Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 326
Filtrer
1.
RNA ; 30(10): 1264-1276, 2024 Sep 16.
Article de Anglais | MEDLINE | ID: mdl-39043438

RÉSUMÉ

Ribosomal RNAs are transcribed as part of larger precursor molecules. In Escherichia coli, complementary RNA segments flank each rRNA and form long leader-trailer (LT) helices, which are crucial for subunit biogenesis in the cell. A previous study of 15 representative species suggested that most but not all prokaryotes contain LT helices. Here, we use a combination of in silico folding and covariation methods to identify and characterize LT helices in 4464 bacterial and 260 archaeal organisms. Our results suggest that LT helices are present in all phyla, including Deinococcota, which had previously been suspected to lack LT helices. In very few organisms, our pipeline failed to detect LT helices for both 16S and 23S rRNA. However, a closer case-by-case look revealed that LT helices are indeed present but escaped initial detection. Over 3600 secondary structure models, many well supported by nucleotide covariation, were generated. These structures show a high degree of diversity. Yet, all exhibit extensive base-pairing between the leader and trailer strands, in line with a common and essential function.


Sujet(s)
Archéobactéries , Conformation d'acide nucléique , ARN des archées , ARN bactérien , ARN des archées/génétique , ARN des archées/composition chimique , ARN des archées/métabolisme , Archéobactéries/génétique , ARN bactérien/génétique , ARN bactérien/composition chimique , ARN bactérien/métabolisme , ARN ribosomique/génétique , ARN ribosomique/composition chimique , ARN ribosomique/métabolisme , Bactéries/génétique , Précurseurs des ARN/génétique , Précurseurs des ARN/métabolisme , Précurseurs des ARN/composition chimique , ARN ribosomique 23S/génétique , ARN ribosomique 23S/composition chimique , ARN ribosomique 23S/métabolisme , Séquence nucléotidique , ARN ribosomique 16S/génétique , ARN ribosomique 16S/composition chimique , Appariement de bases
2.
J Biol Chem ; 300(8): 107505, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38944122

RÉSUMÉ

Archaeosine (G+) is an archaea-specific tRNA modification synthesized via multiple steps. In the first step, archaeosine tRNA guanine transglucosylase (ArcTGT) exchanges the G15 base in tRNA with 7-cyano-7-deazaguanine (preQ0). In Euryarchaea, preQ015 in tRNA is further modified by archaeosine synthase (ArcS). Thermococcus kodakarensis ArcS catalyzes a lysine-transfer reaction to produce preQ0-lysine (preQ0-Lys) as an intermediate. The resulting preQ0-Lys15 in tRNA is converted to G+15 by a radical S-adenosyl-L-methionine enzyme for archaeosine formation (RaSEA), which forms a complex with ArcS. Here, we focus on the substrate tRNA recognition mechanism of ArcS. Kinetic parameters of ArcS for lysine and tRNA-preQ0 were determined using a purified enzyme. RNA fragments containing preQ0 were prepared from Saccharomyces cerevisiae tRNAPhe-preQ015. ArcS transferred 14C-labeled lysine to RNA fragments. Furthermore, ArcS transferred lysine to preQ0 nucleoside and preQ0 nucleoside 5'-monophosphate. Thus, the L-shaped structure and the sequence of tRNA are not essential for the lysine-transfer reaction by ArcS. However, the presence of D-arm structure accelerates the lysine-transfer reaction. Because ArcTGT from thermophilic archaea recognizes the common D-arm structure, we expected the combination of T. kodakarensis ArcTGT and ArcS and RaSEA complex would result in the formation of preQ0-Lys15 in all tRNAs. This hypothesis was confirmed using 46 T. kodakarensis tRNA transcripts and three Haloferax volcanii tRNA transcripts. In addition, ArcTGT did not exchange the preQ0-Lys15 in tRNA with guanine or preQ0 base, showing that formation of tRNA-preQ0-Lys by ArcS plays a role in preventing the reverse reaction in G+ biosynthesis.


Sujet(s)
Protéines d'archée , Lysine , Thermococcus , Thermococcus/métabolisme , Thermococcus/génétique , Thermococcus/enzymologie , Lysine/métabolisme , Lysine/composition chimique , Protéines d'archée/métabolisme , Protéines d'archée/génétique , Protéines d'archée/composition chimique , ARN de transfert/métabolisme , ARN de transfert/génétique , ARN de transfert/composition chimique , ARN des archées/métabolisme , ARN des archées/génétique , ARN des archées/composition chimique , Guanine/métabolisme , Guanine/composition chimique , Guanine/analogues et dérivés , Spécificité du substrat , Cinétique , Nucléosides/métabolisme , Nucléosides/composition chimique , Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/génétique , Guanosine/analogues et dérivés
3.
Nucleic Acids Res ; 52(8): 4644-4658, 2024 May 08.
Article de Anglais | MEDLINE | ID: mdl-38375885

