed protein shell and acts as a protein interaction hub throughout viral assembly. Small terminase recognises the viral DNA and recruits large terminase, which in turn pumps DNA in an ATP-dependent manner. Large terminase also cleaves DNA at the termination of packaging. Multiple high-resolution structures of each component have been resolved for different phages, but it is only more recently that the field has moved towards cryo-EM reconstructions of protein complexes. In conjunction with highly informative single-particle studies of packaging kinetics, these structures have begun to inspire models for the packaging process and its place among other DNA machines.


Sujet(s)
ADN viral , Protéines virales , ADN viral/génétique , ADN viral/métabolisme , Protéines virales/métabolisme , Protéines virales/génétique , Endodeoxyribonucleases/métabolisme , Endodeoxyribonucleases/génétique , Encapsidation du génome viral/physiologie , Empaquetage de l'ADN , Bactériophages/génétique , Bactériophages/physiologie , Bactériophages/métabolisme , Génome viral
3.
Viruses ; 16(7)2024 Jul 20.
Article de Anglais | MEDLINE | ID: mdl-39066328

RÉSUMÉ

Retroviral integration is mediated by intasome nucleoprotein complexes wherein a pair of viral DNA ends are bridged together by a multimer of integrase (IN). Atomic-resolution structures of HIV-1 intasomes provide detailed insights into the mechanism of integration and inhibition by clinical IN inhibitors. However, previously described HIV-1 intasomes are highly heterogeneous and have the tendency to form stacks, which is a limiting factor in determining high-resolution cryo-EM maps. We have assembled HIV-1 intasomes in the presence of excess IN C-terminal domain protein, which was readily incorporated into the intasomes. The purified intasomes were largely homogeneous and exhibited minimal stacking tendencies. The cryo-EM map resolution was further improved to 2.01 Å, which will greatly facilitate structural studies of IN inhibitor action and drug resistance mechanisms. The C-terminal 18 residues of HIV-1 IN, which are critical for virus replication and integration in vitro, have not been well resolved in previous intasome structures, and its function remains unclear. We show that the C-terminal tail participates in intasome assembly, resides within the intasome core, and forms a small alpha helix (residues 271-276). Mutations that disrupt alpha helix integrity impede IN activity in vitro and disrupt HIV-1 infection at the step of viral DNA integration.


Sujet(s)
Cryomicroscopie électronique , Intégrase du VIH , VIH-1 (Virus de l'Immunodéficience Humaine de type 1) , Intégration virale , VIH-1 (Virus de l'Immunodéficience Humaine de type 1)/génétique , VIH-1 (Virus de l'Immunodéficience Humaine de type 1)/physiologie , VIH-1 (Virus de l'Immunodéficience Humaine de type 1)/enzymologie , VIH-1 (Virus de l'Immunodéficience Humaine de type 1)/composition chimique , Intégrase du VIH/métabolisme , Intégrase du VIH/composition chimique , Intégrase du VIH/génétique , Humains , Domaines protéiques , Modèles moléculaires , ADN viral/génétique , ADN viral/métabolisme
4.
Nat Commun ; 15(1): 6445, 2024 Jul 31.
Article de Anglais | MEDLINE | ID: mdl-39085263

RÉSUMÉ

MuB is a non-specific DNA-binding protein and AAA+ ATPase that significantly influences the DNA transposition process of bacteriophage Mu, especially in target DNA selection for transposition. While studies have established the ATP-dependent formation of MuB filament as pivotal to this process, the high-resolution structure of a full-length MuB protomer and the underlying molecular mechanisms governing its oligomerization remain elusive. Here, we use cryo-EM to obtain a 3.4-Å resolution structure of the ATP(+)-DNA(+)-MuB helical filament, which encapsulates the DNA substrate within its axial channel. The structure categorizes MuB within the initiator clade of the AAA+ protein family and precisely locates the ATP and DNA binding sites. Further investigation into the oligomeric states of MuB show the existence of various forms of the filament. These findings lead to a mechanistic model where MuB forms opposite helical filaments along the DNA, exposing potential target sites on the bare DNA and then recruiting MuA, which stimulates MuB's ATPase activity and disrupts the previously formed helical structure. When this happens, MuB generates larger ring structures and dissociates from the DNA.


Sujet(s)
Bactériophage mu , Cryomicroscopie électronique , ADN viral , Protéines de liaison à l'ADN , Protéines virales , Bactériophage mu/génétique , Bactériophage mu/métabolisme , Protéines virales/métabolisme , Protéines virales/génétique , Protéines virales/composition chimique , ADN viral/génétique , ADN viral/métabolisme , Protéines de liaison à l'ADN/métabolisme , Protéines de liaison à l'ADN/génétique , Protéines de liaison à l'ADN/composition chimique , Modèles moléculaires , Adénosine triphosphate/métabolisme , Adenosine triphosphatases/métabolisme , Adenosine triphosphatases/génétique , Adenosine triphosphatases/composition chimique , Sites de fixation , Multimérisation de protéines
5.
Proc Natl Acad Sci U S A ; 121(25): e2320782121, 2024 Jun 18.
Article de Anglais | MEDLINE | ID: mdl-38875150

RÉSUMÉ

Human bocavirus 1 (HBoV1) is a human parvovirus that causes lower respiratory tract infections in young children. It contains a single-stranded (ss) DNA genome of ~5.5 kb that encodes a small noncoding RNA of 140 nucleotides known as bocavirus-encoded small RNA (BocaSR), in addition to viral proteins. Here, we determined the secondary structure of BocaSR in vivo by using DMS-MaPseq. Our findings reveal that BocaSR undergoes N6-methyladenosine (m6A) modification at multiple sites, which is critical for viral DNA replication in both dividing HEK293 cells and nondividing cells of the human airway epithelium. Mechanistically, we found that m6A-modified BocaSR serves as a mediator for recruiting Y-family DNA repair DNA polymerase (Pol) η and Pol κ likely through a direct interaction between BocaSR and the viral DNA replication origin at the right terminus of the viral genome. Thus, this report represents direct involvement of a viral small noncoding RNA in viral DNA replication through m6A modification.


Sujet(s)
Adénosine , Réplication de l'ADN , ADN viral , DNA-directed DNA polymerase , ARN viral , Réplication virale , Humains , Adénosine/analogues et dérivés , Adénosine/métabolisme , Réplication virale/génétique , DNA-directed DNA polymerase/métabolisme , DNA-directed DNA polymerase/génétique , ADN viral/génétique , ADN viral/métabolisme , Cellules HEK293 , ARN viral/génétique , ARN viral/métabolisme , Bocavirus humain/génétique , Bocavirus humain/métabolisme , Génome viral/génétique , Infections à Parvoviridae/virologie
6.
mBio ; 15(7): e0136324, 2024 Jul 17.
Article de Anglais | MEDLINE | ID: mdl-38888311

RÉSUMÉ

HIV-1 replication is tightly regulated in host cells, and various restriction factors have important roles in inhibiting viral replication. SAMHD1, a well-known restriction factor, suppresses HIV-1 replication by hydrolyzing intracellular dNTPs, thereby limiting the synthesis of viral cDNA in quiescent cells. In this study, we revealed an additional and distinct mechanism of SAMHD1 inhibition during the postviral cDNA synthesis stage. Using immunoprecipitation and mass spectrometry analysis, we demonstrated the interaction between SAMHD1 and MX2/MxB, an interferon-induced antiviral factor that inhibits HIV-1 cDNA nuclear import. The disruption of endogenous MX2 expression significantly weakened the ability of SAMHD1 to inhibit HIV-1. The crucial region within SAMHD1 that binds to MX2 has been identified. Notably, we found that SAMHD1 can act as a sensor that recognizes and binds to the incoming HIV-1 core, subsequently delivering it to the molecular trap formed by MX2, thereby blocking the nuclear entry of the HIV-1 core structure. SAMHD1 mutants unable to recognize the HIV-1 core showed a substantial decrease in antiviral activity. Certain mutations in HIV-1 capsids confer resistance to MX2 inhibition while maintaining susceptibility to suppression by the SAMHD1-MX2 axis. Overall, our study identifies an intriguing antiviral pattern wherein two distinct restriction factors, SAMHD1 and MX2, collaborate to establish an alternative mechanism deviating from their actions. These findings provide valuable insight into the complex immune defense networks against exogenous viral infections and have implications for the development of targeted anti-HIV therapeutics. IMPORTANCE: In contrast to most restriction factors that directly bind to viral components to exert their antiviral effects, SAMHD1, the only known deoxynucleotide triphosphate (dNTP) hydrolase in eukaryotes, indirectly inhibits viral replication in quiescent cells by reducing the pool of dNTP substrates available for viral cDNA synthesis. Our study provides a novel perspective on the antiviral functions of SAMHD1. In addition to its role in dNTP hydrolysis, SAMHD1 cooperates with MX2 to inhibit HIV-1 nuclear import. In this process, SAMHD1 acts as a sensor for incoming HIV-1 cores, detecting and binding to them, before subsequently delivering the complex to the molecular trap formed by MX2, thereby immobilizing the virus. This study not only reveals a new antiviral pathway for SAMHD1 but also identifies a unique collaboration and interaction between two distinct restriction factors, establishing a novel line of defense against HIV-1 infection, which challenges the traditional view of restriction factors acting independently. Overall, our findings further indicate the intricate complexity of the host immune defense network and provide potential targets for promoting host antiviral immune defense.


Sujet(s)
Infections à VIH , VIH-1 (Virus de l'Immunodéficience Humaine de type 1) , Protéines de résistance aux myxovirus , Protéine-1 contenant un domaine SAM et un domaine HD , Réplication virale , Protéine-1 contenant un domaine SAM et un domaine HD/métabolisme , Protéine-1 contenant un domaine SAM et un domaine HD/génétique , Humains , VIH-1 (Virus de l'Immunodéficience Humaine de type 1)/physiologie , VIH-1 (Virus de l'Immunodéficience Humaine de type 1)/génétique , Protéines de résistance aux myxovirus/métabolisme , Protéines de résistance aux myxovirus/génétique , Infections à VIH/virologie , Infections à VIH/métabolisme , Infections à VIH/génétique , ADN viral/métabolisme , ADN viral/génétique , Cellules HEK293 , Interactions hôte-pathogène , Liaison aux protéines
7.
Viruses ; 16(6)2024 May 29.
Article de Anglais | MEDLINE | ID: mdl-38932164

RÉSUMÉ

The HIV-1 nucleocapsid protein (NC) is a multifunctional viral protein necessary for HIV-1 replication. Recent studies have demonstrated that reverse transcription (RT) completes in the intact viral capsid, and the timing of RT and uncoating are correlated. How the small viral core stably contains the ~10 kbp double stranded (ds) DNA product of RT, and the role of NC in this process, are not well understood. We showed previously that NC binds and saturates dsDNA in a non-specific electrostatic binding mode that triggers uniform DNA self-attraction, condensing dsDNA into a tight globule against extending forces up to 10 pN. In this study, we use optical tweezers and atomic force microscopy to characterize the role of NC's basic residues in dsDNA condensation. Basic residue mutations of NC lead to defective interaction with the dsDNA substrate, with the constant force plateau condensation observed with wild-type (WT) NC missing or diminished. These results suggest that NC's high positive charge is essential to its dsDNA condensing activity, and electrostatic interactions involving NC's basic residues are responsible in large part for the conformation, size, and stability of the dsDNA-protein complex inside the viral core. We observe DNA re-solubilization and charge reversal in the presence of excess NC, consistent with the electrostatic nature of NC-induced DNA condensation. Previous studies of HIV-1 replication in the presence of the same cationic residue mutations in NC showed significant defects in both single- and multiple-round viral infectivity. Although NC participates in many stages of viral replication, our results are consistent with the hypothesis that cationic residue mutations inhibit genomic DNA condensation, resulting in increased premature capsid uncoating and contributing to viral replication defects.


Sujet(s)
ADN viral , VIH-1 (Virus de l'Immunodéficience Humaine de type 1) , Transcription inverse , VIH-1 (Virus de l'Immunodéficience Humaine de type 1)/génétique , VIH-1 (Virus de l'Immunodéficience Humaine de type 1)/physiologie , VIH-1 (Virus de l'Immunodéficience Humaine de type 1)/composition chimique , VIH-1 (Virus de l'Immunodéficience Humaine de type 1)/métabolisme , ADN viral/génétique , ADN viral/métabolisme , Produits du gène gag du virus de l'immunodéficience humaine/métabolisme , Produits du gène gag du virus de l'immunodéficience humaine/génétique , Produits du gène gag du virus de l'immunodéficience humaine/composition chimique , Humains , Cations/métabolisme , Réplication virale , Microscopie à force atomique , Virion/métabolisme , Virion/génétique , Virion/composition chimique , Mutation
8.
J Biol Chem ; 300(7): 107438, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38838778

RÉSUMÉ

HIV-1 integration into the human genome is dependent on 3'-processing of the viral DNA. Recently, we reported that the cellular Three Prime Repair Exonuclease 1 (TREX1) enhances HIV-1 integration by degrading the unprocessed viral DNA, while the integration-competent 3'-processed DNA remained resistant. Here, we describe the mechanism by which the 3'-processed HIV-1 DNA resists TREX1-mediated degradation. Our kinetic studies revealed that the rate of cleavage (kcat) of the 3'-processed DNA was significantly lower (approximately 2-2.5-fold) than the unprocessed HIV-1 DNA by TREX1. The kcat values of human TREX1 for the processed U5 and U3 DNA substrates were 3.8 s-1 and 4.5 s-1, respectively. In contrast, the unprocessed U5 and U3 substrates were cleaved at 10.2 s-1 and 9.8 s-1, respectively. The efficiency of degradation (kcat/Km) of the 3'-processed DNA (U5-70.2 and U3-28.05 pM-1s-1) was also significantly lower than the unprocessed DNA (U5-103.1 and U3-65.3 pM-1s-1). Furthermore, the binding affinity (Kd) of TREX1 was markedly lower (∼2-fold) for the 3'-processed DNA than the unprocessed DNA. Molecular docking and dynamics studies revealed distinct conformational binding modes of TREX1 with the 3'-processed and unprocessed HIV-1 DNA. Particularly, the unprocessed DNA was favorably positioned in the active site with polar interactions with the catalytic residues of TREX1. Additionally, a stable complex was formed between TREX1 and the unprocessed DNA compared the 3'-processed DNA. These results pinpoint the mechanism by which TREX1 preferentially degrades the integration-incompetent HIV-1 DNA and reveal the unique structural and conformational properties of the integration-competent 3'-processed HIV-1 DNA.


Sujet(s)
ADN viral , Exodeoxyribonucleases , VIH-1 (Virus de l'Immunodéficience Humaine de type 1) , Phosphoprotéines , Exodeoxyribonucleases/métabolisme , Exodeoxyribonucleases/composition chimique , Exodeoxyribonucleases/génétique , VIH-1 (Virus de l'Immunodéficience Humaine de type 1)/métabolisme , Humains , Phosphoprotéines/métabolisme , Phosphoprotéines/composition chimique , Phosphoprotéines/génétique , ADN viral/métabolisme , ADN viral/génétique , ADN viral/composition chimique , Cinétique , Intégration virale , Thermodynamique
9.
Viruses ; 16(6)2024 May 25.
Article de Anglais | MEDLINE | ID: mdl-38932138

RÉSUMÉ

Viruses exploit the host cell machinery to enable infection and propagation. This review discusses the complex landscape of DNA virus-host interactions, focusing primarily on herpesviruses and adenoviruses, which replicate in the nucleus of infected cells, and vaccinia virus, which replicates in the cytoplasm. We discuss experimental approaches used to discover and validate interactions of host proteins with viral genomes and how these interactions impact processes that occur during infection, including the host DNA damage response and viral genome replication, repair, and transcription. We highlight the current state of knowledge regarding virus-host protein interactions and also outline emerging areas and future directions for research.


Sujet(s)
ADN viral , Génome viral , Interactions hôte-pathogène , Réplication virale , Humains , ADN viral/génétique , ADN viral/métabolisme , Virus à ADN/génétique , Animaux , Protéines virales/métabolisme , Protéines virales/génétique , Herpesviridae/génétique , Herpesviridae/métabolisme , Herpesviridae/physiologie , Virus de la vaccine/génétique
10.
Nucleic Acids Res ; 52(10): 5895-5911, 2024 Jun 10.
Article de Anglais | MEDLINE | ID: mdl-38716875

RÉSUMÉ

Argonautes are an evolutionary conserved family of programmable nucleases that identify target nucleic acids using small guide oligonucleotides. In contrast to eukaryotic Argonautes (eAgos) that act on RNA, most studied prokaryotic Argonautes (pAgos) recognize DNA targets. Similarly to eAgos, pAgos can protect prokaryotic cells from invaders, but the biogenesis of guide oligonucleotides that confer them specificity to their targets remains poorly understood. Here, we have identified a new group of RNA-guided pAgo nucleases and demonstrated that a representative pAgo from this group, AmAgo from the mesophilic bacterium Alteromonas macleodii, binds guide RNAs of varying lengths for specific DNA targeting. Unlike most pAgos and eAgos, AmAgo is strictly specific to hydroxylated RNA guides containing a 5'-adenosine. AmAgo and related pAgos are co-encoded with a conserved RNA endonuclease from the HEPN superfamily (Ago-associated protein, Agap-HEPN). In vitro, Agap cleaves RNA between guanine and adenine nucleotides producing hydroxylated 5'-A guide oligonucleotides bound by AmAgo. In vivo, Agap cooperates with AmAgo in acquiring guide RNAs and counteracting bacteriophage infection. The AmAgo-Agap pair represents the first example of a pAgo system that autonomously produces RNA guides for DNA targeting and antiviral defense, which holds promise for programmable DNA targeting in biotechnology.


Sujet(s)
Alteromonas , Protéines Argonaute , ADN viral , , Ribonucléases , Protéines Argonaute/métabolisme , Protéines Argonaute/génétique , Protéines bactériennes/métabolisme , Protéines bactériennes/génétique , Ribonucléases/métabolisme , /génétique , /métabolisme , Alteromonas/enzymologie , Alteromonas/virologie , ADN viral/métabolisme , Bactériophages/physiologie
11.
Viruses ; 16(5)2024 05 08.
Article de Anglais | MEDLINE | ID: mdl-38793626

RÉSUMÉ

HBV infection is challenging to cure due to the persistence of viral covalently closed circular viral DNA (cccDNA). The dedicator of cytokinesis 11 (DOCK11) is recognized as a guanine nucleotide exchange factor (GEF) for CDC42 that has been reported to be required for HBV persistence. DOCK11 is expressed in both the cytoplasm and nucleus of human hepatocytes and is functionally associated with retrograde trafficking proteins Arf-GAP with GTPase domain, ankyrin repeat, and pleckstrin homology domain-containing protein 2 (AGAP2), and ADP-ribosylation factor 1 (ARF1), together with the HBV capsid, in the trans-Golgi network (TGN). This opens an alternative retrograde trafficking route for HBV from early endosomes (EEs) to the TGN and then to the endoplasmic reticulum (ER), thereby avoiding lysosomal degradation. DOCK11 also facilitates the association of cccDNA with H3K4me3 and RNA Pol II for activating cccDNA transcription. In addition, DOCK11 plays a crucial role in the host DNA repair system, being essential for cccDNA synthesis. This function can be inhibited by 10M-D42AN, a novel DOCK11-binding peptide, leading to the suppression of HBV replication both in vitro and in vivo. Treatment with a combination of 10M-D42AN and entecavir may represent a promising therapeutic strategy for patients with chronic hepatitis B (CHB). Consequently, DOCK11 may be seen as a potential candidate molecule in the development of molecularly targeted drugs against CHB.


Sujet(s)
Facteurs d'échange de nucléotides guanyliques , Virus de l'hépatite B , Hépatocytes , Humains , Virus de l'hépatite B/physiologie , Virus de l'hépatite B/génétique , Facteurs d'échange de nucléotides guanyliques/métabolisme , Facteurs d'échange de nucléotides guanyliques/génétique , Hépatocytes/virologie , Hépatocytes/métabolisme , Pénétration virale , Réplication virale , Hépatite B/virologie , Hépatite B/métabolisme , ADN viral/métabolisme , ADN viral/génétique , Animaux
12.
Viruses ; 16(5)2024 05 08.
Article de Anglais | MEDLINE | ID: mdl-38793630

RÉSUMÉ

During viral infection, the innate immune system utilizes a variety of specific intracellular sensors to detect virus-derived nucleic acids and activate a series of cellular signaling cascades that produce type I IFNs and proinflammatory cytokines and chemokines. Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic double-stranded DNA virus that has been associated with a variety of human malignancies, including Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman disease. Infection with KSHV activates various DNA sensors, including cGAS, STING, IFI16, and DExD/H-box helicases. Activation of these DNA sensors induces the innate immune response to antagonize the virus. To counteract this, KSHV has developed countless strategies to evade or inhibit DNA sensing and facilitate its own infection. This review summarizes the major DNA-triggered sensing signaling pathways and details the current knowledge of DNA-sensing mechanisms involved in KSHV infection, as well as how KSHV evades antiviral signaling pathways to successfully establish latent infection and undergo lytic reactivation.


Sujet(s)
ADN viral , Herpèsvirus humain de type 8 , Immunité innée , Transduction du signal , Herpèsvirus humain de type 8/génétique , Herpèsvirus humain de type 8/physiologie , Humains , ADN viral/métabolisme , Infections à Herpesviridae/virologie , Infections à Herpesviridae/métabolisme , Sarcome de Kaposi/virologie , Nucleotidyltransferases/métabolisme , Interactions hôte-pathogène , Animaux , Protéines membranaires/métabolisme , Protéines nucléaires , Phosphoprotéines
13.
Clin Mol Hepatol ; 30(3): 539-560, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38741238

RÉSUMÉ

BACKGROUND/AIMS: The major histocompatibility class II (MHC II) transactivator, known as CIITA, is induced by Interferon gamma (IFN-γ) and plays a well-established role in regulating the expression of class II MHC molecules in antigen-presenting cells. METHODS: Primary human hepatocytes (PHH) were isolated via therapeutic hepatectomy from two donors. The hepatocellular carcinoma (HCC) cell lines HepG2 and Huh7 were used for the mechanistic study, and HBV infection was performed in HepG2-NTCP cells. HBV DNA replication intermediates and secreted antigen levels were measured using Southern blotting and ELISA, respectively. RESULTS: We identified a non-canonical function of CIITA in the inhibition of hepatitis B virus (HBV) replication in both HCC cells and patient-derived PHH. Notably, in vivo experiments demonstrated that HBV DNA and secreted antigen levels were significantly decreased in mice injected with the CIITA construct. Mechanistically, CIITA inhibited HBV transcription and replication by suppressing the activity of HBV-specific enhancers/promoters. Indeed, CIITA exerts antiviral activity in hepatocytes through ERK1/2-mediated down-regulation of the expression of hepatocyte nuclear factor 1α (HNF1α) and HNF4α, which are essential factors for virus replication. In addition, silencing of CIITA significantly abolished the IFN-γ-mediated anti-HBV activity, suggesting that CIITA mediates the anti-HBV activity of IFN-γ to some extent. HBV X protein (HBx) counteracts the antiviral activity of CIITA via direct binding and impairing its function. CONCLUSION: Our findings reveal a novel antiviral mechanism of CIITA that involves the modulation of the ERK pathway to restrict HBV transcription. Additionally, our results suggest the possibility of a new immune avoidance mechanism involving HBx.


Sujet(s)
Virus de l'hépatite B , Hépatocytes , Protéines nucléaires , Transactivateurs , Réplication virale , Virus de l'hépatite B/physiologie , Humains , Transactivateurs/métabolisme , Transactivateurs/génétique , Animaux , Souris , Protéines nucléaires/métabolisme , Protéines nucléaires/génétique , Hépatocytes/métabolisme , Hépatocytes/cytologie , Hépatocytes/virologie , Cellules HepG2 , Hépatite B/métabolisme , Interféron gamma/métabolisme , Facteur nucléaire hépatocytaire HNF-4/métabolisme , Facteur nucléaire hépatocytaire HNF-4/génétique , Carcinome hépatocellulaire/métabolisme , Carcinome hépatocellulaire/anatomopathologie , Carcinome hépatocellulaire/virologie , Tumeurs du foie/métabolisme , Tumeurs du foie/anatomopathologie , Tumeurs du foie/virologie , Facteur nucléaire hépatocytaire HNF-1 alpha/métabolisme , Facteur nucléaire hépatocytaire HNF-1 alpha/génétique , ADN viral/métabolisme , Protéines virales régulatrices ou accessoires
14.
J Biol Chem ; 300(6): 107374, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38762180

RÉSUMÉ

The pre-integration steps of the HIV-1 viral cycle are some of the most valuable targets of recent therapeutic innovations. HIV-1 integrase (IN) displays multiple functions, thanks to its considerable conformational flexibility. Recently, such flexible proteins have been characterized by their ability to form biomolecular condensates as a result of Liquid-Liquid-Phase-Separation (LLPS), allowing them to evolve in a restricted microenvironment within cells called membrane-less organelles (MLO). The LLPS context constitutes a more physiological approach to study the integration of molecular mechanisms performed by intasomes (complexes containing viral DNA, IN, and its cellular cofactor LEDGF/p75). We investigated here if such complexes can form LLPS in vitro and if IN enzymatic activities were affected by this LLPS environment. We observed that the LLPS formed by IN-LEDGF/p75 functional complexes modulate the in vitro IN activities. While the 3'-processing of viral DNA ends was drastically reduced inside LLPS, viral DNA strand transfer was strongly enhanced. These two catalytic IN activities appear thus tightly regulated by the environment encountered by intasomes.


Sujet(s)
Intégrase du VIH , VIH-1 (Virus de l'Immunodéficience Humaine de type 1) , Intégration virale , Intégrase du VIH/métabolisme , Intégrase du VIH/composition chimique , Intégrase du VIH/génétique , VIH-1 (Virus de l'Immunodéficience Humaine de type 1)/métabolisme , VIH-1 (Virus de l'Immunodéficience Humaine de type 1)/physiologie , Humains , ADN viral/métabolisme , ADN viral/génétique , Protéines et peptides de signalisation intercellulaire/métabolisme , Protéines et peptides de signalisation intercellulaire/composition chimique
15.
Nucleic Acids Res ; 52(12): 7292-7304, 2024 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-38806233

RÉSUMÉ

Herpes simplex virus 1 (HSV-1), a double-stranded DNA virus, replicates using seven essential proteins encoded by its genome. Among these, the UL30 DNA polymerase, complexed with the UL42 processivity factor, orchestrates leading and lagging strand replication of the 152 kb viral genome. UL30 polymerase is a prime target for antiviral therapy, and resistance to current drugs can arise in immunocompromised individuals. Using electron cryo-microscopy (cryo-EM), we unveil the dynamic changes of the UL30/UL42 complex with DNA in three distinct states. First, a pre-translocation state with an open fingers domain ready for nucleotide incorporation. Second, a halted elongation state where the fingers close, trapping dATP in the dNTP pocket. Third, a DNA-editing state involving significant conformational changes to allow DNA realignment for exonuclease activity. Additionally, the flexible UL30 C-terminal domain interacts with UL42, forming an extended positively charged surface binding to DNA, thereby enhancing processive synthesis. These findings highlight substantial structural shifts in the polymerase and its DNA interactions during replication, offering insights for future antiviral drug development.


Sujet(s)
Cryomicroscopie électronique , ADN viral , DNA-directed DNA polymerase , Herpèsvirus humain de type 1 , Protéines virales , DNA-directed DNA polymerase/métabolisme , DNA-directed DNA polymerase/composition chimique , DNA-directed DNA polymerase/génétique , Protéines virales/métabolisme , Protéines virales/composition chimique , Protéines virales/ultrastructure , Herpèsvirus humain de type 1/enzymologie , Herpèsvirus humain de type 1/génétique , ADN viral/métabolisme , ADN viral/biosynthèse , Réplication de l'ADN , Holoenzymes/composition chimique , Holoenzymes/métabolisme , Modèles moléculaires , Réplication virale , Liaison aux protéines , Exodeoxyribonucleases
16.
Commun Biol ; 7(1): 590, 2024 May 16.
Article de Anglais | MEDLINE | ID: mdl-38755280

RÉSUMÉ

Infection of bacteria by phages is a complex multi-step process that includes specific recognition of the host cell, creation of a temporary breach in the host envelope, and ejection of viral DNA into the bacterial cytoplasm. These steps must be perfectly regulated to ensure efficient infection. Here we report the dual function of the tail completion protein gp16.1 of bacteriophage SPP1. First, gp16.1 has an auxiliary role in assembly of the tail interface that binds to the capsid connector. Second, gp16.1 is necessary to ensure correct routing of phage DNA to the bacterial cytoplasm. Viral particles assembled without gp16.1 are indistinguishable from wild-type virions and eject DNA normally in vitro. However, they release their DNA to the extracellular space upon interaction with the host bacterium. The study shows that a highly conserved tail completion protein has distinct functions at two essential steps of the virus life cycle in long-tailed phages.


Sujet(s)
Protéines virales queue , Protéines virales queue/métabolisme , Protéines virales queue/génétique , Bactériophages/génétique , Bactériophages/physiologie , Bactériophages/métabolisme , ADN viral/métabolisme , ADN viral/génétique , Virion/métabolisme
17.
J Virol ; 98(5): e0006824, 2024 May 14.
Article de Anglais | MEDLINE | ID: mdl-38661364

RÉSUMÉ

The portal protein of tailed bacteriophage plays essential roles in various aspects of capsid assembly, motor assembly, genome packaging, connector formation, and infection processes. After DNA packaging is complete, additional proteins are assembled onto the portal to form the connector complex, which is crucial as it bridges the mature head and tail. In this study, we report high-resolution cryo-electron microscopy (cryo-EM) structures of the portal vertex from bacteriophage lambda in both its prohead and mature virion states. Comparison of these structures shows that during head maturation, in addition to capsid expansion, the portal protein undergoes conformational changes to establish interactions with the connector proteins. Additionally, the independently assembled tail undergoes morphological alterations at its proximal end, facilitating its connection to the head-tail joining protein and resulting in the formation of a stable portal-connector-tail complex. The B-DNA molecule spirally glides through the tube, interacting with the nozzle blade region of the middle-ring connector protein. These insights elucidate a mechanism for portal maturation and DNA translocation within the phage lambda system. IMPORTANCE: The tailed bacteriophages possess a distinct portal vertex that consists of a ring of 12 portal proteins associated with a 5-fold capsid shell. This portal protein is crucial in multiple stages of virus assembly and infection. Our research focused on examining the structures of the portal vertex in both its preliminary prohead state and the fully mature virion state of bacteriophage lambda. By analyzing these structures, we were able to understand how the portal protein undergoes conformational changes during maturation, the mechanism by which it prevents DNA from escaping, and the process of DNA spirally gliding.


Sujet(s)
Bactériophage lambda , Protéines de capside , Capside , Assemblage viral , Bactériophage lambda/physiologie , Bactériophage lambda/génétique , Capside/métabolisme , Capside/ultrastructure , Protéines de capside/métabolisme , Protéines de capside/composition chimique , Cryomicroscopie électronique , Empaquetage de l'ADN , ADN viral/génétique , ADN viral/métabolisme , Modèles moléculaires , Conformation des protéines , Virion/métabolisme , Virion/ultrastructure
18.
Virology ; 595: 110065, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38569227

RÉSUMÉ

Nucleot(s)ide analogues, the current antiviral treatments against chronic hepatitis B (CHB) infection, are non-curative due to their inability to eliminate covalently closed circular DNA (cccDNA) from the infected hepatocytes. Preclinical studies have shown that coumarin derivatives can effectively reduce the HBV DNA replication. We evaluated the antiviral efficacy of thirty new coumarin derivatives in cell culture models for studying HBV. Furanocoumarins Fc-20 and Fc-31 suppressed the levels of pre-genomic RNA as well as cccDNA, and reduced the secretion of virions, HBsAg and HBeAg. The antiviral efficacies of Fc-20 and Fc31 improved further when used in combination with the hepatitis B antiviral drug Entecavir. There was a marked reduction in the intracellular HBx level in the presence of these furanocoumarins due to proteasomal degradation resulting in the down-regulation of HBx-dependent viral genes. Importantly, both Fc-20 and Fc-31 were non-cytotoxic to cells even at high concentrations. Further, our molecular docking studies confirmed a moderate to high affinity interaction between furanocoumarins and viral HBx via residues Ala3, Arg26 and Lys140. These data suggest that furanocoumarins could be developed as a new therapeutic for CHB infection.


Sujet(s)
Antiviraux , ADN circulaire , Furocoumarines , Virus de l'hépatite B , Proteasome endopeptidase complex , Transactivateurs , Protéines virales régulatrices ou accessoires , Réplication virale , Virus de l'hépatite B/effets des médicaments et des substances chimiques , Virus de l'hépatite B/génétique , Virus de l'hépatite B/physiologie , Virus de l'hépatite B/métabolisme , Réplication virale/effets des médicaments et des substances chimiques , Humains , Transactivateurs/métabolisme , Transactivateurs/génétique , ADN circulaire/métabolisme , ADN circulaire/génétique , Protéines virales régulatrices ou accessoires/métabolisme , Protéines virales régulatrices ou accessoires/génétique , Furocoumarines/pharmacologie , Antiviraux/pharmacologie , Proteasome endopeptidase complex/métabolisme , ADN viral/métabolisme , ADN viral/génétique , Régulation négative/effets des médicaments et des substances chimiques , Transcription génétique/effets des médicaments et des substances chimiques , Protéolyse/effets des médicaments et des substances chimiques , Régulation de l'expression des gènes viraux/effets des médicaments et des substances chimiques , Cellules HepG2
19.
Proc Natl Acad Sci U S A ; 121(18): e2202003121, 2024 Apr 30.
Article de Anglais | MEDLINE | ID: mdl-38669184

RÉSUMÉ

Using an immunofluorescence assay based on CRISPR-dCas9-gRNA complexes that selectively bind to the HIV LTR (HIV Cas-FISH), we traced changes in HIV DNA localization in primary effector T cells from early infection until the cells become quiescent as they transition to memory cells. Unintegrated HIV DNA colocalized with CPSF6 and HIV capsid (CA, p24) was found in the cytoplasm and nuclear periphery at days 1 and 3 post infection. From days 3 to 7, most HIV DNA was distributed primarily in the nuclear intermediate euchromatic compartment and was transcribed. By day 21, the cells had entered quiescence, and HIV DNA accumulated in the perinucleolar compartment (PNC). The localization of proviruses to the PNC was blocked by integrase inhibitor Raltegravir, suggesting it was due to chromosomal rearrangements. During the reactivation of latently infected cells through the T cell receptor (TCR), nascent viral mRNA transcripts associated with HIV DNA in the PNC were detected. The viral trans-activator Tat and its regulatory partners, P-TEFb and 7SK snRNA, assembled in large interchromatin granule clusters near the provirus within 2 h of TCR activation. As T cell activation progressed, the HIV DNA shifted away from the PNC. HIV DNA in latently infected memory T cells from patients also accumulated in the PNC and showed identical patterns of nuclear rearrangements after cellular reactivation. Thus, in contrast to transformed cells where proviruses are found primarily at the nuclear periphery, in primary memory T cells, the nuclear architecture undergoes rearrangements that shape the transcriptional silencing and reactivation of proviral HIV.


Sujet(s)
Noyau de la cellule , Infections à VIH , VIH-1 (Virus de l'Immunodéficience Humaine de type 1) , Provirus , Activation virale , Latence virale , Humains , Provirus/génétique , Noyau de la cellule/métabolisme , Noyau de la cellule/virologie , VIH-1 (Virus de l'Immunodéficience Humaine de type 1)/génétique , VIH-1 (Virus de l'Immunodéficience Humaine de type 1)/physiologie , VIH-1 (Virus de l'Immunodéficience Humaine de type 1)/métabolisme , Infections à VIH/virologie , Infections à VIH/métabolisme , ADN viral/génétique , ADN viral/métabolisme , Répétition terminale longue du VIH/génétique
20.
Arch Virol ; 169(5): 88, 2024 Apr 02.
Article de Anglais | MEDLINE | ID: mdl-38565755

RÉSUMÉ

Transcription of the covalently closed circular DNA (cccDNA) of hepatitis B virus (HBV) is subject to dual regulation by host factors and viral proteins. MicroRNAs (miRNAs) can regulate the expression of target genes at the post-transcriptional level. Systematic investigation of miRNA expression in HBV infection and the interaction between HBV and miRNAs may deepen our understanding of the transcription mechanisms of HBV cccDNA, thereby providing opportunities for intervention. miRNA sequencing and real-time quantitative PCR (qRT-PCR) were used to analyze miRNA expression after HBV infection of cultured cells. Clinical samples were analyzed for miRNAs and HBV transcription-related indicators, using qRT-PCR, enzyme-linked immunoassay (ELISA), and Western blot. miRNA mimics or inhibitors were used to study their effects on the HBV life cycle. The target genes of miR-3188 and their roles in HBV cccDNA transcription were also identified. The expression of 10 miRNAs, including miR-3188, which was significantly decreased after HBV infection, was measured in clinical samples from patients with chronic HBV infection. Overexpression of miR-3188 inhibited HBV transcription, whereas inhibition of miR-3188 expression promoted HBV transcription. Further investigation confirmed that miR-3188 inhibited HBV transcription by targeting Bcl-2. miR-3188 is a key miRNA that regulates HBV transcription by targeting the host protein Bcl-2. This observation provides insights into the regulation of cccDNA transcription and suggests new targets for anti-HBV treatment.


Sujet(s)
Hépatite B chronique , Hépatite B , microARN , Humains , ADN circulaire/génétique , ADN viral/génétique , ADN viral/métabolisme , Hépatite B/génétique , Virus de l'hépatite B/génétique , Hépatite B chronique/génétique , microARN/génétique , microARN/métabolisme , Transcription virale , Réplication virale/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE