Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 108
Filtrer
1.
Int J Mol Sci ; 23(7)2022 Apr 06.
Article de Anglais | MEDLINE | ID: mdl-35409407

RÉSUMÉ

The Saccharomyces cerevisiae Trm11 and Trm112 complex (Trm11-Trm112) methylates the 2-amino group of guanosine at position 10 in tRNA and forms N2-methylguanosine. To determine the elements required in tRNA for methylation by Trm11-Trm112, we prepared 60 tRNA transcript variants and tested them for methylation by Trm11-Trm112. The results show that the precursor tRNA is not a substrate for Trm11-Trm112. Furthermore, the CCA terminus is essential for methylation by Trm11-Trm112, and Trm11-Trm112 also only methylates tRNAs with a regular-size variable region. In addition, the G10-C25 base pair is required for methylation by Trm11-Trm112. The data also demonstrated that Trm11-Trm112 recognizes the anticodon-loop and that U38 in tRNAAla acts negatively in terms of methylation. Likewise, the U32-A38 base pair in tRNACys negatively affects methylation. The only exception in our in vitro study was tRNAValAAC1. Our experiments showed that the tRNAValAAC1 transcript was slowly methylated by Trm11-Trm112. However, position 10 in this tRNA was reported to be unmodified G. We purified tRNAValAAC1 from wild-type and trm11 gene deletion strains and confirmed that a portion of tRNAValAAC1 is methylated by Trm11-Trm112 in S. cerevisiae. Thus, our study explains the m2G10 modification pattern of all S. cerevisiae class I tRNAs and elucidates the Trm11-Trm112 binding sites.


Sujet(s)
Methyltransferases , Protéines de Saccharomyces cerevisiae , Guanine/métabolisme , Méthylation , Methyltransferases/métabolisme , Conformation d'acide nucléique , ARN de transfert/génétique , ARN de transfert/métabolisme , ARN de transfert de la valine/métabolisme , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/métabolisme , T-RNA methyltransferases/génétique , T-RNA methyltransferases/métabolisme
2.
Nucleic Acids Res ; 49(22): 13045-13061, 2021 12 16.
Article de Anglais | MEDLINE | ID: mdl-34871455

RÉSUMÉ

Dnmt2, a member of the DNA methyltransferase superfamily, catalyzes the formation of 5-methylcytosine at position 38 in the anticodon loop of tRNAs. Dnmt2 regulates many cellular biological processes, especially the production of tRNA-derived fragments and intergenerational transmission of paternal metabolic disorders to offspring. Moreover, Dnmt2 is closely related to human cancers. The tRNA substrates of mammalian Dnmt2s are mainly detected using bisulfite sequencing; however, we lack supporting biochemical data concerning their substrate specificity or recognition mechanism. Here, we deciphered the tRNA substrates of human DNMT2 (hDNMT2) as tRNAAsp(GUC), tRNAGly(GCC) and tRNAVal(AAC). Intriguingly, for tRNAAsp(GUC) and tRNAGly(GCC), G34 is the discriminator element; whereas for tRNAVal(AAC), the inosine modification at position 34 (I34), which is formed by the ADAT2/3 complex, is the prerequisite for hDNMT2 recognition. We showed that the C32U33(G/I)34N35 (C/U)36A37C38 motif in the anticodon loop, U11:A24 in the D stem, and the correct size of the variable loop are required for Dnmt2 recognition of substrate tRNAs. Furthermore, mammalian Dnmt2s possess a conserved tRNA recognition mechanism.


Sujet(s)
5-Méthyl-cytosine/métabolisme , Anticodon/métabolisme , DNA (cytosine-5-)-methyltransferase/métabolisme , ARN de transfert/métabolisme , Adenosine deaminase/génétique , Adenosine deaminase/métabolisme , Animaux , Anticodon/génétique , Séquence nucléotidique , DNA (cytosine-5-)-methyltransferase/composition chimique , DNA (cytosine-5-)-methyltransferase/génétique , Cellules HEK293 , Cellules HeLa , Humains , Inosine/métabolisme , Souris , Modèles moléculaires , Cellules NIH 3T3 , Conformation d'acide nucléique , Liaison aux protéines , ARN de transfert/composition chimique , ARN de transfert/génétique , ARN de transfert de l'acide aspartique/composition chimique , ARN de transfert de l'acide aspartique/génétique , ARN de transfert de l'acide aspartique/métabolisme , ARN de transfert de la glycine/composition chimique , ARN de transfert de la glycine/génétique , ARN de transfert de la glycine/métabolisme , ARN de transfert de la valine/composition chimique , ARN de transfert de la valine/génétique , ARN de transfert de la valine/métabolisme , Protéines de liaison à l'ARN/génétique , Protéines de liaison à l'ARN/métabolisme , Spécificité du substrat
3.
RNA ; 27(11): 1330-1338, 2021 11.
Article de Anglais | MEDLINE | ID: mdl-34315814

RÉSUMÉ

During protein synthesis on ribosome, tRNA recognizes its cognate codon of mRNA through base-pairing with the anticodon. The 5'-end nucleotide of the anticodon is capable of wobble base-pairing, offering a molecular basis for codon degeneracy. The wobble nucleotide is often targeted for post-transcriptional modification, which affects the specificity and fidelity of the decoding process. Flipping-out of a wobble nucleotide in the anticodon loop has been proposed to be necessary for modifying enzymes to access the target nucleotide, which has been captured in selective structures of protein-bound complexes. Meanwhile, all other structures of free or ribosome-bound tRNA display anticodon bases arranged in stacked conformation. We report the X-ray crystal structure of unbound tRNAVal1 to a 2.04 Å resolution showing two different conformational states of wobble uridine in the anticodon loop, one stacked on the neighboring base and the other swiveled out toward solvent. In addition, the structure reveals a rare magnesium ion coordination to the nitrogen atom of a nucleobase, which has been sampled very rarely among known structures of nucleic acids.


Sujet(s)
Anticodon/métabolisme , Biosynthèse des protéines , ARN messager/métabolisme , ARN de transfert de la valine/métabolisme , Ribosomes/métabolisme , Anticodon/composition chimique , Anticodon/génétique , Appariement de bases , Escherichia coli/génétique , Escherichia coli/métabolisme , Métaux/métabolisme , Modèles moléculaires , Conformation d'acide nucléique , ARN messager/composition chimique , ARN messager/génétique , ARN de transfert de la valine/composition chimique , ARN de transfert de la valine/génétique , Ribosomes/génétique
4.
RNA ; 27(1): 27-39, 2021 01.
Article de Anglais | MEDLINE | ID: mdl-33008837

RÉSUMÉ

Viruses commonly use specifically folded RNA elements that interact with both host and viral proteins to perform functions important for diverse viral processes. Examples are found at the 3' termini of certain positive-sense ssRNA virus genomes where they partially mimic tRNAs, including being aminoacylated by host cell enzymes. Valine-accepting tRNA-like structures (TLSVal) are an example that share some clear homology with canonical tRNAs but have several important structural differences. Although many examples of TLSVal have been identified, we lacked a full understanding of their structural diversity and phylogenetic distribution. To address this, we undertook an in-depth bioinformatic and biochemical investigation of these RNAs, guided by recent high-resolution structures of a TLSVal We cataloged many new examples in plant-infecting viruses but also in unrelated insect-specific viruses. Using biochemical and structural approaches, we verified the secondary structure of representative TLSVal substrates and tested their ability to be valylated, confirming previous observations of structural heterogeneity within this class. In a few cases, large stem-loop structures are inserted within variable regions located in an area of the TLS distal to known host cell factor binding sites. In addition, we identified one virus whose TLS has switched its anticodon away from valine, causing a loss of valylation activity; the implications of this remain unclear. These results refine our understanding of the structural and functional mechanistic details of tRNA mimicry and how this may be used in viral infection.


Sujet(s)
Variation génétique , Virus des insectes/génétique , Phylogenèse , Virus des plantes/génétique , ARN de transfert de la valine/composition chimique , ARN viral/composition chimique , Anticodon/composition chimique , Anticodon/métabolisme , Séquence nucléotidique , Sites de fixation , Biologie informatique , Virus des insectes/classification , Virus des insectes/métabolisme , Modèles moléculaires , Mimétisme moléculaire , Virus des plantes/classification , Virus des plantes/métabolisme , Pliage de l'ARN , ARN de transfert de la valine/génétique , ARN de transfert de la valine/métabolisme , ARN viral/génétique , ARN viral/métabolisme , Similitude de séquences d'acides nucléiques , Valine/métabolisme
5.
Nucleic Acids Res ; 48(7): e41, 2020 04 17.
Article de Anglais | MEDLINE | ID: mdl-32083657

RÉSUMÉ

RNAs are post-transcriptionally modified by dedicated writer or eraser enzymes that add or remove specific modifications, respectively. Mass spectrometry (MS) of RNA is a useful tool to study the modification state of an oligonucleotide (ON) in a sensitive manner. Here, we developed an ion-pairing reagent free chromatography for positive ion detection of ONs by low- and high-resolution MS, which does not interfere with other types of small compound analyses done on the same instrument. We apply ON-MS to determine the ONs from an RNase T1 digest of in vitro transcribed tRNA, which are purified after ribozyme-fusion transcription by automated size exclusion chromatography. The thus produced tRNAValAAC is substrate of the human tRNA ADAT2/3 enzyme and we confirm the deamination of adenosine to inosine and the formation of tRNAValIACin vitro by ON-MS. Furthermore, low resolution ON-MS is used to monitor the demethylation of ONs containing 1-methyladenosine by bacterial AlkB in vitro. The power of high-resolution ON-MS is demonstrated by the detection and mapping of modified ONs from native total tRNA digested with RNase T1. Overall, we present an oligonucleotide MS method which is broadly applicable to monitor in vitro RNA (de-)modification processes and native RNA.


Sujet(s)
Spectrométrie de masse , Oligonucléotides/analyse , Maturation post-transcriptionnelle des ARN , ARN de transfert/composition chimique , ARN de transfert/métabolisme , Adénosine/analogues et dérivés , Adénosine/métabolisme , Adenosine deaminase/métabolisme , Chromatographie sur gel , Cellules HEK293 , Cellules HeLa , Humains , Mixed function oxygenases/métabolisme , Oligonucléotides/isolement et purification , ARN de transfert/biosynthèse , ARN de transfert/isolement et purification , ARN de transfert de la valine/composition chimique , ARN de transfert de la valine/métabolisme , Protéines de liaison à l'ARN/métabolisme , Ribonuclease T1/métabolisme
6.
Cancer Lett ; 457: 60-73, 2019 08 10.
Article de Anglais | MEDLINE | ID: mdl-31078732

RÉSUMÉ

tRNA-derived fragments offer a recently identified group of non-coding single-stranded RNAs that are often as abundant as microRNAs in cancer cells and play important roles in carcinogenesis. However, the biological functions of them in breast cancer are still unclear. Hence, we focused on investigating whether tiRNAs could play a key role in the progression of breast cancer. We have identified 5'-tiRNAVal with significantly low expression in breast cancer tissues. The down-regulation of serum 5'-tiRNAVal was positively correlated with stage progression and lymph node metastasis. Overexpression of 5'-tiRNAVal suppressed cells malignant activities. FZD3 was confirmed to be a direct target of 5'-tiRNAVal in breast cancer. In addition, FZD3, ß-Catenin, c-myc and cyclinD1 levels in 5'-tiRNAVal overexpressing cells were downregulated while APC was inversely upregulated. Moreover, 5'-tiRNAVal inhibited the FZD3-mediated Wnt/ß-Catenin signaling pathway in breast cancer cells. Finally, 5'-tiRNAVal levels differentiated breast cancer from healthy controls with a sensitivity of 90.0% and specificity of 62.7%. This is the first study to show that 5'-tiRNAVal as a new tumor-suppressor through inhibition of FZD3/Wnt/ß-Catenin signaling pathway, which could be as a potential diagnostic biomarker for breast cancer.


Sujet(s)
Tumeurs du sein/métabolisme , Récepteurs Frizzled/métabolisme , ARN de transfert de la valine/métabolisme , Voie de signalisation Wnt , Tumeurs du sein/génétique , Tumeurs du sein/anatomopathologie , Mouvement cellulaire , Prolifération cellulaire , Cycline D1/génétique , Cycline D1/métabolisme , Régulation négative , Femelle , Récepteurs Frizzled/génétique , Régulation de l'expression des gènes tumoraux , Humains , Métastase lymphatique , Cellules MCF-7 , Adulte d'âge moyen , Stadification tumorale , Protéines proto-oncogènes c-myc/génétique , Protéines proto-oncogènes c-myc/métabolisme , ARN de transfert de la valine/génétique , bêta-Caténine/génétique , bêta-Caténine/métabolisme
7.
RNA ; 25(4): 431-452, 2019 04.
Article de Anglais | MEDLINE | ID: mdl-30659060

RÉSUMÉ

Noncanonical translation, and particularly initiation on non-AUG codons, are frequently used by viral and cellular mRNAs during virus infection and disease. The Sindbis virus (SINV) subgenomic mRNA (sgRNA) constitutes a unique model system to analyze the translation of a capped viral mRNA without the participation of several initiation factors. Moreover, sgRNA can initiate translation even when the AUG initiation codon is replaced by other codons. Using SINV replicons, we examined the efficacy of different codons in place of AUG to direct the synthesis of the SINV capsid protein. The substitution of AUG by CUG was particularly efficient in promoting the incorporation of leucine or methionine in similar percentages at the amino terminus of the capsid protein. Additionally, valine could initiate translation when the AUG is replaced by GUG. The ability of sgRNA to initiate translation on non-AUG codons was dependent on the integrity of a downstream stable hairpin (DSH) structure located in the coding region. The structural requirements of this hairpin to signal the initiation site on the sgRNA were examined in detail. Of interest, a virus bearing CUG in place of AUG in the sgRNA was able to infect cells and synthesize significant amounts of capsid protein. This virus infects the human haploid cell line HAP1 and the double knockout variant that lacks eIF2A and eIF2D. Collectively, these findings indicate that leucine-tRNA or valine-tRNA can participate in the initiation of translation of sgRNA by a mechanism dependent on the DSH. This mechanism does not involve the action of eIF2, eIF2A, or eIF2D.


Sujet(s)
Codon d'initiation/génétique , Biosynthèse des protéines , ARN messager/génétique , ARN viral/génétique , Transduction du signal/génétique , Virus Sindbis/génétique , Protéines de capside/biosynthèse , Protéines de capside/génétique , Lignée cellulaire tumorale , Codon d'initiation/métabolisme , Facteur-2 d'initiation eucaryote/déficit , Facteur-2 d'initiation eucaryote/génétique , Fibroblastes/métabolisme , Fibroblastes/virologie , Régulation de l'expression des gènes , Haploïdie , Interactions hôte-pathogène/génétique , Humains , Séquences répétées inversées , Leucine/génétique , Leucine/métabolisme , Méthionine/génétique , Méthionine/métabolisme , Conformation d'acide nucléique , ARN messager/métabolisme , ARN de transfert de la leucine/génétique , ARN de transfert de la leucine/métabolisme , ARN de transfert de la valine/génétique , ARN de transfert de la valine/métabolisme , ARN viral/métabolisme , Réplicon , Virus Sindbis/métabolisme , Valine/génétique , Valine/métabolisme
8.
Oncogene ; 36(47): 6640-6648, 2017 11 23.
Article de Anglais | MEDLINE | ID: mdl-28783176

RÉSUMÉ

Two proteins comprising the ZEB family of zinc finger transcription factors, ZEB1 and ZEB2, execute EMT programs in embryonic development and cancer. By studying regulation of their expression, we describe a novel mechanism that limits ZEB2 protein synthesis. A protein motif located at the border of the SMAD-binding domain of ZEB2 protein induces ribosomal pausing and compromises protein synthesis. The function of this protein motif is dependent on stretches of rare codons, Leu(UUA)-Gly(GGU)-Val(GUA). Incorporation of these triplets in the homologous region of ZEB1 does not affect protein translation. Our data suggest that rare codons have a regulatory role only if they are present within appropriate protein structures. We speculate that pools of transfer RNA available for protein translation impact on the configuration of epithelial mesenchymal transition pathways in tumor cells.


Sujet(s)
Codon/génétique , Tumeurs/métabolisme , Biosynthèse des protéines/génétique , ARN de transfert de la glycine/métabolisme , ARN de transfert de la leucine/métabolisme , ARN de transfert de la valine/métabolisme , Facteur de transcription Zeb2/métabolisme , Motifs d'acides aminés/génétique , Lignée cellulaire tumorale , Transition épithélio-mésenchymateuse , Glycine/génétique , Humains , Leucine/génétique , Transduction du signal , Valine/génétique , Facteur de transcription Zeb2/génétique , Facteur de transcription Zeb1/génétique , Facteur de transcription Zeb1/métabolisme
9.
Biochemistry ; 56(31): 4029-4038, 2017 08 08.
Article de Anglais | MEDLINE | ID: mdl-28703578

RÉSUMÉ

Transfer RNAs (tRNAs) are among the most heavily modified RNA species. Posttranscriptional tRNA modifications (ptRMs) play fundamental roles in modulating tRNA structure and function and are being increasingly linked to human physiology and disease. Detection of ptRMs is often challenging, expensive, and laborious. Restriction fragment length polymorphism (RFLP) analyses study the patterns of DNA cleavage after restriction enzyme treatment and have been used for the qualitative detection of modified bases on mRNAs. It is known that some ptRMs induce specific and reproducible base "mutations" when tRNAs are reverse transcribed. For example, inosine, which derives from the deamination of adenosine, is detected as a guanosine when an inosine-containing tRNA is reverse transcribed, amplified via polymerase chain reaction (PCR), and sequenced. ptRM-dependent base changes on reverse transcription PCR amplicons generated as a consequence of the reverse transcription reaction might create or abolish endonuclease restriction sites. The suitability of RFLP for the detection and/or quantification of ptRMs has not been studied thus far. Here we show that different ptRMs can be detected at specific sites of different tRNA types by RFLP. For the examples studied, we show that this approach can reliably estimate the modification status of the sample, a feature that can be useful in the study of the regulatory role of tRNA modifications in gene expression.


Sujet(s)
Adenosine deaminase/métabolisme , Modèles biologiques , Polymorphisme de restriction , Maturation post-transcriptionnelle des ARN , ARN de transfert de l'alanine/métabolisme , ARN de transfert de la thréonine/métabolisme , Adénosine/métabolisme , Adenosine deaminase/composition chimique , Adenosine deaminase/génétique , Analyse de polymorphisme de longueur de fragments amplifiés , Appariement de bases , Biologie informatique , Désamination , Systèmes experts , Cellules HeLa , Humains , Concentration en ions d'hydrogène , Inosine/métabolisme , Interférence par ARN , Petit ARN interférent/métabolisme , ARN de transfert de l'alanine/antagonistes et inhibiteurs , ARN de transfert de la thréonine/antagonistes et inhibiteurs , ARN de transfert de la valine/antagonistes et inhibiteurs , ARN de transfert de la valine/métabolisme , Transcription inverse , Spécificité du substrat
10.
RNA Biol ; 14(10): 1364-1373, 2017 10 03.
Article de Anglais | MEDLINE | ID: mdl-27892771

RÉSUMÉ

Posttranscriptional processing of RNA molecules is a common strategy to enlarge the structural and functional repertoire of RNomes observed in all 3 domains of life. Fragmentation of RNA molecules of basically all functional classes has been reported to yield smaller non-protein coding RNAs (ncRNAs) that typically possess different roles compared with their parental transcripts. Here we show that a valine tRNA-derived fragment (Val-tRF) that is produced under certain stress conditions in the halophilic archaeon Haloferax volcanii is capable of binding to the small ribosomal subunit. As a consequence of Val-tRF binding mRNA is displaced from the initiation complex which results in global translation attenuation in vivo and in vitro. The fact that the archaeal Val-tRF also inhibits eukaryal as well as bacterial protein biosynthesis implies a functionally conserved mode of action. While tRFs and tRNA halves have been amply identified in recent RNA-seq project, Val-tRF described herein represents one of the first functionally characterized tRNA processing products to date.


Sujet(s)
Haloferax volcanii/génétique , ARN messager/métabolisme , ARN de transfert de la valine/métabolisme , Ribosomes/métabolisme , Régulation de l'expression des gènes archéens , Haloferax volcanii/composition chimique , Haloferax volcanii/métabolisme , Modèles moléculaires , Biosynthèse des protéines , ARN des archées/métabolisme , ARN messager/composition chimique , ARN de transfert de la valine/composition chimique , Ribosomes/composition chimique , Stress physiologique
11.
Sci Rep ; 6: 20850, 2016 Feb 11.
Article de Anglais | MEDLINE | ID: mdl-26865164

RÉSUMÉ

Ischemic injuries will lead to necrotic tissue damage, and post-ischemia angiogenesis plays critical roles in blood flow restoration and tissue recovery. Recently, several types of small RNAs have been reported to be involved in this process. In this study, we first generated a rat brain ischemic model to investigate the involvement of new types of small RNAs in ischemia. We utilized deep sequencing and bioinformatics analyses to demonstrate that the level of small RNA fragments derived from tRNAs strikingly increased in the ischemic rat brain. Among these sequences, tRNA(Val)- and tRNA(Gly)-derived small RNAs account for the most abundant segments. The up-regulation of tRNA(Val)- and tRNA(Gly)-derived fragments was verified through northern blot and quantitative PCR analyses. The levels of these two fragments also increased in a mouse hindlimb ischemia model and cellular hypoxia model. Importantly, up-regulation of the tRNA(Val)- and tRNA(Gly)-derived fragments in endothelial cells inhibited cell proliferation, migration and tube formation. Furthermore, we showed that these small RNAs are generated by angiogenin cleavage. Our results indicate that tRNA-derived fragments are involved in tissue ischemia, and we demonstrate for the first time that tRNA(Val)- and tRNA(Gly)-derived fragments inhibit angiogenesis by modulating the function of endothelial cells.


Sujet(s)
Encéphalopathie ischémique/génétique , Néovascularisation physiologique/génétique , Petit ARN non traduit/génétique , ARN de transfert de la glycine/génétique , ARN de transfert de la valine/génétique , Animaux , Encéphale/vascularisation , Encéphale/métabolisme , Encéphale/anatomopathologie , Encéphalopathie ischémique/métabolisme , Encéphalopathie ischémique/anatomopathologie , Hypoxie cellulaire , Mouvement cellulaire , Prolifération cellulaire , Biologie informatique , Régulation de l'expression des gènes , Membre pelvien/vascularisation , Membre pelvien/anatomopathologie , Cellules endothéliales de la veine ombilicale humaine , Humains , Mâle , Souris , Protéolyse , Clivage de l'ARN , Petit ARN non traduit/métabolisme , ARN de transfert de la glycine/métabolisme , ARN de transfert de la valine/métabolisme , Rats , Rat Sprague-Dawley , Pancreatic ribonuclease/génétique , Pancreatic ribonuclease/métabolisme , Transduction du signal
12.
Nucleic Acids Res ; 43(6): 3332-43, 2015 Mar 31.
Article de Anglais | MEDLINE | ID: mdl-25753665

RÉSUMÉ

Stabilization of the ribosomal complexes plays an important role in translational control. Mechanisms of ribosome stabilization have been studied in detail for initiation and elongation of eukaryotic translation, but almost nothing is known about stabilization of eukaryotic termination ribosomal complexes. Here, we present one of the mechanisms of fine-tuning of the translation termination process in eukaryotes. We show that certain deacylated tRNAs, remaining in the E site of the ribosome at the end of the elongation cycle, increase the stability of the termination and posttermination complexes. Moreover, only the part of eRF1 recognizing the stop codon is stabilized in the A site of the ribosome, and the stabilization is not dependent on the hydrolysis of peptidyl-tRNA. The determinants, defining this property of the tRNA, reside in the acceptor stem. It was demonstrated by site-directed mutagenesis of tRNA(Val) and construction of a mini-helix structure identical to the acceptor stem of tRNA. The mechanism of this stabilization is different from the fixation of the unrotated state of the ribosome by CCA end of tRNA or by cycloheximide in the E site. Our data allow to reveal the possible functions of the isodecoder tRNAs in eukaryotes.


Sujet(s)
Terminaison de la traduction , ARN de transfert/métabolisme , Ribosomes/métabolisme , Acylation , Animaux , Codon stop , Humains , Modèles moléculaires , Mutagenèse dirigée , Conformation d'acide nucléique , Facteurs terminaison chaîne peptidique/composition chimique , Facteurs terminaison chaîne peptidique/génétique , Facteurs terminaison chaîne peptidique/métabolisme , Stabilité protéique , Stabilité de l'ARN , ARN de transfert/composition chimique , ARN de transfert/génétique , ARN de transfert de la valine/composition chimique , ARN de transfert de la valine/génétique , ARN de transfert de la valine/métabolisme , Lapins , Protéines recombinantes/composition chimique , Protéines recombinantes/génétique , Protéines recombinantes/métabolisme
13.
Nucleic Acids Res ; 42(17): 11166-79, 2014.
Article de Anglais | MEDLINE | ID: mdl-25183518

RÉSUMÉ

Here we report that RNase P is required for the initial separation of all seven valine tRNAs from three distinct polycistronic transcripts (valV valW, valU valX valY lysY and lysT valT lysW valZ lysY lysZ lysQ). Particularly significant is the mechanism by which RNase P processes the valU and lysT polycistronic transcripts. Specifically, the enzyme initiates processing by first removing the Rho-independent transcription terminators from the primary valU and lysT transcripts. Subsequently, it proceeds in the 3' → 5' direction generating one pre-tRNA at a time. Based on the absolute requirement for RNase P processing of all three primary transcripts, inactivation of the enzyme leads to a > 4-fold decrease in the levels of both type I and type II valine tRNAs. The ability of RNase P to initiate tRNA processing at the 3' ends of long primary transcripts by endonucleolytically removing the Rho-independent transcription terminator represents a previously unidentified function for the enzyme, which is responsible for generating the mature 5' termini of all 86 E. coli tRNAs. RNase E only plays a very minor role in the processing of all three valine polycistronic transcripts.


Sujet(s)
Protéines Escherichia coli/métabolisme , Escherichia coli/génétique , Régulation de l'expression des gènes bactériens , Maturation post-transcriptionnelle des ARN , ARN de transfert de la valine/métabolisme , Ribonuclease P/métabolisme , Endoribonucleases/métabolisme , Escherichia coli/enzymologie , Protéines Escherichia coli/génétique , Exoribonucleases/physiologie , Famille multigénique , Mutation , Opéron , Clivage de l'ARN , Précurseurs des ARN/métabolisme , ARN bactérien/métabolisme , ARN de transfert de l'arginine/métabolisme , ARN de transfert de la valine/biosynthèse , ARN de transfert de la valine/génétique , Ribonuclease P/génétique , Transcription génétique
14.
Hum Mutat ; 35(8): 983-9, 2014 Aug.
Article de Anglais | MEDLINE | ID: mdl-24827421

RÉSUMÉ

By way of whole-exome sequencing, we identified a homozygous missense mutation in VARS2 in one subject with microcephaly and epilepsy associated with isolated deficiency of the mitochondrial respiratory chain (MRC) complex I and compound heterozygous mutations in TARS2 in two siblings presenting with axial hypotonia and severe psychomotor delay associated with multiple MRC defects. The nucleotide variants segregated within the families, were absent in Single Nucleotide Polymorphism (SNP) databases and are predicted to be deleterious. The amount of VARS2 and TARS2 proteins and valyl-tRNA and threonyl-tRNA levels were decreased in samples of afflicted patients according to the genetic defect. Expression of the corresponding wild-type transcripts in immortalized mutant fibroblasts rescued the biochemical impairment of mitochondrial respiration and yeast modeling of the VARS2 mutation confirmed its pathogenic role. Taken together, these data demonstrate the role of the identified mutations for these mitochondriopathies. Our study reports the first mutations in the VARS2 and TARS2 genes, which encode two mitochondrial aminoacyl-tRNA synthetases, as causes of clinically distinct, early-onset mitochondrial encephalopathies.


Sujet(s)
Antigènes HLA/génétique , Mitochondries/génétique , Encéphalomyopathies mitochondriales/génétique , Mutation , Threonine-tRNA ligase/génétique , Valine-tRNA ligase/génétique , Lignée cellulaire , Enfant , ADN mitochondrial/génétique , ADN mitochondrial/métabolisme , Complexe I de la chaîne respiratoire/génétique , Complexe I de la chaîne respiratoire/métabolisme , Fibroblastes/cytologie , Fibroblastes/métabolisme , Antigènes HLA/métabolisme , Hétérozygote , Homozygote , Humains , Nourrisson , Isoenzymes/génétique , Isoenzymes/métabolisme , Mâle , Mitochondries/enzymologie , Mitochondries/anatomopathologie , Encéphalomyopathies mitochondriales/enzymologie , Encéphalomyopathies mitochondriales/anatomopathologie , Polymorphisme génétique , ARN messager/génétique , ARN messager/métabolisme , ARN de transfert de la thréonine/génétique , ARN de transfert de la thréonine/métabolisme , ARN de transfert de la valine/génétique , ARN de transfert de la valine/métabolisme , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , Threonine-tRNA ligase/métabolisme , Valine-tRNA ligase/métabolisme
15.
RNA ; 19(8): 1137-46, 2013 Aug.
Article de Anglais | MEDLINE | ID: mdl-23793893

RÉSUMÉ

N-1 Methylation of the nearly invariant purine residue found at position 9 of tRNA is a nucleotide modification found in multiple tRNA species throughout Eukarya and Archaea. First discovered in Saccharomyces cerevisiae, the tRNA methyltransferase Trm10 is a highly conserved protein both necessary and sufficient to catalyze all known instances of m1G9 modification in yeast. Although there are 19 unique tRNA species that contain a G at position 9 in yeast, and whose fully modified sequence is known, only 9 of these tRNA species are modified with m1G9 in wild-type cells. The elements that allow Trm10 to distinguish between structurally similar tRNA species are not known, and sequences that are shared between all substrate or all nonsubstrate tRNAs have not been identified. Here, we demonstrate that the in vitro methylation activity of yeast Trm10 is not sufficient to explain the observed pattern of modification in vivo, as additional tRNA species are substrates for Trm10 m1G9 methyltransferase activity. Similarly, overexpression of Trm10 in yeast yields m1G9 containing tRNA species that are ordinarily unmodified in vivo. Thus, yeast Trm10 has a significantly broader tRNA substrate specificity than is suggested by the observed pattern of modification in wild-type yeast. These results may shed light onto the suggested involvement of Trm10 in other pathways in other organisms, particularly in higher eukaryotes that contain up to three different genes with sequence similarity to the single TRM10 gene in yeast, and where these other enzymes have been implicated in pathways beyond tRNA processing.


Sujet(s)
ARN fongique/métabolisme , ARN de transfert/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme , T-RNA methyltransferases/métabolisme , Gènes fongiques , Guanosine/analogues et dérivés , Guanosine/composition chimique , Humains , Cinétique , Méthylation , Maturation post-transcriptionnelle des ARN , ARN fongique/composition chimique , ARN de transfert/composition chimique , ARN de transfert de la valine/composition chimique , ARN de transfert de la valine/métabolisme , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/génétique , Spécificité du substrat , T-RNA methyltransferases/génétique
16.
Methods Mol Biol ; 848: 201-13, 2012.
Article de Anglais | MEDLINE | ID: mdl-22315071

RÉSUMÉ

We present a protocol for the reliable synthesis of non-hydrolyzable 3'-peptidyl-tRNAs that contain all the respective genuine nucleoside modifications. The approach is exemplified by tRNA(Val)-3'-NH-VFLVM-NH(2) and relies on commercially available Escherichia coli tRNA(Val). This tRNA was cleaved site-specifically within the TΨC loop using a 10-23 type DNA enzyme to obtain a 58 nt tRNA 5'-fragment which contained the modifications. After cleavage of the 2',3'-cyclophosphate moiety from the 5'-fragment, it was ligated to the 18 nt RNA-pentapeptide conjugate which had been chemically synthesized. By this methodology, tRNA(Val)-3'-NH-VFLVM-NH(2) is accessible in efficient manner. Furthermore, we point out that the approach is applicable to other types of tRNA.


Sujet(s)
ADN catalytique/métabolisme , Résistance bactérienne aux médicaments , Macrolides/pharmacologie , Peptides , Stabilité de l'ARN , ARN de transfert aminoacylés/synthèse chimique , ARN de transfert de la valine/composition chimique , Antibactériens/pharmacologie , Séquence nucléotidique , Escherichia coli , Spectrométrie de masse , Modèles moléculaires , Conformation d'acide nucléique , Phénol/composition chimique , Phosphorylation , ARN bactérien/métabolisme , ARN de transfert de la valine/synthèse chimique , ARN de transfert de la valine/isolement et purification , ARN de transfert de la valine/métabolisme
17.
Archaea ; 2012: 260909, 2012.
Article de Anglais | MEDLINE | ID: mdl-23326205

RÉSUMÉ

Nonprotein coding RNA (ncRNA) molecules have been recognized recently as major contributors to regulatory networks in controlling gene expression in a highly efficient manner. These RNAs either originate from their individual transcription units or are processing products from longer precursor RNAs. For example, tRNA-derived fragments (tRFs) have been identified in all domains of life and represent a growing, yet functionally poorly understood, class of ncRNA candidates. Here we present evidence that tRFs from the halophilic archaeon Haloferax volcanii directly bind to ribosomes. In the presented genomic screen of the ribosome-associated RNome, a 26-residue-long fragment originating from the 5' part of valine tRNA was by far the most abundant tRF. The Val-tRF is processed in a stress-dependent manner and was found to primarily target the small ribosomal subunit in vitro and in vivo. As a consequence of ribosome binding, Val-tRF reduces protein synthesis by interfering with peptidyl transferase activity. Therefore this tRF functions as ribosome-bound small ncRNA capable of regulating gene expression in H. volcanii under environmental stress conditions probably by fine tuning the rate of protein production.


Sujet(s)
Haloferax volcanii/génétique , ARN des archées/génétique , ARN de transfert/génétique , Séquence nucléotidique , Régulation de l'expression des gènes archéens , Réseaux de régulation génique , Haloferax volcanii/métabolisme , Conformation d'acide nucléique , Maturation post-transcriptionnelle des ARN , ARN des archées/composition chimique , ARN des archées/métabolisme , ARN de transfert/composition chimique , ARN de transfert/métabolisme , ARN de transfert de la valine/composition chimique , ARN de transfert de la valine/génétique , ARN de transfert de la valine/métabolisme , ARN non traduit/composition chimique , ARN non traduit/génétique , ARN non traduit/métabolisme , Petite sous-unité du ribosome des archéobactéries/génétique , Petite sous-unité du ribosome des archéobactéries/métabolisme , Ribosomes/génétique , Ribosomes/métabolisme
18.
Mitochondrion ; 11(4): 615-9, 2011 Jul.
Article de Anglais | MEDLINE | ID: mdl-21540128

RÉSUMÉ

An m.1630A>G mutation in the mitochondrial tRNA(Val) (MTTV) was identified in a patient with hearing impairment, short stature and new onset of stroke. This mutation has previously been identified in a patient with the mitochondrial neurogastrointestinal encephalopathy syndrome (MNGIE). The mother of the proband also had high levels of the m.1630A>G allele present in blood and other tissues, without symptoms. To confirm the pathogenicity of this mutation, we created cybrid cell lines with various mutation loads. The m.1630A>G mutation impairs oxygen consumption, affects the stability of the MTTV and reduces the levels of subunits of the electron transport chain.


Sujet(s)
ADN mitochondrial/génétique , Syndrome MELAS/génétique , Mutation ponctuelle , ARN de transfert de la valine/génétique , Adolescent , Allèles , Cellules cultivées , ADN mitochondrial/métabolisme , Transport d'électrons , Femelle , Prédisposition génétique à une maladie , Humains , Syndrome MELAS/métabolisme , Syndrome MELAS/anatomopathologie , Mitochondries/génétique , Mitochondries/métabolisme , Mitochondries/anatomopathologie , Conformation d'acide nucléique , Oxygène/métabolisme , ARN de transfert de la valine/métabolisme
19.
Nucleic Acids Res ; 37(12): 4033-42, 2009 Jul.
Article de Anglais | MEDLINE | ID: mdl-19417061

RÉSUMÉ

Structural studies have revealed multiple contacts between the ribosomal P site and tRNA, but how these contacts contribute to P-tRNA binding remains unclear. In this study, the effects of ribosomal mutations on the dissociation rate (k(off)) of various tRNAs from the P site were measured. Mutation of the 30S P site destabilized tRNAs to various degrees, depending on the mutation and the species of tRNA. These data support the idea that ribosome-tRNA interactions are idiosyncratically tuned to ensure stable binding of all tRNA species. Unlike deacylated elongator tRNAs, N-acetyl-aminoacyl-tRNAs and tRNA(fMet) dissociated from the P site at a similar low rate, even in the presence of various P-site mutations. These data provide evidence for a stability threshold for P-tRNA binding and suggest that ribosome-tRNA(fMet) interactions are uniquely tuned for tight binding. The effects of 16S rRNA mutation G1338U were suppressed by 50S E-site mutation C2394A, suggesting that G1338 is particularly important for stabilizing tRNA in the P/E site. Finally, mutation C2394A or the presence of an N-acetyl-aminoacyl group slowed the association rate (k(on)) of tRNA dramatically, suggesting that deacylated tRNA binds the P site of the ribosome via the E site.


Sujet(s)
ARN de transfert/composition chimique , Grande sous-unité du ribosome des bactéries/composition chimique , Petite sous-unité du ribosome des bactéries/composition chimique , Sites de fixation , Escherichia coli/génétique , Cinétique , Modèles moléculaires , Mutagenèse , ARN ribosomique 16S/composition chimique , ARN ribosomique 16S/métabolisme , ARN de transfert/métabolisme , ARN de transfert de la méthionine/métabolisme , ARN de transfert de la valine/métabolisme , Grande sous-unité du ribosome des bactéries/métabolisme , Petite sous-unité du ribosome des bactéries/métabolisme
20.
RNA ; 15(6): 1134-41, 2009 Jun.
Article de Anglais | MEDLINE | ID: mdl-19383770

RÉSUMÉ

Transfer RNA is highly modified. Nucleotide 37 of the anticodon loop is represented by various modified nucleotides. In Escherichia coli, the valine-specific tRNA (cmo(5)UAC) contains a unique modification, N(6)-methyladenosine, at position 37; however, the enzyme responsible for this modification is unknown. Here we demonstrate that the yfiC gene of E. coli encodes an enzyme responsible for the methylation of A37 in tRNA(1)(Val). Inactivation of yfiC gene abolishes m(6)A formation in tRNA(1)(Val), while expression of the yfiC gene from a plasmid restores the modification. Additionally, unmodified tRNA(1)(Val) can be methylated by recombinant YfiC protein in vitro. Although the methylation of m(6)A in tRNA(1)(Val) by YfiC has little influence on the cell growth under standard conditions, the yfiC gene confers a growth advantage under conditions of osmotic and oxidative stress.


Sujet(s)
Protéines Escherichia coli/génétique , Escherichia coli/enzymologie , Gènes bactériens , Methyltransferases/génétique , ARN de transfert de la valine/métabolisme , T-RNA methyltransferases/génétique , Adénosine/analogues et dérivés , Adénosine/métabolisme , Escherichia coli/génétique , Escherichia coli/métabolisme , Protéines Escherichia coli/métabolisme , Méthylation , Methyltransferases/métabolisme , Stress oxydatif , ARN de transfert de la valine/génétique , T-RNA methyltransferases/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...