RÉSUMÉ

Pseudouridine, one of the most abundant RNA modifications, is synthesized by stand-alone or RNA-guided pseudouridine synthases. Here, we comprehensively mapped pseudouridines in rRNAs, tRNAs and small RNAs in the archaeon Sulfolobus islandicus and identified Cbf5-associated H/ACA RNAs. Through genetic deletion and in vitro modification assays, we determined the responsible enzymes for these modifications. The pseudouridylation machinery in S. islandicus consists of the stand-alone enzymes aPus7 and aPus10, and six H/ACA RNA-guided enzymes that account for all identified pseudouridines. These H/ACA RNAs guide the modification of all eleven sites in rRNAs, two sites in tRNAs, and two sites in CRISPR RNAs. One H/ACA RNA shows exceptional versatility by targeting eight different sites. aPus7 and aPus10 are responsible for modifying positions 13, 54 and 55 in tRNAs. We identified four atypical H/ACA RNAs that lack the lower stem and the ACA motif and confirmed their function both in vivo and in vitro. Intriguingly, atypical H/ACA RNAs can be modified by Cbf5 in a guide-independent manner. Our data provide the first global view of pseudouridylation in archaea and reveal unexpected structures, substrates, and activities of archaeal H/ACA RNPs.


Sujet(s)
Pseudouridine , ARN des archées , ARN de transfert , Sulfolobus , Pseudouridine/métabolisme , Sulfolobus/génétique , Sulfolobus/métabolisme , ARN de transfert/métabolisme , ARN de transfert/génétique , ARN des archées/génétique , ARN des archées/métabolisme , ARN des archées/composition chimique , ARN ribosomique/métabolisme , ARN ribosomique/génétique , Protéines d'archée/métabolisme , Protéines d'archée/génétique , Maturation post-transcriptionnelle des ARN , RNA, Guide, CRISPR-Cas Systems/génétique , RNA, Guide, CRISPR-Cas Systems/métabolisme , Intramolecular transferases/génétique , Intramolecular transferases/métabolisme
4.
Biol Chem ; 404(11-12): 1085-1100, 2023 10 26.
Article de Anglais | MEDLINE | ID: mdl-37709673

RÉSUMÉ

Posttranscriptional processes in Bacteria include the association of small regulatory RNAs (sRNA) with a target mRNA. The sRNA/mRNA annealing process is often mediated by an RNA chaperone called Hfq. The functional role of bacterial and eukaryotic Lsm proteins is partially understood, whereas knowledge about archaeal Lsm proteins is scarce. Here, we used the genetically tractable archaeal hyperthermophile Pyrococcus furiosus to identify the protein interaction partners of the archaeal Sm-like proteins (PfuSmAP1) using mass spectrometry and performed a transcriptome-wide binding site analysis of PfuSmAP1. Most of the protein interaction partners we found are part of the RNA homoeostasis network in Archaea including ribosomal proteins, the exosome, RNA-modifying enzymes, but also RNA polymerase subunits, and transcription factors. We show that PfuSmAP1 preferentially binds messenger RNAs and antisense RNAs recognizing a gapped poly(U) sequence with high affinity. Furthermore, we found that SmAP1 co-transcriptionally associates with target RNAs. Our study reveals that in contrast to bacterial Hfq, PfuSmAP1 does not affect the transcriptional activity or the pausing behaviour of archaeal RNA polymerases. We propose that PfuSmAP1 recruits antisense RNAs to target mRNAs and thereby executes its putative regulatory function on the posttranscriptional level.


Sujet(s)
Protéines d'archée , Pyrococcus furiosus , Petit ARN non traduit , Pyrococcus furiosus/génétique , Pyrococcus furiosus/métabolisme , ARN messager/métabolisme , ARN des archées/génétique , ARN des archées/composition chimique , ARN des archées/métabolisme , Sites de fixation , Bactéries/métabolisme , Protéines d'archée/génétique , Protéines d'archée/composition chimique , Protéines d'archée/métabolisme , Petit ARN non traduit/métabolisme
5.
Nature ; 605(7909): 372-379, 2022 05.
Article de Anglais | MEDLINE | ID: mdl-35477761

RÉSUMÉ

Post-transcriptional modifications have critical roles in tRNA stability and function1-4. In thermophiles, tRNAs are heavily modified to maintain their thermal stability under extreme growth temperatures5,6. Here we identified 2'-phosphouridine (Up) at position 47 of tRNAs from thermophilic archaea. Up47 confers thermal stability and nuclease resistance to tRNAs. Atomic structures of native archaeal tRNA showed a unique metastable core structure stabilized by Up47. The 2'-phosphate of Up47 protrudes from the tRNA core and prevents backbone rotation during thermal denaturation. In addition, we identified the arkI gene, which encodes an archaeal RNA kinase responsible for Up47 formation. Structural studies showed that ArkI has a non-canonical kinase motif surrounded by a positively charged patch for tRNA binding. A knockout strain of arkI grew slowly at high temperatures and exhibited a synthetic growth defect when a second tRNA-modifying enzyme was depleted. We also identified an archaeal homologue of KptA as an eraser that efficiently dephosphorylates Up47 in vitro and in vivo. Taken together, our findings show that Up47 is a reversible RNA modification mediated by ArkI and KptA that fine-tunes the structural rigidity of tRNAs under extreme environmental conditions.


Sujet(s)
Archéobactéries , ARN de transfert , Thermotolérance , Archéobactéries/génétique , Environnements extrêmes , Phosphorylation , Maturation post-transcriptionnelle des ARN , ARN des archées/composition chimique , ARN des archées/métabolisme , ARN de transfert/composition chimique , ARN de transfert/métabolisme , Uridine
6.
Nucleic Acids Res ; 49(3): 1662-1687, 2021 02 22.
Article de Anglais | MEDLINE | ID: mdl-33434266

RÉSUMÉ

Ribosomes are intricate molecular machines ensuring proper protein synthesis in every cell. Ribosome biogenesis is a complex process which has been intensively analyzed in bacteria and eukaryotes. In contrast, our understanding of the in vivo archaeal ribosome biogenesis pathway remains less characterized. Here, we have analyzed the in vivo role of the almost universally conserved ribosomal RNA dimethyltransferase KsgA/Dim1 homolog in archaea. Our study reveals that KsgA/Dim1-dependent 16S rRNA dimethylation is dispensable for the cellular growth of phylogenetically distant archaea. However, proteomics and functional analyses suggest that archaeal KsgA/Dim1 and its rRNA modification activity (i) influence the expression of a subset of proteins and (ii) contribute to archaeal cellular fitness and adaptation. In addition, our study reveals an unexpected KsgA/Dim1-dependent variability of rRNA modifications within the archaeal phylum. Combining structure-based functional studies across evolutionary divergent organisms, we provide evidence on how rRNA structure sequence variability (re-)shapes the KsgA/Dim1-dependent rRNA modification status. Finally, our results suggest an uncoupling between the KsgA/Dim1-dependent rRNA modification completion and its release from the nascent small ribosomal subunit. Collectively, our study provides additional understandings into principles of molecular functional adaptation, and further evolutionary and mechanistic insights into an almost universally conserved step of ribosome synthesis.


Sujet(s)
Archéobactéries/enzymologie , Methyltransferases/métabolisme , ARN des archées/métabolisme , ARN ribosomique/métabolisme , Archéobactéries/génétique , Mouvement cellulaire , Crenarchaeota/enzymologie , Euryarchaeota/enzymologie , Haloferax volcanii/enzymologie , Methyltransferases/physiologie , Biosynthèse des protéines , ARN des archées/composition chimique , ARN ribosomique/composition chimique , Petite sous-unité du ribosome des archéobactéries/enzymologie
7.
RNA ; 27(2): 133-150, 2021 02.
Article de Anglais | MEDLINE | ID: mdl-33184227

RÉSUMÉ

The large ribosomal RNAs of eukaryotes frequently contain expansion sequences that add to the size of the rRNAs but do not affect their overall structural layout and are compatible with major ribosomal function as an mRNA translation machine. The expansion of prokaryotic ribosomal RNAs is much less explored. In order to obtain more insight into the structural variability of these conserved molecules, we herein report the results of a comprehensive search for the expansion sequences in prokaryotic 5S rRNAs. Overall, 89 expanded 5S rRNAs of 15 structural types were identified in 15 archaeal and 36 bacterial genomes. Expansion segments ranging in length from 13 to 109 residues were found to be distributed among 17 insertion sites. The strains harboring the expanded 5S rRNAs belong to the bacterial orders Clostridiales, Halanaerobiales, Thermoanaerobacterales, and Alteromonadales as well as the archael order Halobacterales When several copies of a 5S rRNA gene are present in a genome, the expanded versions may coexist with normal 5S rRNA genes. The insertion sequences are typically capable of forming extended helices, which do not seemingly interfere with folding of the conserved core. The expanded 5S rRNAs have largely been overlooked in 5S rRNA databases.


Sujet(s)
Génome d'archéobactérie , Génome bactérien , ARN des archées/génétique , ARN bactérien/génétique , ARN ribosomique 5S/génétique , Alteromonadaceae/classification , Alteromonadaceae/génétique , Alteromonadaceae/métabolisme , Appariement de bases , Séquence nucléotidique , Clostridiales/classification , Clostridiales/génétique , Clostridiales/métabolisme , Firmicutes/classification , Firmicutes/génétique , Firmicutes/métabolisme , Halobacteriales/classification , Halobacteriales/génétique , Halobacteriales/métabolisme , Conformation d'acide nucléique , Phylogenèse , ARN des archées/composition chimique , ARN des archées/métabolisme , ARN bactérien/composition chimique , ARN bactérien/métabolisme , ARN ribosomique 5S/composition chimique , ARN ribosomique 5S/métabolisme , Thermoanaerobacterium/classification , Thermoanaerobacterium/génétique , Thermoanaerobacterium/métabolisme
8.
Biomolecules ; 10(12)2020 12 08.
Article de Anglais | MEDLINE | ID: mdl-33302546

RÉSUMÉ

Archaeal DNA polymerases from the B-family (polB) have found essential applications in biotechnology. In addition, some of their variants can accept a wide range of modified nucleotides or xenobiotic nucleotides, such as 1,5-anhydrohexitol nucleic acid (HNA), which has the unique ability to selectively cross-pair with DNA and RNA. This capacity is essential to allow the transmission of information between different chemistries of nucleic acid molecules. Variants of the archaeal polymerase from Thermococcus gorgonarius, TgoT, that can either generate HNA from DNA (TgoT_6G12) or DNA from HNA (TgoT_RT521) have been previously identified. To understand how DNA and HNA are recognized and selected by these two laboratory-evolved polymerases, we report six X-ray structures of these variants, as well as an in silico model of a ternary complex with HNA. Structural comparisons of the apo form of TgoT_6G12 together with its binary and ternary complexes with a DNA duplex highlight an ensemble of interactions and conformational changes required to promote DNA or HNA synthesis. MD simulations of the ternary complex suggest that the HNA-DNA hybrid duplex remains stable in the A-DNA helical form and help explain the presence of mutations in regions that would normally not be in contact with the DNA if it were not in the A-helical form. One complex with two incorporated HNA nucleotides is surprisingly found in a one nucleotide-backtracked form, which is new for a DNA polymerase. This information can be used for engineering a new generation of more efficient HNA polymerase variants.


Sujet(s)
Protéines d'archée/composition chimique , DNA polymerase beta/composition chimique , ADN des archées/composition chimique , Hexose phosphate/composition chimique , Nucléotides/composition chimique , ARN des archées/composition chimique , Thermococcus/composition chimique , Protéines d'archée/génétique , Protéines d'archée/métabolisme , Sites de fixation , Clonage moléculaire , Cristallographie aux rayons X , DNA polymerase beta/génétique , DNA polymerase beta/métabolisme , ADN des archées/génétique , ADN des archées/métabolisme , Évolution moléculaire dirigée/méthodes , Escherichia coli/génétique , Escherichia coli/métabolisme , Expression des gènes , Vecteurs génétiques/composition chimique , Vecteurs génétiques/métabolisme , Hexose phosphate/métabolisme , Cinétique , Simulation de dynamique moléculaire , Mutation , Conformation d'acide nucléique , Nucléotides/génétique , Nucléotides/métabolisme , Liaison aux protéines , Structure en hélice alpha , Structure en brin bêta , Ingénierie des protéines/méthodes , Motifs et domaines d'intéraction protéique , ARN des archées/génétique , ARN des archées/métabolisme , Spécificité du substrat , Thermococcus/enzymologie
9.
RNA ; 26(12): 1957-1975, 2020 12.
Article de Anglais | MEDLINE | ID: mdl-32994183

RÉSUMÉ

To improve and complete our knowledge of archaeal tRNA modification patterns, we have identified and compared the modification pattern (type and location) in tRNAs of three very different archaeal species, Methanococcus maripaludis (a mesophilic methanogen), Pyrococcus furiosus (a hyperthermophile thermococcale), and Sulfolobus acidocaldarius (an acidophilic thermophilic sulfolobale). Most abundant isoacceptor tRNAs (79 in total) for each of the 20 amino acids were isolated by two-dimensional gel electrophoresis followed by in-gel RNase digestions. The resulting oligonucleotide fragments were separated by nanoLC and their nucleotide content analyzed by mass spectrometry (MS/MS). Analysis of total modified nucleosides obtained from complete digestion of bulk tRNAs was also performed. Distinct base- and/or ribose-methylations, cytidine acetylations, and thiolated pyrimidines were identified, some at new positions in tRNAs. Novel, some tentatively identified, modifications were also found. The least diversified modification landscape is observed in the mesophilic Methanococcus maripaludis and the most complex one in Sulfolobus acidocaldarius Notable observations are the frequent occurrence of ac4C nucleotides in thermophilic archaeal tRNAs, the presence of m7G at positions 1 and 10 in Pyrococcus furiosus tRNAs, and the use of wyosine derivatives at position 37 of tRNAs, especially those decoding U1- and C1-starting codons. These results complete those already obtained by others with sets of archaeal tRNAs from Methanocaldococcus jannaschii and Haloferax volcanii.


Sujet(s)
Methanococcus/génétique , Nucléotides/composition chimique , Pyrococcus furiosus/génétique , ARN de transfert/composition chimique , ARN de transfert/génétique , Sulfolobus acidocaldarius/génétique , Séquence nucléotidique , Conformation d'acide nucléique , ARN des archées/composition chimique , ARN des archées/génétique
10.
Nature ; 583(7817): 638-643, 2020 07.
Article de Anglais | MEDLINE | ID: mdl-32555463

RÉSUMÉ

N4-acetylcytidine (ac4C) is an ancient and highly conserved RNA modification that is present on tRNA and rRNA and has recently been investigated in eukaryotic mRNA1-3. However, the distribution, dynamics and functions of cytidine acetylation have yet to be fully elucidated. Here we report ac4C-seq, a chemical genomic method for the transcriptome-wide quantitative mapping of ac4C at single-nucleotide resolution. In human and yeast mRNAs, ac4C sites are not detected but can be induced-at a conserved sequence motif-via the ectopic overexpression of eukaryotic acetyltransferase complexes. By contrast, cross-evolutionary profiling revealed unprecedented levels of ac4C across hundreds of residues in rRNA, tRNA, non-coding RNA and mRNA from hyperthermophilic archaea. Ac4C is markedly induced in response to increases in temperature, and acetyltransferase-deficient archaeal strains exhibit temperature-dependent growth defects. Visualization of wild-type and acetyltransferase-deficient archaeal ribosomes by cryo-electron microscopy provided structural insights into the temperature-dependent distribution of ac4C and its potential thermoadaptive role. Our studies quantitatively define the ac4C landscape, providing a technical and conceptual foundation for elucidating the role of this modification in biology and disease4-6.


Sujet(s)
Acétylation , Cytidine/analogues et dérivés , Cellules eucaryotes/métabolisme , Évolution moléculaire , ARN/composition chimique , ARN/métabolisme , Archéobactéries/composition chimique , Archéobactéries/cytologie , Archéobactéries/génétique , Archéobactéries/croissance et développement , Séquence conservée , Cryomicroscopie électronique , Cytidine/métabolisme , Cellules eucaryotes/cytologie , Cellules HeLa , Humains , Modèles moléculaires , N-terminal acetyltransferases/métabolisme , ARN des archées/composition chimique , ARN des archées/génétique , Protéines de liaison à l'ARN/métabolisme , Ribosomes/génétique , Ribosomes/métabolisme , Ribosomes/ultrastructure , Saccharomyces cerevisiae/cytologie , Saccharomyces cerevisiae/génétique , Analyse de séquence d'ADN , Température
11.
RNA Biol ; 17(10): 1480-1491, 2020 10.
Article de Anglais | MEDLINE | ID: mdl-32552320

RÉSUMÉ

RNase J is a prokaryotic 5'-3' exo/endoribonuclease that functions in mRNA decay and rRNA maturation. Here, we report a novel duplex unwinding activity of mpy-RNase J, an archaeal RNase J from Methanolobus psychrophilus, which enables it to degrade duplex RNAs with hairpins up to 40 bp when linking a 5' single-stranded overhangs of ≥ 7 nt, corresponding to the RNA channel length. A 6-nt RNA-mpy-RNase J-S247A structure reveals the RNA-interacting residues and a steric barrier at the RNA channel entrance comprising two archaeal loops and two helices. Mutagenesis of the residues key to either exoribonucleolysis or RNA translocation diminished the duplex unwinding activity. Substitution of the residues in the steric barrier yielded stalled degradation intermediates at the duplex RNA regions. Thus, an exoribonucleolysis-driven and steric occlusion-based duplex unwinding mechanism was identified. The duplex unwinding activity confers mpy-RNase J the capability of degrading highly structured RNAs, including the bacterial REP RNA, and archaeal mRNAs, rRNAs, tRNAs, SRPs, RNase P and CD-box RNAs, providing an indicative of the potential key roles of mpy-RNase J in pleiotropic RNA metabolisms. Hydrolysis-coupled duplex unwinding activity was also detected in a bacterial RNase J, which may use a shared but slightly different unwinding mechanism from archaeal RNase Js, indicating that duplex unwinding is a common property of the prokaryotic RNase Js.


Sujet(s)
Archéobactéries/enzymologie , Archéobactéries/génétique , Conformation d'acide nucléique , ARN des archées/composition chimique , ARN des archées/génétique , ARN double brin/composition chimique , ARN double brin/génétique , Ribonucléases/métabolisme , Hydrolyse , Modèles moléculaires , Liaison aux protéines , Conformation des protéines , Clivage de l'ARN , ARN des archées/métabolisme , ARN double brin/métabolisme , Relation structure-activité , Spécificité du substrat
12.
J Bacteriol ; 202(8)2020 03 26.
Article de Anglais | MEDLINE | ID: mdl-32041795

RÉSUMÉ

Archaeosine (G+) is a structurally complex modified nucleoside found quasi-universally in the tRNA of Archaea and located at position 15 in the dihydrouridine loop, a site not modified in any tRNA outside the Archaea G+ is characterized by an unusual 7-deazaguanosine core structure with a formamidine group at the 7-position. The location of G+ at position 15, coupled with its novel molecular structure, led to a hypothesis that G+ stabilizes tRNA tertiary structure through several distinct mechanisms. To test whether G+ contributes to tRNA stability and define the biological role of G+, we investigated the consequences of introducing targeted mutations that disrupt the biosynthesis of G+ into the genome of the hyperthermophilic archaeon Thermococcus kodakarensis and the mesophilic archaeon Methanosarcina mazei, resulting in modification of the tRNA with the G+ precursor 7-cyano-7-deazaguansine (preQ0) (deletion of arcS) or no modification at position 15 (deletion of tgtA). Assays of tRNA stability from in vitro-prepared and enzymatically modified tRNA transcripts, as well as tRNA isolated from the T. kodakarensis mutant strains, demonstrate that G+ at position 15 imparts stability to tRNAs that varies depending on the overall modification state of the tRNA and the concentration of magnesium chloride and that when absent results in profound deficiencies in the thermophily of T. kodakarensisIMPORTANCE Archaeosine is ubiquitous in archaeal tRNA, where it is located at position 15. Based on its molecular structure, it was proposed to stabilize tRNA, and we show that loss of archaeosine in Thermococcus kodakarensis results in a strong temperature-sensitive phenotype, while there is no detectable phenotype when it is lost in Methanosarcina mazei Measurements of tRNA stability show that archaeosine stabilizes the tRNA structure but that this effect is much greater when it is present in otherwise unmodified tRNA transcripts than in the context of fully modified tRNA, suggesting that it may be especially important during the early stages of tRNA processing and maturation in thermophiles. Our results demonstrate how small changes in the stability of structural RNAs can be manifested in significant biological-fitness changes.


Sujet(s)
Guanosine/analogues et dérivés , Methanosarcina/métabolisme , ARN des archées/génétique , ARN de transfert/génétique , Thermococcus/métabolisme , Guanosine/métabolisme , Methanosarcina/composition chimique , Methanosarcina/génétique , Stabilité de l'ARN , ARN des archées/composition chimique , ARN des archées/métabolisme , ARN de transfert/composition chimique , ARN de transfert/métabolisme , Thermococcus/composition chimique , Thermococcus/génétique
13.
Int J Biol Macromol ; 150: 705-713, 2020 May 01.
Article de Anglais | MEDLINE | ID: mdl-32057853

RÉSUMÉ

Aminoacyl tRNA synthetase (AARS) plays an important role in transferring each amino acid to its cognate tRNA. Specifically, tyrosyl tRNA synthetase (TyrRS) is involved in various functions including protection from DNA damage due to oxidative stress, protein synthesis and cell signaling and can be an attractive target for controlling the pathogens by early inhibition of translation. TyrRS has two disordered regions, which lack a stable 3D structure in solution, and are involved in tRNA synthetase catalysis and stability. One of the disordered regions undergoes disorder-to-order transition (DOT) upon complex formation with tRNA whereas the other remains disordered (DR). In this work, we have explored the importance of these disordered regions using molecular dynamics simulations of both free and RNA-complexed states. We observed that the DOT and DR regions of the first subunit acts as a flap and interact with the acceptor arm of the tRNA. The DOT-DR flap closes when tyrosine (TyrRSTyr) is present at the active site of the complex and opens in the presence of tyrosine monophosphate (TyrRSYMP). The DOT and DR regions of the second subunit interact with the anticodon stem as well as D-loop of the tRNA, which might be involved in stabilizing the complex. The anticodon loop of the tRNA binds to the structured region present in the C-terminal of the protein, which is observed to be flexible during simulations. Detailed energy calculations also show that TyrRSTyr complex has stronger binding energy between tRNA and protein compared to TyrRSYMP; on the contrary, the anticodon is strongly bound in TyrRSYMP. The results obtained in the present study provide additional insights for understanding catalysis and the involvement of disordered regions in Tyr transfer to cognate tRNA.


Sujet(s)
Protéines d'archée/composition chimique , Methanocaldococcus/composition chimique , ARN des archées/composition chimique , ARN de transfert de la tyrosine/composition chimique , Tyrosine-tRNA ligase/composition chimique , Tyrosine/composition chimique , Protéines d'archée/métabolisme , Methanocaldococcus/métabolisme , ARN des archées/métabolisme , ARN de transfert de la tyrosine/métabolisme , Tyrosine/métabolisme , Tyrosine-tRNA ligase/métabolisme
14.
Methods Mol Biol ; 2106: 193-208, 2020.
Article de Anglais | MEDLINE | ID: mdl-31889259

RÉSUMÉ

RNA structural conformation and dynamics govern the functional properties of all RNA/RNP. Accordingly, defining changes of RNA structure and dynamics in various conditions may provide detailed insight into how RNA structural properties regulate the function of RNA/RNP. Traditional chemical footprinting analysis using chemical modifiers allows to sample the dynamics and conformation landscape of diverse RNA/RNP. However, many chemical modifiers are limited in their capacity to provide unbiased information reflecting the in vivo RNA/RNP structural landscape. In the recent years, the development of selective-2'-hydroxyl acylation analyzed by primer extension (SHAPE) methodology that uses powerful new chemical modifiers has significantly improved in vitro and in vivo structural probing of secondary and tertiary interactions of diverse RNA species at the single nucleotide level.Although the original discovery of Archaea as an independent domain of life is intimately linked to the technological development of RNA analysis, our understanding of in vivo RNA structural conformation and dynamics in this domain of life remains scarce.This protocol describes the in vivo use of SHAPE chemistry in two evolutionary divergent model Archaea, Sulfolobus acidocaldarius and Haloferax volcanii.


Sujet(s)
Protéines d'archée/métabolisme , Techniques de sonde moléculaire , Pliage de l'ARN , ARN des archées/métabolisme , Protéines de liaison à l'ARN/métabolisme , Archéobactéries/composition chimique , Archéobactéries/génétique , Protéines d'archée/composition chimique , ARN des archées/composition chimique , ARN des archées/génétique , Protéines de liaison à l'ARN/composition chimique
15.
RNA ; 26(4): 396-418, 2020 04.
Article de Anglais | MEDLINE | ID: mdl-31919243

RÉSUMÉ

Archaea and eukaryotes, in addition to protein-only enzymes, also possess ribonucleoproteins containing an H/ACA guide RNA plus four proteins that produce pseudouridine (Ψ). Although typical conditions for these RNA-guided reactions are known, certain variant conditions allow pseudouridylation. We used mutants of the two stem-loops of the Haloferax volcanii sR-h45 RNA that guides three pseudouridylations in 23S rRNA and their target RNAs to characterize modifications under various atypical conditions. The 5' stem-loop produces Ψ2605 and the 3' stem-loop produces Ψ1940 and Ψ1942. The latter two modifications require unpaired "UVUN" (V = A, C, or G) in the target and ACA box in the guide. Ψ1942 modification requires the presence of U1940 (or Ψ1940). Ψ1940 is not produced in the Ψ1942-containing substrate, suggesting a sequential modification of the two residues. The ACA box of a single stem-loop guide is not required when typically unpaired "UN" is up to 17 bases from its position in the guide, but is needed when the distance increases to 19 bases or the N is paired. However, ANA of the H box of the double stem-loop guide is needed even for the 5' typical pseudouridylation. The most 5' unpaired U in a string of U's is converted to Ψ, and in the absence of an unpaired U, a paired U can also be modified. Certain mutants of the Cbf5 protein affect pseudouridylation by the two stem-loops of sR-h45 differently. This study will help elucidate the conditions for production of nonconstitutive Ψ's, determine functions for orphan H/ACA RNAs and in target designing.


Sujet(s)
Pseudouridine/métabolisme , Maturation post-transcriptionnelle des ARN , ARN des archées/génétique , 30530/génétique , Protéines d'archée/métabolisme , Haloferax volcanii/génétique , Motifs nucléotidiques , Pseudouridine/composition chimique , ARN des archées/composition chimique , ARN des archées/métabolisme , 30530/composition chimique , 30530/métabolisme
16.
Nucleic Acids Res ; 47(W1): W542-W547, 2019 07 02.
Article de Anglais | MEDLINE | ID: mdl-31127306

RÉSUMÉ

Transfer RNAs (tRNAs) are ubiquitous across the tree of life. Although tRNA structure is highly conserved, there is still significant variation in sequence features between clades, isotypes and even isodecoders. This variation not only impacts translation, but as shown by a variety of recent studies, nontranslation-associated functions are also sensitive to small changes in tRNA sequence. Despite the rapidly growing number of sequenced genomes, there is a lack of tools for both small- and large-scale comparative genomics analysis of tRNA sequence features. Here, we have integrated over 150 000 tRNAs spanning all domains of life into tRNAviz, a web application for exploring and visualizing tRNA sequence features. tRNAviz implements a framework for determining consensus sequence features and can generate sequence feature distributions by isotypes, clades and anticodons, among other tRNA properties such as score. All visualizations are interactive and exportable. The web server is publicly available at http://trna.ucsc.edu/tRNAviz/.


Sujet(s)
ARN de transfert/composition chimique , Logiciel , Séquence nucléotidique , Infographie , Séquence consensus , ARN des archées/composition chimique , ARN bactérien/composition chimique , ARN de transfert/classification , Analyse de séquence d'ARN
17.
Ann N Y Acad Sci ; 1447(1): 88-96, 2019 07.
Article de Anglais | MEDLINE | ID: mdl-30994930

RÉSUMÉ

Analyses of the RNA metabolism of hyperthermophilic archaea highlight the efficiency of regulatory RNAs and RNA-guided processes at extreme temperatures. These organisms must overcome the intrinsic thermolability of RNAs. Elevated levels of RNA modifications and structured GC-rich regions are observed for many universal noncoding RNA families. Guide RNAs are often protected from degradation by their presence within ribonucleoprotein complexes. Modification and ligation of RNA termini can be employed to impair exonucleolytic degradation. Finally, antisense strand transcription promotes the formation of RNA duplexes and can be used to stabilize RNA regions. In our review, we provide examples of these RNA stabilization mechanisms that have been observed in hyperthermophilic archaeal model organisms.


Sujet(s)
Archéobactéries/composition chimique , Archéobactéries/génétique , Stabilité de l'ARN/génétique , ARN des archées/composition chimique , ARN des archées/génétique , Animaux , Humains , Protéolyse
18.
RNA ; 25(1): 60-69, 2019 01.
Article de Anglais | MEDLINE | ID: mdl-30327333

RÉSUMÉ

A recent study has shown that archaeal L7Ae binds to a putative k-turn structure in the 5'-leader of the mRNA of its structural gene to regulate translation. To function as a regulator, the RNA should be unstructured in the absence of protein, but it should adopt a k-turn-containing stem-loop on binding L7Ae. Sequence analysis of UTR sequences indicates that their k-turn elements will be unable to fold in the absence of L7Ae, and we have demonstrated this experimentally in solution using FRET for the Archaeoglobus fulgidus sequence. We have solved the X-ray crystal structure of the complex of the A. fulgidus RNA bound to its cognate L7Ae protein. The RNA adopts a standard k-turn conformation that is specifically recognized by the L7Ae protein, so stabilizing the stem-loop. In-line probing of the natural-sequence UTR shows that the RNA is unstructured in the absence of L7Ae binding, but folds on binding the protein such that the ribosome binding site is occluded. Thus, L7Ae regulates its own translation by switching the conformation of the RNA to alter accessibility.


Sujet(s)
Protéines d'archée/composition chimique , Protéines d'archée/métabolisme , ARN des archées/composition chimique , ARN des archées/métabolisme , Protéines ribosomiques/composition chimique , Protéines ribosomiques/métabolisme , Régions 5' non traduites , Protéines d'archée/génétique , Archaeoglobus fulgidus/génétique , Archaeoglobus fulgidus/métabolisme , Séquence nucléotidique , Sites de fixation/génétique , Cristallographie aux rayons X , Modèles moléculaires , Conformation d'acide nucléique , Liaison aux protéines , Biosynthèse des protéines , Conformation des protéines , Stabilité de l'ARN , ARN des archées/génétique , ARN messager/composition chimique , ARN messager/génétique , ARN messager/métabolisme , Protéines ribosomiques/génétique
19.
RNA ; 24(12): 1625-1633, 2018 12.
Article de Anglais | MEDLINE | ID: mdl-30254138

RÉSUMÉ

Structural biology studies of archaeal and yeast box C/D ribonucleoprotein particles (RNPs) reveal a surprisingly wide range of forms. If form ever follows function, the different structures of box C/D small ribonucleoprotein particles (snoRNPs) may reflect their versatile functional roles beyond what has been recognized. A large majority of box C/D RNPs serve to site-specifically methylate the ribosomal RNA, typically as independent complexes. Select members of the box C/D snoRNPs also are essential components of the megadalton RNP enzyme, the small subunit processome that is responsible for processing ribosomal RNA. Other box C/D RNPs continue to be uncovered with either unexpected or unknown functions. We summarize currently known box C/D RNP structures in this review and identify the Nop56/58 and box C/D RNA subunits as the key elements underlying the observed structural diversity, and likely, the diverse functional roles of box C/D RNPs.


Sujet(s)
ARN des archées/composition chimique , Petites ribonucléoprotéines nucléolaires/génétique , Ribonucléoprotéines/composition chimique , Saccharomyces cerevisiae/génétique , Archéobactéries/génétique , Protéines nucléaires/synthèse chimique , Protéines nucléaires/composition chimique , Protéines nucléaires/génétique , Conformation d'acide nucléique , ARN des archées/génétique , ARN ribosomique/composition chimique , ARN ribosomique/génétique , Ribonucléoprotéines/génétique , Petites ribonucléoprotéines nucléolaires/composition chimique , Ribosomes/génétique , Protéines de Saccharomyces cerevisiae/synthèse chimique , Protéines de Saccharomyces cerevisiae/composition chimique , Protéines de Saccharomyces cerevisiae/génétique
20.
Nucleic Acids Res ; 46(17): 9027-9043, 2018 09 28.
Article de Anglais | MEDLINE | ID: mdl-30102394

RÉSUMÉ

Nucleases play important roles in nucleic acid metabolism. Some archaea encode a conserved protein known as Hef-associated nuclease (HAN). In addition to its C-terminal DHH nuclease domain, HAN also has three N-terminal domains, including a DnaJ-Zinc-finger, ribosomal protein S1-like, and oligonucleotide/oligosaccharide-binding fold. To further understand HAN's function, we biochemically characterized the enzymatic properties of HAN from Pyrococcus furiosus (PfuHAN), solved the crystal structure of its DHH nuclease domain, and examined its role in DNA repair. Our results show that PfuHAN is a Mn2+-dependent 3'-exonuclease specific to ssDNA and ssRNA with no activity on blunt and 3'-recessive double-stranded DNA. Domain truncation confirmed that the intrinsic nuclease activity is dependent on the C-terminal DHH nuclease domain. The crystal structure of the DHH nuclease domain adopts a trimeric topology, with each subunit adopting a classical DHH phosphoesterase fold. Yeast two hybrid assay confirmed that the DHH domain interacts with the IDR peptide of Hef nuclease. Knockout of the han gene or its C-terminal DHH nuclease domain in Haloferax volcanii resulted in increased sensitivity to the DNA damage reagent MMS. Our results imply that HAN nuclease might be involved in repairing stalled replication forks in archaea.


Sujet(s)
Protéines d'archée/composition chimique , Réparation de l'ADN , ADN simple brin/composition chimique , Exonucleases/composition chimique , Pyrococcus furiosus/enzymologie , ARN des archées/composition chimique , Séquence d'acides aminés , Protéines d'archée/génétique , Protéines d'archée/métabolisme , Sites de fixation , Cations divalents , Clonage moléculaire , Cristallographie aux rayons X , Cassures simple-brin de l'ADN , Altération de l'ADN , Réplication de l'ADN , ADN simple brin/génétique , ADN simple brin/métabolisme , Escherichia coli/génétique , Escherichia coli/métabolisme , Exonucleases/génétique , Exonucleases/métabolisme , Expression des gènes , Haloferax volcanii/composition chimique , Haloferax volcanii/effets des médicaments et des substances chimiques , Haloferax volcanii/enzymologie , Haloferax volcanii/génétique , Cinétique , Manganèse/composition chimique , Manganèse/métabolisme , Méthanesulfonate de méthyle/pharmacologie , Modèles moléculaires , Liaison aux protéines , Structure en hélice alpha , Structure en brin bêta , Motifs et domaines d'intéraction protéique , Pyrococcus furiosus/composition chimique , Pyrococcus furiosus/effets des médicaments et des substances chimiques , Pyrococcus furiosus/génétique , ARN des archées/génétique , ARN des archées/métabolisme , Protéines recombinantes/composition chimique , Protéines recombinantes/génétique , Protéines recombinantes/métabolisme , Alignement de séquences , Similitude de séquences d'acides aminés , Spécificité du substrat
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE