Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 6.329
Filtrer
1.
Sci Adv ; 10(31): eaax2323, 2024 Aug 02.
Article de Anglais | MEDLINE | ID: mdl-39093972

RÉSUMÉ

The nucleocapsid protein of severe acute respiratory syndrome coronavirus 2 encapsidates the viral genome and is essential for viral function. The central disordered domain comprises a serine-arginine-rich (SR) region that is hyperphosphorylated in infected cells. This modification regulates function, although mechanistic details remain unknown. We use nuclear magnetic resonance to follow structural changes occurring during hyperphosphorylation by serine arginine protein kinase 1, glycogen synthase kinase 3, and casein kinase 1, that abolishes interaction with RNA. When eight approximately uniformly distributed sites have been phosphorylated, the SR domain binds the same interface as single-stranded RNA, resulting in complete inhibition of RNA binding. Phosphorylation by protein kinase A does not prevent RNA binding, indicating that the pattern resulting from physiologically relevant kinases is specific for inhibition. Long-range contacts between the RNA binding, linker, and dimerization domains are abrogated, phenomena possibly related to genome packaging and unpackaging. This study provides insight into the recruitment of specific host kinases to regulate viral function.


Sujet(s)
Protéines de la nucléocapside des coronavirus , Liaison aux protéines , ARN viral , SARS-CoV-2 , Phosphorylation , SARS-CoV-2/métabolisme , Protéines de la nucléocapside des coronavirus/métabolisme , Protéines de la nucléocapside des coronavirus/composition chimique , Humains , ARN viral/métabolisme , ARN viral/composition chimique , Conformation des protéines , COVID-19/virologie , COVID-19/métabolisme , Protéines nucléocapside/métabolisme , Protéines nucléocapside/composition chimique , Modèles moléculaires , Sites de fixation , Phosphoprotéines
2.
Methods Mol Biol ; 2837: 67-87, 2024.
Article de Anglais | MEDLINE | ID: mdl-39044076

RÉSUMÉ

RNA structure is crucial for RNA function, including in viral cis-elements such as the hepatitis B virus (HBV) RNA encapsidation signal ε. Interacting with the viral polymerase ε mediates packaging of the pregenomic (pg) RNA into capsids, initiation of reverse transcription, and it affects the mRNA functions of pgRNA. As free RNA, the 61-nucleotide (nt) ε sequence adopts a bipartite stem-loop structure with a central bulge and an apical loop. Due to stable Watson-Crick base pairing, this was already predicted by early RNA folding programs and confirmed by classical enzymatic and chemical structure probing. A newer, high-resolution probing technique exploits the selective acylation of solvent-accessible 2'-hydroxyls in the RNA backbone by electrophilic compounds such as 2-methylnicotinic acid imidazolide (NAI), followed by mapping of the modified sites by primer extension. This SHAPE principle has meanwhile been extended to numerous applications. Here we provide a basic protocol for NAI-based SHAPE of isolated HBV ε RNA which already provided insights into the impact of mutations, and preliminarily, of polymerase binding on the RNA structural dynamics. While the focus is on NAI modification, we also briefly cover target RNA preparation by in vitro transcription, primer extension using a radiolabeled primer, and analysis of the resulting cDNAs by denaturing polyacrylamide gelelectrophoresis (PAGE). Given the high tolerance of SHAPE chemistry to different conditions, including applicability in live cells, we expect this technique to greatly facilitate deciphering the conformational dynamics underlying the various functions of the ε element, especially in concert with the recently solved three-dimensional structure of the free RNA.


Sujet(s)
Virus de l'hépatite B , Conformation d'acide nucléique , ARN viral , Virus de l'hépatite B/génétique , ARN viral/génétique , ARN viral/composition chimique , ARN viral/métabolisme , Acylation , Assemblage viral
3.
Nat Commun ; 15(1): 5725, 2024 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-38977675

RÉSUMÉ

The rational targeting of RNA with small molecules is hampered by our still limited understanding of RNA structural and dynamic properties. Most in silico tools for binding site identification rely on static structures and therefore cannot face the challenges posed by the dynamic nature of RNA molecules. Here, we present SHAMAN, a computational technique to identify potential small-molecule binding sites in RNA structural ensembles. SHAMAN enables exploring the conformational landscape of RNA with atomistic molecular dynamics simulations and at the same time identifying RNA pockets in an efficient way with the aid of probes and enhanced-sampling techniques. In our benchmark composed of large, structured riboswitches as well as small, flexible viral RNAs, SHAMAN successfully identifies all the experimentally resolved pockets and ranks them among the most favorite probe hotspots. Overall, SHAMAN sets a solid foundation for future drug design efforts targeting RNA with small molecules, effectively addressing the long-standing challenges in the field.


Sujet(s)
Simulation de dynamique moléculaire , Conformation d'acide nucléique , ARN viral , ARN , Sites de fixation , ARN/composition chimique , ARN/métabolisme , ARN viral/composition chimique , ARN viral/métabolisme , ARN viral/génétique , Riborégulateur , Bibliothèques de petites molécules/composition chimique , Praticiens de médecine traditionnelle
4.
Nature ; 631(8021): 670-677, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38987591

RÉSUMÉ

In all organisms, regulation of gene expression must be adjusted to meet cellular requirements and frequently involves helix-turn-helix (HTH) domain proteins1. For instance, in the arms race between bacteria and bacteriophages, rapid expression of phage anti-CRISPR (acr) genes upon infection enables evasion from CRISPR-Cas defence; transcription is then repressed by an HTH-domain-containing anti-CRISPR-associated (Aca) protein, probably to reduce fitness costs from excessive expression2-5. However, how a single HTH regulator adjusts anti-CRISPR production to cope with increasing phage genome copies and accumulating acr mRNA is unknown. Here we show that the HTH domain of the regulator Aca2, in addition to repressing Acr synthesis transcriptionally through DNA binding, inhibits translation of mRNAs by binding conserved RNA stem-loops and blocking ribosome access. The cryo-electron microscopy structure of the approximately 40 kDa Aca2-RNA complex demonstrates how the versatile HTH domain specifically discriminates RNA from DNA binding sites. These combined regulatory modes are widespread in the Aca2 family and facilitate CRISPR-Cas inhibition in the face of rapid phage DNA replication without toxic acr overexpression. Given the ubiquity of HTH-domain-containing proteins, it is anticipated that many more of them elicit regulatory control by dual DNA and RNA binding.


Sujet(s)
Bactériophages , Systèmes CRISPR-Cas , Cryomicroscopie électronique , Modèles moléculaires , Bactériophages/métabolisme , Bactériophages/génétique , Bactériophages/composition chimique , Systèmes CRISPR-Cas/génétique , ARN messager/génétique , ARN messager/métabolisme , ARN messager/composition chimique , Biosynthèse des protéines , Motifs à hélice-tour-hélice , Ribosomes/métabolisme , Ribosomes/composition chimique , Sites de fixation , Domaines protéiques , Protéines virales/métabolisme , Protéines virales/composition chimique , Protéines de liaison à l'ADN/métabolisme , Protéines de liaison à l'ADN/composition chimique , Clustered regularly interspaced short palindromic repeats/génétique , Protéines associées aux CRISPR/métabolisme , Protéines associées aux CRISPR/composition chimique , Conformation d'acide nucléique , Protéines de liaison à l'ARN/métabolisme , Protéines de liaison à l'ARN/composition chimique , ARN viral/métabolisme , ARN viral/génétique , ARN viral/composition chimique , Transcription génétique
5.
Sci Rep ; 14(1): 15145, 2024 07 02.
Article de Anglais | MEDLINE | ID: mdl-38956134

RÉSUMÉ

Hepatitis C virus (HCV) is a plus-stranded RNA virus that often chronically infects liver hepatocytes and causes liver cirrhosis and cancer. These viruses replicate their genomes employing error-prone replicases. Thereby, they routinely generate a large 'cloud' of RNA genomes (quasispecies) which-by trial and error-comprehensively explore the sequence space available for functional RNA genomes that maintain the ability for efficient replication and immune escape. In this context, it is important to identify which RNA secondary structures in the sequence space of the HCV genome are conserved, likely due to functional requirements. Here, we provide the first genome-wide multiple sequence alignment (MSA) with the prediction of RNA secondary structures throughout all representative full-length HCV genomes. We selected 57 representative genomes by clustering all complete HCV genomes from the BV-BRC database based on k-mer distributions and dimension reduction and adding RefSeq sequences. We include annotations of previously recognized features for easy comparison to other studies. Our results indicate that mainly the core coding region, the C-terminal NS5A region, and the NS5B region contain secondary structure elements that are conserved beyond coding sequence requirements, indicating functionality on the RNA level. In contrast, the genome regions in between contain less highly conserved structures. The results provide a complete description of all conserved RNA secondary structures and make clear that functionally important RNA secondary structures are present in certain HCV genome regions but are largely absent from other regions. Full-genome alignments of all branches of Hepacivirus C are provided in the supplement.


Sujet(s)
Séquence conservée , Génome viral , Hepacivirus , Conformation d'acide nucléique , ARN viral , Hepacivirus/génétique , ARN viral/génétique , ARN viral/composition chimique , Humains , Alignement de séquences , Hépatite C/virologie , Hépatite C/génétique
6.
Nat Commun ; 15(1): 5428, 2024 Jun 26.
Article de Anglais | MEDLINE | ID: mdl-38926367

RÉSUMÉ

Potential G-quadruplex sites have been identified in the genomes of DNA and RNA viruses and proposed as regulatory elements. The genus Orthoflavivirus contains arthropod-transmitted, positive-sense, single-stranded RNA viruses that cause significant human disease globally. Computational studies have identified multiple potential G-quadruplex sites that are conserved across members of this genus. Subsequent biophysical studies established that some G-quadruplexes predicted in Zika and tickborne encephalitis virus genomes can form and known quadruplex binders reduced viral yields from cells infected with these viruses. The susceptibility of RNA to degradation and the variability of loop regions have made structure determination challenging. Despite these difficulties, we report a high-resolution structure of the NS5-B quadruplex from the West Nile virus genome. Analysis reveals two stacked tetrads that are further stabilized by a stacked triad and transient noncanonical base pairing. This structure expands the landscape of solved RNA quadruplex structures and demonstrates the diversity and complexity of biological quadruplexes. We anticipate that the availability of this structure will assist in solving further viral RNA quadruplexes and provides a model for a conserved antiviral target in Orthoflavivirus genomes.


Sujet(s)
G-quadruplexes , Génome viral , ARN viral , Virus du Nil occidental , ARN viral/génétique , ARN viral/composition chimique , Virus du Nil occidental/génétique , Conformation d'acide nucléique , Modèles moléculaires , Humains , Appariement de bases
7.
J Phys Chem Lett ; 15(23): 6115-6125, 2024 Jun 13.
Article de Anglais | MEDLINE | ID: mdl-38830201

RÉSUMÉ

In the TAR RNA of immunodeficiency viruses, an allosteric communication exists between a distant loop and a bulge. The bulge interacts with the TAT protein vital for transactivating viral RNA, while the loop interacts with cyclin-T1, contingent on TAT binding. Through extensive atomistic and free energy simulations, we investigate TAR-TAT binding in nonpathogenic bovine immunodeficiency virus (BIV) and pathogenic human immunodeficiency virus (HIV). Thermodynamic analysis reveals enthalpically driven binding in BIV and entropically favored binding in HIV. The broader global basin in HIV is attributed to binding-induced loop fluctuation, corroborated by nuclear magnetic resonance (NMR), indicating classical entropic allostery onset. While this loop fluctuation affects the TAT binding affinity, it generates a binding-competent conformation that aids subsequent effector (cyclin-T1) binding. This study underscores how two structurally similar apo-RNA scaffolds adopt distinct conformational selection mechanisms to drive enthalpic and entropic allostery, influencing protein affinity in the signaling cascade.


Sujet(s)
Entropie , Conformation d'acide nucléique , Liaison aux protéines , Régulation allostérique , ARN viral/composition chimique , ARN viral/métabolisme , Simulation de dynamique moléculaire , Animaux , Thermodynamique , Bovins , Humains , Produits du gène tat du virus de l'immunodéficience humaine/composition chimique , Produits du gène tat du virus de l'immunodéficience humaine/métabolisme
8.
Nucleic Acids Res ; 52(13): 7971-7986, 2024 Jul 22.
Article de Anglais | MEDLINE | ID: mdl-38842942

RÉSUMÉ

We present the nuclear magnetic resonance spectroscopy (NMR) solution structure of the 5'-terminal stem loop 5_SL1 (SL1) of the SARS-CoV-2 genome. SL1 contains two A-form helical elements and two regions with non-canonical structure, namely an apical pyrimidine-rich loop and an asymmetric internal loop with one and two nucleotides at the 5'- and 3'-terminal part of the sequence, respectively. The conformational ensemble representing the averaged solution structure of SL1 was validated using NMR residual dipolar coupling (RDC) and small-angle X-ray scattering (SAXS) data. We show that the internal loop is the major binding site for fragments of low molecular weight. This internal loop of SL1 can be stabilized by an A12-C28 interaction that promotes the transient formation of an A+•C base pair. As a consequence, the pKa of the internal loop adenosine A12 is shifted to 5.8, compared to a pKa of 3.63 of free adenosine. Furthermore, applying a recently developed pH-differential mutational profiling (PD-MaP) approach, we not only recapitulated our NMR findings of SL1 but also unveiled multiple sites potentially sensitive to pH across the 5'-UTR of SARS-CoV-2.


Sujet(s)
Conformation d'acide nucléique , ARN viral , SARS-CoV-2 , SARS-CoV-2/génétique , SARS-CoV-2/composition chimique , SARS-CoV-2/métabolisme , ARN viral/composition chimique , ARN viral/génétique , ARN viral/métabolisme , Concentration en ions d'hydrogène , Humains , Diffusion aux petits angles , COVID-19/virologie , COVID-19/génétique , Spectroscopie par résonance magnétique , Diffraction des rayons X , Sites de fixation , Génome viral , Appariement de bases , Régions 5' non traduites , Modèles moléculaires
9.
Inorg Chem ; 63(26): 12342-12349, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38904258

RÉSUMÉ

As a typical RNA virus, the genetic information on HIV-1 is entirely stored in RNA. The reverse transcription activity of HIV-1 reverse transcriptase (RT) plays a crucial role in the replication and transmission of the virus. Non-nucleoside RT inhibitors (NNRTIs) block the function of RT by binding to the RNA binding site on RT, with very few targeting viral RNA. In this study, by transforming planar conjugated ligands into a spiro structure, we convert classical Ru(II) DNA intercalators into a nonintercalator. This enables selective binding to HIV-1 transactivation response (TAR) RNA on the outer side of nucleic acids through dual interactions involving hydrogen bonds and electrostatic attraction, effectively inhibiting HIV-1 RT and serving as a selective fluorescence probe for TAR RNA.


Sujet(s)
Transcriptase inverse du VIH , VIH-1 (Virus de l'Immunodéficience Humaine de type 1) , Inhibiteurs de la transcriptase inverse , Ruthénium , Transcriptase inverse du VIH/antagonistes et inhibiteurs , Transcriptase inverse du VIH/métabolisme , Inhibiteurs de la transcriptase inverse/composition chimique , Inhibiteurs de la transcriptase inverse/pharmacologie , Inhibiteurs de la transcriptase inverse/métabolisme , Ligands , VIH-1 (Virus de l'Immunodéficience Humaine de type 1)/enzymologie , VIH-1 (Virus de l'Immunodéficience Humaine de type 1)/effets des médicaments et des substances chimiques , Ruthénium/composition chimique , Ruthénium/pharmacologie , ARN viral/métabolisme , ARN viral/composition chimique , Spiranes/composition chimique , Spiranes/pharmacologie , Spiranes/métabolisme , Complexes de coordination/composition chimique , Complexes de coordination/pharmacologie , Complexes de coordination/synthèse chimique , Intercalants/composition chimique , Intercalants/pharmacologie , Structure moléculaire , Humains , Agents antiVIH/composition chimique , Agents antiVIH/pharmacologie , Répétition terminale longue du VIH , Sites de fixation
10.
Sci Rep ; 14(1): 14099, 2024 06 18.
Article de Anglais | MEDLINE | ID: mdl-38890308

RÉSUMÉ

We report the first cryoEM structure of the Hendra henipavirus nucleoprotein in complex with RNA, at 3.5 Å resolution, derived from single particle analysis of a double homotetradecameric RNA-bound N protein ring assembly exhibiting D14 symmetry. The structure of the HeV N protein adopts the common bi-lobed paramyxoviral N protein fold; the N-terminal and C-terminal globular domains are bisected by an RNA binding cleft containing six RNA nucleotides and are flanked by the N-terminal and C-terminal arms, respectively. In common with other paramyxoviral nucleocapsids, the lateral interface between adjacent Ni and Ni+1 protomers involves electrostatic and hydrophobic interactions mediated primarily through the N-terminal arm and globular domains with minor contribution from the C-terminal arm. However, the HeV N multimeric assembly uniquely identifies an additional protomer-protomer contact between the Ni+1 N-terminus and Ni-1 C-terminal arm linker. The model presented here broadens the understanding of RNA-bound paramyxoviral nucleocapsid architectures and provides a platform for further insight into the molecular biology of HeV, as well as the development of antiviral interventions.


Sujet(s)
Cryomicroscopie électronique , Virus Hendra , Nucléocapside , Nucléoprotéines , Virus Hendra/composition chimique , Nucléoprotéines/composition chimique , Nucléoprotéines/ultrastructure , Nucléoprotéines/métabolisme , Nucléocapside/composition chimique , Nucléocapside/ultrastructure , Nucléocapside/métabolisme , Modèles moléculaires , ARN viral/composition chimique , ARN viral/métabolisme , ARN viral/génétique , Protéines nucléocapside/composition chimique , Protéines nucléocapside/ultrastructure , Protéines nucléocapside/métabolisme
11.
Biochem Biophys Res Commun ; 725: 150252, 2024 Sep 17.
Article de Anglais | MEDLINE | ID: mdl-38878758

RÉSUMÉ

Reverse transcription of human immunodeficiency virus type 1 (HIV-1) initiates from the 3' end of human tRNALys3. The primer tRNALys3 is selectively packaged into the virus in the form of a complex with human lysyl-tRNA synthetase (LysRS). To facilitate reverse transcription initiation, part of the 5' leader (5'L) of HIV-1 genomic RNA (gRNA) evolves a tRNA anticodon-like element (TLE), which binds LysRS and releases tRNALys3 for primer annealing and reverse transcription initiation. Although TLE has been identified as a key element in 5'L responsible for LysRS binding, how the conformations and various hairpin structures of 5'L regulate 5'L-LysRS interaction is not fully understood. Here, these factors have been individually investigated using direct and competitive fluorescence anisotropy binding experiments. Our data showed that the conformation of 5'L significantly influences its binding affinity with LysRS. The 5'L conformation favoring gRNA dimerization and packaging exhibits much weaker binding affinity with LysRS compared to the alternative 5'L conformation that is not selected for packaging. Additionally, dimerization of 5'L impairs LysRS-5'L interaction. Furthermore, among various regions of 5'L, both the primer binding site/TLE domain and the stem-loop 3 are important for LysRS interaction, whereas the dimerization initiation site and the splicing donor plays a minor role. In contrast, the presence of the transacting responsive and the polyadenylation signal hairpins slightly inhibit LysRS binding. These findings reveal that the conformation and various regions of the 5'L of HIV-1 genome regulate its interaction with human LysRS and the reverse transcription primer release process.


Sujet(s)
Génome viral , VIH-1 (Virus de l'Immunodéficience Humaine de type 1) , Lysine-tRNA ligase , Conformation d'acide nucléique , Transcription inverse , Lysine-tRNA ligase/métabolisme , Lysine-tRNA ligase/composition chimique , Lysine-tRNA ligase/génétique , Humains , VIH-1 (Virus de l'Immunodéficience Humaine de type 1)/génétique , VIH-1 (Virus de l'Immunodéficience Humaine de type 1)/enzymologie , ARN viral/métabolisme , ARN viral/composition chimique , ARN viral/génétique , Régions 5' non traduites , Liaison aux protéines
12.
Nucleic Acids Res ; 52(10): e48, 2024 Jun 10.
Article de Anglais | MEDLINE | ID: mdl-38726866

RÉSUMÉ

Many of the biological functions performed by RNA are mediated by RNA-binding proteins (RBPs), and understanding the molecular basis of these interactions is fundamental to biology. Here, we present massively parallel RNA assay combined with immunoprecipitation (MPRNA-IP) for in vivo high-throughput dissection of RNA-protein interactions and describe statistical models for identifying RNA domains and parsing the structural contributions of RNA. By using custom pools of tens of thousands of RNA sequences containing systematically designed truncations and mutations, MPRNA-IP is able to identify RNA domains, sequences, and secondary structures necessary and sufficient for protein binding in a single experiment. We show that this approach is successful for multiple RNAs of interest, including the long noncoding RNA NORAD, bacteriophage MS2 RNA, and human telomerase RNA, and we use it to interrogate the hitherto unknown sequence or structural RNA-binding preferences of the DNA-looping factor CTCF. By integrating systematic mutation analysis with crosslinking immunoprecipitation, MPRNA-IP provides a novel high-throughput way to elucidate RNA-based mechanisms behind RNA-protein interactions in vivo.


Sujet(s)
Protéines de liaison à l'ARN , ARN , Humains , Sites de fixation , Facteur de liaison à la séquence CCCTC/métabolisme , Facteur de liaison à la séquence CCCTC/génétique , Immunoprécipitation , Levivirus/génétique , Levivirus/métabolisme , Mutation , Conformation d'acide nucléique , Liaison aux protéines , ARN/métabolisme , ARN/composition chimique , ARN/génétique , ARN long non codant/métabolisme , ARN long non codant/génétique , ARN long non codant/composition chimique , ARN viral/métabolisme , ARN viral/composition chimique , ARN viral/génétique , Protéines de liaison à l'ARN/métabolisme , Protéines de liaison à l'ARN/génétique , Protéines de liaison à l'ARN/composition chimique , Telomerase/métabolisme , Telomerase/génétique , Modèles statistiques
13.
Biochem Biophys Res Commun ; 719: 150103, 2024 Jul 30.
Article de Anglais | MEDLINE | ID: mdl-38761636

RÉSUMÉ

The RNA-binding protein PKR serves as a crucial antiviral innate immune factor that globally suppresses translation by sensing viral double-stranded RNA (dsRNA) and by phosphorylating the translation initiation factor eIF2α. Recent findings have unveiled that single-stranded RNAs (ssRNAs), including in vitro transcribed (IVT) mRNA, can also bind to and activate PKR. However, the precise mechanism underlying PKR activation by ssRNAs, remains incompletely understood. Here, we developed a NanoLuc Binary Technology (NanoBiT)-based in vitro PKR dimerization assay to assess the impact of ssRNAs on PKR dimerization. Our findings demonstrate that, akin to double-stranded polyinosinic:polycytidylic acid (polyIC), an encephalomyocarditis virus (EMCV) RNA, as well as NanoLuc luciferase (Nluc) mRNA, can induce PKR dimerization. Conversely, homopolymeric RNA lacking secondary structure fails to promote PKR dimerization, underscoring the significance of secondary structure in this process. Furthermore, adenovirus VA RNA 1, another ssRNA, impedes PKR dimerization by competing with Nluc mRNA. Additionally, we observed structured ssRNAs capable of forming G-quadruplexes induce PKR dimerization. Collectively, our results indicate that ssRNAs have the ability to either induce or inhibit PKR dimerization, thus representing potential targets for the development of antiviral and anti-inflammatory agents.


Sujet(s)
Virus de l'encéphalomyocardite , Multimérisation de protéines , ARN double brin , ARN viral , eIF-2 Kinase , eIF-2 Kinase/métabolisme , eIF-2 Kinase/composition chimique , Humains , ARN viral/métabolisme , ARN viral/génétique , ARN viral/composition chimique , Virus de l'encéphalomyocardite/génétique , ARN double brin/métabolisme , ARN double brin/composition chimique , Poly I-C/pharmacologie , Conformation d'acide nucléique
14.
Nucleic Acids Res ; 52(10): 6049-6065, 2024 Jun 10.
Article de Anglais | MEDLINE | ID: mdl-38709882

RÉSUMÉ

Severe fever with thrombocytopenia syndrome virus (SFTSV) is a human pathogen that is now endemic to several East Asian countries. The viral large (L) protein catalyzes viral transcription by stealing host mRNA caps via a process known as cap-snatching. Here, we establish an in vitro cap-snatching assay and present three high-quality electron cryo-microscopy (cryo-EM) structures of the SFTSV L protein in biologically relevant, transcription-specific states. In a priming-state structure, we show capped RNA bound to the L protein cap-binding domain (CBD). The L protein conformation in this priming structure is significantly different from published replication-state structures, in particular the N- and C-terminal domains. The capped-RNA is positioned in a way that it can feed directly into the RNA-dependent RNA polymerase (RdRp) ready for elongation. We also captured the L protein in an early-elongation state following primer-incorporation demonstrating that this priming conformation is retained at least in the very early stages of primer extension. This structural data is complemented by in vitro biochemical and cell-based assays. Together, these insights further our mechanistic understanding of how SFTSV and other bunyaviruses incorporate stolen host mRNA fragments into their viral transcripts thereby allowing the virus to hijack host cell translation machinery.


Sujet(s)
Interactions hôte-microbes , Modèles moléculaires , Phlebovirus , Coiffes des ARN , Transcription génétique , Humains , Cryomicroscopie électronique , Phlebovirus/composition chimique , Phlebovirus/génétique , Phlebovirus/ultrastructure , Conformation des protéines , Coiffes des ARN/composition chimique , Coiffes des ARN/métabolisme , Coiffes des ARN/ultrastructure , ARN viral/composition chimique , ARN viral/métabolisme , RNA replicase/métabolisme , Protéines virales/composition chimique , Protéines virales/métabolisme , Protéines virales/ultrastructure , Réplication virale/physiologie , Interactions hôte-microbes/physiologie
15.
Signal Transduct Target Ther ; 9(1): 140, 2024 May 29.
Article de Anglais | MEDLINE | ID: mdl-38811528

RÉSUMÉ

Previous studies through targeted mutagenesis of K-D-K-E motif have demonstrated that 2'-O-MTase activity is essential for efficient viral replication and immune evasion. However, the K-D-K-E catalytic motif of 2'-O-MTase is highly conserved across numerous viruses, including flaviviruses, vaccinia viruses, coronaviruses, and extends even to mammals. Here, we observed a stronger 2'-O-MTase activity in SARS-CoV-2 compared to SARS-CoV, despite the presence of a consistently active catalytic center. We further identified critical residues (Leu-36, Asn-138 and Ile-153) which served as determinants of discrepancy in 2'-O-MTase activity between SARS-CoV-2 and SARS-CoV. These residues significantly enhanced the RNA binding affinity of 2'-O-MTase and boosted its versatility toward RNA substrates. Of interest, a triple substitution (Leu36 → Ile36, Asn138 → His138, Ile153 → Leu153, from SARS-CoV-2 to SARS-CoV) within nsp16 resulted in a proportional reduction in viral 2'-O-methylation and impaired viral replication. Furthermore, it led to a significant upregulation of type I interferon (IFN-I) and proinflammatory cytokines both in vitro and vivo, relying on the cooperative sensing of melanoma differentiation-associated protein 5 (MDA5) and laboratory of genetics and physiology 2 (LGP2). In conclusion, our findings demonstrated that alterations in residues other than K-D-K-E of 2'-O-MTase may affect viral replication and subsequently influence pathogenesis. Monitoring changes in nsp16 residues is crucial as it may aid in identifying and assessing future alteration in viral pathogenicity resulting from natural mutations occurring in nsp16.


Sujet(s)
COVID-19 , Methyltransferases , SARS-CoV-2 , Réplication virale , Humains , SARS-CoV-2/génétique , SARS-CoV-2/enzymologie , SARS-CoV-2/pathogénicité , COVID-19/virologie , COVID-19/génétique , Methyltransferases/génétique , Methyltransferases/métabolisme , Methyltransferases/composition chimique , Réplication virale/génétique , ARN viral/génétique , ARN viral/métabolisme , ARN viral/composition chimique , Protéines virales non structurales/génétique , Protéines virales non structurales/composition chimique , Protéines virales non structurales/métabolisme , Virus du SRAS/génétique , Virus du SRAS/enzymologie , Virus du SRAS/pathogénicité , Animaux , Hélicase IFIH1 inductrice de l'interféron/génétique , Hélicase IFIH1 inductrice de l'interféron/métabolisme
16.
RNA Biol ; 21(1): 14-30, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-38797925

RÉSUMÉ

As positive-sense RNA viruses, the genomes of flaviviruses serve as the template for all stages of the viral life cycle, including translation, replication, and infectious particle production. Yet, they encode just 10 proteins, suggesting that the structure and dynamics of the viral RNA itself helps shepherd the viral genome through these stages. Herein, we highlight advances in our understanding of flavivirus RNA structural elements through the lens of their impact on the viral life cycle. We highlight how RNA structures impact translation, the switch from translation to replication, negative- and positive-strand RNA synthesis, and virion assembly. Consequently, we describe three major themes regarding the roles of RNA structure in flavivirus infections: 1) providing a layer of specificity; 2) increasing the functional capacity; and 3) providing a mechanism to support genome compaction. While the interactions described herein are specific to flaviviruses, these themes appear to extend more broadly across RNA viruses.


Sujet(s)
Flavivirus , Génome viral , Conformation d'acide nucléique , ARN viral , Réplication virale , Flavivirus/génétique , Flavivirus/physiologie , ARN viral/métabolisme , ARN viral/composition chimique , ARN viral/génétique , Humains , Infections à flavivirus/virologie , Assemblage viral , Animaux , Biosynthèse des protéines
17.
Nucleic Acids Res ; 52(10): 6066-6078, 2024 Jun 10.
Article de Anglais | MEDLINE | ID: mdl-38738640

RÉSUMÉ

The Trans-Activator Receptor (TAR) RNA, located at the 5'-end untranslated region (5' UTR) of the human immunodeficiency virus type 1 (HIV-1), is pivotal in the virus's life cycle. As the initial functional domain, it folds during the transcription of viral mRNA. Although TAR's role in recruiting the Tat protein for trans-activation is established, the detailed kinetic mechanisms at play during early transcription, especially at points of temporary transcriptional pausing, remain elusive. Moreover, the precise physical processes of transcriptional pause and subsequent escape are not fully elucidated. This study focuses on the folding kinetics of TAR and the biological implications by integrating computer simulations of RNA folding during transcription with nuclear magnetic resonance (NMR) spectroscopy data. The findings reveal insights into the folding mechanism of a non-native intermediate that triggers transcriptional pause, along with different folding pathways leading to transcriptional pause and readthrough. The profiling of the cotranscriptional folding pathway and identification of kinetic structural intermediates reveal a novel mechanism for viral transcriptional regulation, which could pave the way for new antiviral drug designs targeting kinetic cotranscriptional folding pathways in viral RNAs.


Sujet(s)
Répétition terminale longue du VIH , VIH-1 (Virus de l'Immunodéficience Humaine de type 1) , Pliage de l'ARN , ARN viral , Transcription génétique , VIH-1 (Virus de l'Immunodéficience Humaine de type 1)/génétique , Cinétique , ARN viral/métabolisme , ARN viral/composition chimique , ARN viral/génétique , Répétition terminale longue du VIH/génétique , Conformation d'acide nucléique , Humains , Régions 5' non traduites , Régulation de l'expression des gènes viraux , Spectroscopie par résonance magnétique
18.
Nucleic Acids Res ; 52(11): 6687-6706, 2024 Jun 24.
Article de Anglais | MEDLINE | ID: mdl-38783391

RÉSUMÉ

The single-stranded RNA genome of SARS-CoV-2 is highly structured. Numerous helical stem-loop structures interrupted by mismatch motifs are present in the functionally important 5'- and 3'-UTRs. These mismatches modulate local helical geometries and feature unusual arrays of hydrogen bonding donor and acceptor groups. However, their conformational and dynamical properties cannot be directly inferred from chemical probing and are difficult to predict theoretically. A mismatch motif (SL1-motif) consisting of three consecutive U•U base pairs is located in stem-loop 1 of the 3'-UTR. We combined NMR-spectroscopy and MD-simulations to investigate its structure and dynamics. All three U•U base pairs feature two direct hydrogen bonds and are as stable as Watson-Crick A:U base pairs. Plasmodium falciparum 25S rRNA contains a triple U•U mismatch motif (Pf-motif) differing from SL1-motif only with respect to the orientation of the two closing base pairs. Interestingly, while the geometry of the outer two U•U mismatches was identical in both motifs the preferred orientation of the central U•U mismatch was different. MD simulations and potassium ion titrations revealed that the potassium ion-binding mode to the major groove is connected to the different preferred geometries of the central base pair in the two motifs.


Sujet(s)
Régions 3' non traduites , Mésappariement de bases , Motifs nucléotidiques , ARN viral , SARS-CoV-2 , Humains , Appariement de bases , COVID-19/virologie , Génome viral , Liaison hydrogène , Simulation de dynamique moléculaire , Conformation d'acide nucléique , Plasmodium falciparum/génétique , ARN viral/composition chimique , ARN viral/génétique , SARS-CoV-2/génétique , SARS-CoV-2/composition chimique
19.
J Biol Chem ; 300(6): 107354, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38718862

RÉSUMÉ

The nucleocapsid protein (N) of SARS-CoV-2 is essential for virus replication, genome packaging, evading host immunity, and virus maturation. N is a multidomain protein composed of an independently folded monomeric N-terminal domain that is the primary site for RNA binding and a dimeric C-terminal domain that is essential for efficient phase separation and condensate formation with RNA. The domains are separated by a disordered Ser/Arg-rich region preceding a self-associating Leu-rich helix. Phosphorylation in the Ser/Arg region in infected cells decreases the viscosity of N:RNA condensates promoting viral replication and host immune evasion. The molecular level effect of phosphorylation, however, is missing from our current understanding. Using NMR spectroscopy and analytical ultracentrifugation, we show that phosphorylation destabilizes the self-associating Leu-rich helix 30 amino-acids distant from the phosphorylation site. NMR and gel shift assays demonstrate that RNA binding by the linker is dampened by phosphorylation, whereas RNA binding to the full-length protein is not significantly affected presumably due to retained strong interactions with the primary RNA-binding domain. Introducing a switchable self-associating domain to replace the Leu-rich helix confirms the importance of linker self-association to droplet formation and suggests that phosphorylation not only increases solubility of the positively charged elongated Ser/Arg region as observed in other RNA-binding proteins but can also inhibit self-association of the Leu-rich helix. These data highlight the effect of phosphorylation both at local sites and at a distant self-associating hydrophobic helix in regulating liquid-liquid phase separation of the entire protein.


Sujet(s)
Protéines de la nucléocapside des coronavirus , SARS-CoV-2 , Arginine/composition chimique , Arginine/métabolisme , Protéines de la nucléocapside des coronavirus/métabolisme , Protéines de la nucléocapside des coronavirus/composition chimique , Protéines de la nucléocapside des coronavirus/génétique , COVID-19/virologie , COVID-19/métabolisme , Spectroscopie par résonance magnétique , Nucléocapside/métabolisme , Nucléocapside/composition chimique , Protéines nucléocapside/métabolisme , Protéines nucléocapside/composition chimique , , Phosphoprotéines/métabolisme , Phosphoprotéines/composition chimique , Phosphoprotéines/génétique , Phosphorylation , Liaison aux protéines , ARN viral/métabolisme , ARN viral/composition chimique , ARN viral/génétique , SARS-CoV-2/métabolisme , SARS-CoV-2/composition chimique , Sérine/métabolisme , Sérine/composition chimique
20.
Biochemistry ; 63(10): 1235-1240, 2024 May 21.
Article de Anglais | MEDLINE | ID: mdl-38718213

RÉSUMÉ

Nonstructural protein 1 (nsp1) of the severe acute respiratory syndrome coronavirus (SCOV1 and SCOV2) acts as a host shutoff protein by blocking the translation of host mRNAs and triggering their decay. Surprisingly, viral RNA, which resembles host mRNAs containing a 5'-cap and a 3'-poly(A) tail, escapes significant translation inhibition and RNA decay, aiding viral propagation. Current literature proposes that, in SCOV2, nsp1 binds the viral RNA leader sequence, and the interaction may serve to distinguish viral RNA from host mRNA. However, a direct binding between SCOV1 nsp1 and the corresponding RNA leader sequence has not been established yet. Here, we show that SCOV1 nsp1 binds to the SCOV1 RNA leader sequence but forms multiple complexes at a high concentration of nsp1. These complexes are marginally different from complexes formed with SCOV2 nsp1. Finally, mutations of the RNA stem-loop did not completely abolish RNA binding by nsp1, suggesting that an RNA secondary structure is more important for binding than the sequence itself. Understanding the nature of binding of nsp1 to viral RNA will allow us to understand how this viral protein selectively suppresses host gene expression.


Sujet(s)
ARN viral , Protéines virales non structurales , ARN viral/métabolisme , ARN viral/génétique , ARN viral/composition chimique , Protéines virales non structurales/métabolisme , Protéines virales non structurales/composition chimique , Protéines virales non structurales/génétique , Liaison aux protéines , Humains , Virus du SRAS/génétique , Virus du SRAS/métabolisme , Régions 5' non traduites , SARS-CoV-2/génétique , SARS-CoV-2/métabolisme , RNA replicase
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE