Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 6.948
Filtrer
1.
Plant Mol Biol ; 114(4): 82, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38954114

RÉSUMÉ

Transcription factors in coordination with phytohormones form an intricate regulatory network modulating vital cellular mechanisms like development, growth and senescence in plants. In this study, we have functionally characterized the transcription factor OsNAC121 by developing gene silencing and overexpressing transgenic rice plants, followed by detailed analyses of the plant architecture. Transgenic lines exhibited remodelling in crown root development, lateral root structure and density, tiller height and number, panicle and grain morphologies, underpinning the imbalanced auxin: cytokinin ratio due to perturbed auxin transportation. Application of cytokinin, auxin and abscisic acid increased OsNAC121 gene expression nearly 17-, 6- and 91-folds, respectively. qRT-PCR results showed differential expressions of auxin and cytokinin pathway genes, implying their altered levels. A 47-fold higher expression level of OsNAC121 during milky stage in untransformed rice, compared to 14-day old shoot tissue, suggests its crucial role in grain filling; as evidenced by a large number of undeveloped grains produced by the gene silenced lines. Crippled gravitropic response by the transgenic plants indicates their impaired auxin transport. Bioinformatics revealed that OsNAC121 interacts with co-repressor (TOPLESS) proteins and forms a part of the inhibitor complex OsIAA10, an essential core component of auxin signalling pathway. Therefore, OsNAC121 emerges as an important regulator of various aspects of plant architecture through modulation of crosstalk between auxin and cytokinin, altering their concentration gradient in the meristematic zones, and consequently modifying different plant organogenesis processes.


Sujet(s)
Cytokinine , Régulation de l'expression des gènes végétaux , Acides indolacétiques , Oryza , Facteur de croissance végétal , Protéines végétales , Racines de plante , Végétaux génétiquement modifiés , Facteurs de transcription , Oryza/génétique , Oryza/croissance et développement , Oryza/métabolisme , Racines de plante/croissance et développement , Racines de plante/génétique , Racines de plante/métabolisme , Protéines végétales/génétique , Protéines végétales/métabolisme , Acides indolacétiques/métabolisme , Cytokinine/métabolisme , Facteur de croissance végétal/métabolisme , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme , Acide abscissique/métabolisme , Grains comestibles/génétique , Grains comestibles/croissance et développement , Grains comestibles/métabolisme
2.
Plant Cell Rep ; 43(7): 188, 2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38960994

RÉSUMÉ

KEY MESSAGE: BIG regulates ground tissue formative divisions by bridging the auxin gradient with SHR abundance in Arabidopsis roots. The formative divisions of cortex/endodermis initials (CEIs) and CEI daughter cells (CEIDs) in Arabidopsis roots are coordinately controlled by the longitudinal auxin gradient and the radial SHORT ROOT (SHR) abundance. However, the mechanism underlying this coordination remains poorly understood. In this study, we demonstrate that BIG regulates ground tissue formative divisions by bridging the auxin gradient with SHR abundance. Mutations in BIG gene repressed cell cycle progression, delaying the formative divisions within the ground tissues and impairing the establishment of endodermal and cortical identities. In addition, we uncovered auxin's suppressive effect on BIG expression, triggering CYCLIND6;1 (CYCD6;1) activation in an SHR-dependent fashion. Moreover, the degradation of RETINOBLASTOMA-RELATED (RBR) is jointly regulated by BIG and CYCD6;1. The loss of BIG function led to RBR protein accumulation, detrimentally impacting the SHR/SCARECROW (SCR) protein complex and the CEI/CEID formative divisions. Collectively, these findings shed light on a fundamental mechanism wherein BIG intricately coordinates the interplay between SHR/SCR and auxin, steering ground tissue patterning within Arabidopsis root tissue.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Régulation de l'expression des gènes végétaux , Acides indolacétiques , Racines de plante , Arabidopsis/génétique , Arabidopsis/métabolisme , Arabidopsis/cytologie , Acides indolacétiques/métabolisme , Protéines d'Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , Racines de plante/cytologie , Racines de plante/croissance et développement , Racines de plante/métabolisme , Racines de plante/génétique , Division cellulaire asymétrique , Mutation/génétique , Cellules souches/métabolisme , Cellules souches/cytologie , Cyclines/métabolisme , Cyclines/génétique , Protéines de liaison à la calmoduline , Facteurs de transcription
3.
Proc Natl Acad Sci U S A ; 121(28): e2402514121, 2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-38959034

RÉSUMÉ

Leaves of flowering plants are characterized by diverse venation patterns. Patterning begins with the selection of vein-forming procambial initial cells from within the ground meristem of a developing leaf, a process which is considered to be auxin-dependent, and continues until veins are anatomically differentiated with functional xylem and phloem. At present, the mechanisms responsible for leaf venation patterning are primarily characterized in the model eudicot Arabidopsis thaliana which displays a reticulate venation network. However, evidence suggests that vein development may proceed via a different mechanism in monocot leaves where venation patterning is parallel. Here, we employed Molecular Cartography, a multiplexed in situ hybridization technique, to analyze the spatiotemporal localization of a subset of auxin-related genes and candidate regulators of vein patterning in maize leaves. We show how different combinations of auxin influx and efflux transporters are recruited during leaf and vein specification and how major and minor vein ranks develop with distinct identities. The localization of the procambial marker PIN1a and the spatial arrangement of procambial initial cells that give rise to major and minor vein ranks further suggests that vein spacing is prepatterned across the medio-lateral leaf axis prior to accumulation of the PIN1a auxin transporter. In contrast, patterning in the adaxial-abaxial axis occurs progressively, with markers of xylem and phloem gradually becoming polarized as differentiation proceeds. Collectively, our data suggest that both lineage- and position-based mechanisms may underpin vein patterning in maize leaves.


Sujet(s)
Hybridation in situ , Acides indolacétiques , Feuilles de plante , Zea mays , Zea mays/génétique , Zea mays/croissance et développement , Feuilles de plante/croissance et développement , Feuilles de plante/métabolisme , Feuilles de plante/génétique , Acides indolacétiques/métabolisme , Régulation de l'expression des gènes végétaux , Protéines végétales/métabolisme , Protéines végétales/génétique , Xylème/métabolisme , Xylème/croissance et développement , Xylème/cytologie , Xylème/génétique
4.
Physiol Plant ; 176(4): e14385, 2024.
Article de Anglais | MEDLINE | ID: mdl-38956782

RÉSUMÉ

The main purpose of this study was to demonstrate that the course of anther development, including post-meiotic maturation, dehiscence and senescence, is ensured by the interdependencies between jasmonic acid (JA) and indole-3-acetic acid (IAA) in yellow lupin (Lupinus luteus L.). The concentration of JA peaked during anther dehiscence when IAA level was low, whereas the inverse relationship was specific to anther senescence. Cellular and tissue localization of JA and IAA, in conjunction with broad expression profile for genes involved in biosynthesis, signalling, response, and homeostasis under different conditions, allowed to complete and define the role of studied phytohormones during late anther development, as well as predict events triggered by them. The development/degeneration of septum and anther wall cells, dehydration of epidermis, and rupture of stomium may involve JA signalling, while the formation of secondary thickening in endothecial cell walls is rather JA independent. The IAA is involved in programmed cell death (PCD)-associated processes during anther senescence but does not exclude its participation in the anther dehiscence processes, mainly related to cell disintegration and degeneration. A detailed understanding of these multistage processes, especially at the level of phytohormonal interplay, can contribute to the effective control of male fertility, potentially revolutionizing the breeding of L. luteus.


Sujet(s)
Cyclopentanes , Fleurs , Régulation de l'expression des gènes végétaux , Acides indolacétiques , Lupinus , Oxylipines , Facteur de croissance végétal , Acides indolacétiques/métabolisme , Cyclopentanes/métabolisme , Oxylipines/métabolisme , Lupinus/métabolisme , Lupinus/croissance et développement , Lupinus/effets des médicaments et des substances chimiques , Fleurs/métabolisme , Fleurs/croissance et développement , Facteur de croissance végétal/métabolisme , Régulation de l'expression des gènes végétaux/effets des médicaments et des substances chimiques , Transduction du signal
5.
Sci Rep ; 14(1): 15309, 2024 07 03.
Article de Anglais | MEDLINE | ID: mdl-38961197

RÉSUMÉ

Axillary bud is an important aspect of plant morphology, contributing to the final tobacco yield. However, the mechanisms of axillary bud development in tobacco remain largely unknown. To investigate this aspect of tobacco biology, the metabolome and proteome of the axillary buds before and after topping were compared. A total of 569 metabolites were differentially abundant before and 1, 3, and 5 days after topping. KEGG analyses further revealed that the axillary bud was characterized by a striking enrichment of metabolites involved in flavonoid metabolism, suggesting a strong flavonoid biosynthesis activity in the tobacco axillary bud after topping. Additionally, 9035 differentially expressed proteins (DEPs) were identified before and 1, 3, and 5 days after topping. Subsequent GO and KEGG analyses revealed that the DEPs in the axillary bud were enriched in oxidative stress, hormone signal transduction, MAPK signaling pathway, and starch and sucrose metabolism. The integrated proteome and metabolome analysis revealed that the indole-3-acetic acid (IAA) alteration in buds control dormancy release and sustained growth of axillary bud by regulating proteins involved in carbohydrate metabolism, amino acid metabolism, and lipid metabolism. Notably, the proteins related to reactive oxygen species (ROS) scavenging and flavonoid biosynthesis were strongly negatively correlated with IAA content. These findings shed light on a critical role of IAA alteration in regulating axillary bud outgrowth, and implied a potential crosstalk among IAA alteration, ROS homeostasis, and flavonoid biosynthesis in tobacco axillary bud under topping stress, which could improve our understanding of the IAA alteration in axillary bud as an important regulator of axillary bud development.


Sujet(s)
Acides indolacétiques , Métabolome , Nicotiana , Protéines végétales , Protéome , Acides indolacétiques/métabolisme , Nicotiana/métabolisme , Nicotiana/croissance et développement , Protéome/métabolisme , Protéines végétales/métabolisme , Régulation de l'expression des gènes végétaux , Flavonoïdes/métabolisme , Fleurs/métabolisme , Fleurs/croissance et développement , Facteur de croissance végétal/métabolisme
6.
BMC Genomics ; 25(1): 666, 2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38961329

RÉSUMÉ

BACKGROUND: Pruning is an important cultivation management option that has important effects on peach yield and quality. However, the effects of pruning on the overall genetic and metabolic changes in peach leaves and fruits are poorly understood. RESULTS: The transcriptomic and metabolomic profiles of leaves and fruits from trees subjected to pruning and unpruning treatments were measured. A total of 20,633 genes and 622 metabolites were detected. Compared with those in the control, 1,127 differentially expressed genes (DEGs) and 77 differentially expressed metabolites (DEMs) were identified in leaves from pruned and unpruned trees (pdLvsupdL), whereas 423 DEGs and 29 DEMs were identified in fruits from the pairwise comparison pdFvsupdF. The content of three auxin analogues was upregulated in the leaves of pruned trees, the content of all flavonoids detected in the leaves decreased, and the expression of almost all genes involved in the flavonoid biosynthesis pathway decreased. The phenolic acid and amino acid metabolites detected in fruits from pruned trees were downregulated, and all terpenoids were upregulated. The correlation analysis revealed that DEGs and DEMs in leaves were enriched in tryptophan metabolism, auxin signal transduction, and flavonoid biosynthesis. DEGs and DEMs in fruits were enriched in flavonoid and phenylpropanoid biosynthesis, as well as L-glutamic acid biosynthesis. CONCLUSIONS: Pruning has different effects on the leaves and fruits of peach trees, affecting mainly the secondary metabolism and hormone signalling pathways in leaves and amino acid biosynthesis in fruits.


Sujet(s)
Fruit , Analyse de profil d'expression de gènes , Métabolomique , Feuilles de plante , Prunus persica , Feuilles de plante/métabolisme , Feuilles de plante/génétique , Prunus persica/génétique , Prunus persica/métabolisme , Prunus persica/croissance et développement , Fruit/métabolisme , Fruit/génétique , Fruit/croissance et développement , Régulation de l'expression des gènes végétaux , Métabolome , Transcriptome , Flavonoïdes/métabolisme , Acides indolacétiques/métabolisme
7.
Planta ; 260(2): 42, 2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38958765

RÉSUMÉ

MAIN CONCLUSION: Ambient concentrations of atmospheric nitrogen dioxide (NO2) inhibit the binding of PIF4 to promoter regions of auxin pathway genes to suppress hypocotyl elongation in Arabidopsis. Ambient concentrations (10-50 ppb) of atmospheric nitrogen dioxide (NO2) positively regulate plant growth to the extent that organ size and shoot biomass can nearly double in various species, including Arabidopsis thaliana (Arabidopsis). However, the precise molecular mechanism underlying NO2-mediated processes in plants, and the involvement of specific molecules in these processes, remain unknown. We measured hypocotyl elongation and the transcript levels of PIF4, encoding a bHLH transcription factor, and its target genes in wild-type (WT) and various pif mutants grown in the presence or absence of 50 ppb NO2. Chromatin immunoprecipitation assays were performed to quantify binding of PIF4 to the promoter regions of its target genes. NO2 suppressed hypocotyl elongation in WT plants, but not in the pifq or pif4 mutants. NO2 suppressed the expression of target genes of PIF4, but did not affect the transcript level of the PIF4 gene itself or the level of PIF4 protein. NO2 inhibited the binding of PIF4 to the promoter regions of two of its target genes, SAUR46 and SAUR67. In conclusion, NO2 inhibits the binding of PIF4 to the promoter regions of genes involved in the auxin pathway to suppress hypocotyl elongation in Arabidopsis. Consequently, PIF4 emerges as a pivotal participant in this regulatory process. This study has further clarified the intricate regulatory mechanisms governing plant responses to environmental pollutants, thereby advancing our understanding of how plants adapt to changing atmospheric conditions.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Facteurs de transcription à motif basique hélice-boucle-hélice , Régulation de l'expression des gènes végétaux , Hypocotyle , Dioxyde d'azote , Arabidopsis/génétique , Arabidopsis/croissance et développement , Arabidopsis/métabolisme , Hypocotyle/croissance et développement , Hypocotyle/génétique , Hypocotyle/effets des médicaments et des substances chimiques , Facteurs de transcription à motif basique hélice-boucle-hélice/métabolisme , Facteurs de transcription à motif basique hélice-boucle-hélice/génétique , Protéines d'Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme , Régulation de l'expression des gènes végétaux/effets des médicaments et des substances chimiques , Dioxyde d'azote/pharmacologie , Dioxyde d'azote/métabolisme , Régions promotrices (génétique)/génétique , Acides indolacétiques/métabolisme , Mutation
8.
Sci Rep ; 14(1): 15542, 2024 Jul 05.
Article de Anglais | MEDLINE | ID: mdl-38969698

RÉSUMÉ

There are numerous species in the Erwiniaceae family that are important for agricultural and clinical purposes. Here we described the Erwiniaceae bacterium PD-1 isolated from mushroom (Pleurotus eryngii) compost. Comparative genomic and phylogenetic analyses showed that the strain PD-1 was assigned to a new genus and species, Paramixta manurensis gen. nov., sp. nov. in the family Erwiniaceae. From the average amino acid index, we identified the five AroBEKAC proteins in the shikimate pathway as a minimal set of molecular markers to reconstruct the phylogenetic tree of the Erwiniaceae species. The strain PD-1 containing annotated genes for ubiquinone and menaquinone produced a higher level of ubiquinone (Q8) than demethylmenaquinone (DMK8) and menaquinone (MK8) in anaerobic condition compared to aerobic condition, as similarly did the reference strains from the genera Mixta and Erwinia. Results from fatty acid methyl ester and numerical analyses of strain PD-1 showed a similarity to species of the genera Mixta and Winslowiella. This study revealed that the strain's ability to utilize polyols, such as glycerol, erythritol, and D-arabitol, distinguished the strain PD-1 from the nearest relative and other type strains. The analyzed genetic markers and biochemical properties of the strain PD-1 suggest its potential role in the process of mushroom compost through the degradation of carbohydrates and polysaccharides derived from fungi and plants. Additionally, it can produce a high concentration of indole-3-acetic acid as a plant growth-promoting agent.


Sujet(s)
Agaricales , Acides indolacétiques , Phylogenèse , Agaricales/génétique , Agaricales/métabolisme , Agaricales/classification , Acides indolacétiques/métabolisme , Compostage , Microbiologie du sol , ARN ribosomique 16S/génétique
9.
BMC Biotechnol ; 24(1): 46, 2024 Jul 06.
Article de Anglais | MEDLINE | ID: mdl-38971771

RÉSUMÉ

BACKGROUND: Microbial growth during plant tissue culture is a common problem that causes significant losses in the plant micro-propagation system. Most of these endophytic microbes have the ability to propagate through horizontal and vertical transmission. On the one hand, these microbes provide a rich source of several beneficial metabolites. RESULTS: The present study reports on the isolation of fungal species from different in vitro medicinal plants (i.e., Breynia disticha major, Breynia disticha, Duranta plumieri, Thymus vulgaris, Salvia officinalis, Rosmarinus officinalis, and Ocimum basilicum l) cultures. These species were tested for their indole acetic acid (IAA) production capability. The most effective species for IAA production was that isolated from Thymus vulgaris plant (11.16 µg/mL) followed by that isolated from sweet basil plant (8.78 µg/mL). On screening for maximum IAA productivity, medium, "MOS + tryptophan" was chosen that gave 18.02 µg/mL. The macroscopic, microscopic examination and the 18S rRNA sequence analysis indicated that the isolate that given code T4 was identified as Neopestalotiopsis aotearoa (T4). The production of IAA by N. aotearoa was statistically modeled using the Box-Behnken design and optimized for maximum level, reaching 63.13 µg/mL. Also, IAA extract was administered to sweet basil seeds in vitro to determine its effect on plant growth traits. All concentrations of IAA extract boosted germination parameters as compared to controls, and 100 ppm of IAA extract exhibited a significant growth promotion effect for all seed germination measurements. CONCLUSIONS: The IAA produced from N. aotearoa (T4) demonstrated an essential role in the enhancement of sweet basil (Ocimum basilicum) growth, suggesting that it can be employed to promote the plant development while lowering the deleterious effect of using synthetic compounds in the environment.


Sujet(s)
Endophytes , Germination , Acides indolacétiques , Ocimum basilicum , Graines , Thymus (plante) , Ocimum basilicum/microbiologie , Thymus (plante)/composition chimique , Acides indolacétiques/métabolisme , Endophytes/physiologie , Endophytes/métabolisme , Endophytes/isolement et purification , Endophytes/génétique , Germination/effets des médicaments et des substances chimiques , Graines/microbiologie , Graines/croissance et développement , Graines/effets des médicaments et des substances chimiques
10.
Gut Microbes ; 16(1): 2374608, 2024.
Article de Anglais | MEDLINE | ID: mdl-38972055

RÉSUMÉ

With the increasing of aging population and the consumption of high-fat diets (HFD), the incidence of Alzheimer's disease (AD) has skyrocketed. Natural antioxidants show promising potential in the prevention of AD, as oxidative stress and neuroinflammation are two hallmarks of AD pathogenesis. Here, we showed that quinic acid (QA), a polyphenol derived from millet, significantly decreased HFD-induced brain oxidative stress and neuroinflammation and the levels of Aß and p-Tau. Examination of gut microbiota suggested the improvement of the composition of gut microbiota in HFD mice after QA treatment. Metabolomic analysis showed significant increase of gut microbial tryptophan metabolites indole-3-acetic acid (IAA) and kynurenic acid (KYNA) by QA. In addition, IAA and KYNA showed negative correlation with pro-inflammatory factors and AD indicators. Further experiments on HFD mice proved that IAA and KYNA could reproduce the effects of QA that suppress brain oxidative stress and inflammation and decrease the levels of of Aß and p-Tau. Transcriptomics analysis of brain after IAA administration revealed the inhibition of DR3/IKK/NF-κB signaling pathway by IAA. In conclusion, this study demonstrated that QA could counteract HFD-induced brain oxidative stress and neuroinflammation by regulating inflammatory DR3/IKK/NF-κB signaling pathway via gut microbial tryptophan metabolites.


Sujet(s)
Encéphale , Alimentation riche en graisse , Microbiome gastro-intestinal , Souris de lignée C57BL , Facteur de transcription NF-kappa B , Stress oxydatif , Acide quinique , Transduction du signal , Tryptophane , Animaux , Microbiome gastro-intestinal/effets des médicaments et des substances chimiques , Tryptophane/métabolisme , Alimentation riche en graisse/effets indésirables , Souris , Facteur de transcription NF-kappa B/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques , Mâle , Stress oxydatif/effets des médicaments et des substances chimiques , Acide quinique/analogues et dérivés , Acide quinique/pharmacologie , Acide quinique/métabolisme , Encéphale/métabolisme , Encéphale/effets des médicaments et des substances chimiques , Maladies neuro-inflammatoires/métabolisme , Maladies neuro-inflammatoires/traitement médicamenteux , Maladies neuro-inflammatoires/prévention et contrôle , I-kappa B Kinase/métabolisme , Maladie d'Alzheimer/métabolisme , Maladie d'Alzheimer/traitement médicamenteux , Maladie d'Alzheimer/prévention et contrôle , Acides indolacétiques/métabolisme , Acide kynurénique/métabolisme , Inflammation/métabolisme , Inflammation/traitement médicamenteux , Inflammation/prévention et contrôle
11.
BMC Plant Biol ; 24(1): 613, 2024 Jun 27.
Article de Anglais | MEDLINE | ID: mdl-38937682

RÉSUMÉ

BACKGROUND: Salt is an important factor that affects crop productivity. Plant hexokinases (HXKs) are key enzymes in the glycolytic pathway and sugar signaling transduction pathways of plants. In previous studies, we identified and confirmed the roles of GmHXK2 in salt tolerance. RESULTS: In this study, we analyzed the tissue-specific expression of GmHXK2 at different growth stages throughout the plant's life cycle. The results showed that GmHXK2 was expressed significantly in all tissues at vegetative stages, including germination and seedling. However, no expression was detected in the pods, and there was little expression in flowers during the later mature period. Arabidopsis plants overexpressing the GmHXK2 (OE) had more lateral roots. The OE seedlings also produced higher levels of auxin and ascorbic acid (AsA). Additionally, the expression levels of genes PMM, YUC4/YUC6/YUC8, and PIN/LAX1,LAX3, which are involved respectively in the synthesis of AsA and auxin, as well as polar auxin transport, were upregulated in OE plants. This upregulation occurred specifically under exogenous glucose treatment. AtHKT1, AtSOS1, and AtNHX1 were up-regulated in OE plants under salt stress, suggesting that GmHXK2 may modulate salt tolerance by maintaining ion balance within the cells and alleviating damage caused by salt stress. Additionally, we further confirmed the interaction between GmHXK2 and the protein GmPMM through yeast two-hybridization and bimolecular fluorescence complementation assays, respectively. CONCLUSION: The expression of GmHXK2 gene in plants is organ-specific and developmental stage specific. GmHXK2 not only regulates the synthesis of AsA and the synthesis and distribution of auxin, but also promotes root elongation and induces lateral root formation, potentially enhancing soil water absorption. This study reveals the crosstalk between sugar signaling and hormone signaling in plants, where GmHXK2 acts as a glucose sensor through its interaction with GmPMM, and sheds light on the molecular mechanism by which GmHXK2 gene is involved in salt tolerance in plants.


Sujet(s)
Glycine max , Acides indolacétiques , Tolérance au sel , Plant , Plant/génétique , Plant/physiologie , Plant/métabolisme , Plant/croissance et développement , Acides indolacétiques/métabolisme , Tolérance au sel/génétique , Glycine max/génétique , Glycine max/physiologie , Glycine max/métabolisme , Glycine max/croissance et développement , Acide ascorbique/métabolisme , Acide ascorbique/biosynthèse , Régulation de l'expression des gènes végétaux , Protéines végétales/génétique , Protéines végétales/métabolisme , Arabidopsis/génétique , Arabidopsis/physiologie , Arabidopsis/métabolisme , Végétaux génétiquement modifiés
12.
Proc Natl Acad Sci U S A ; 121(26): e2321877121, 2024 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-38905239

RÉSUMÉ

How tissue-level information encoded by fields of regulatory gene activity is translated into the patterns of cell polarity and growth that generate the diverse shapes of different species remains poorly understood. Here, we investigate this problem in the case of leaf shape differences between Arabidopsis thaliana, which has simple leaves, and its relative Cardamine hirsuta that has complex leaves divided into leaflets. We show that patterned expression of the transcription factor CUP-SHAPED COTYLEDON1 in C. hirsuta (ChCUC1) is a key determinant of leaf shape differences between the two species. Through inducible genetic perturbations, time-lapse imaging of growth, and computational modeling, we find that ChCUC1 provides instructive input into auxin-based leaf margin patterning. This input arises via transcriptional regulation of multiple auxin homeostasis components, including direct activation of WAG kinases that are known to regulate the polarity of PIN-FORMED auxin transporters. Thus, we have uncovered a mechanism that bridges biological scales by linking spatially distributed and species-specific transcription factor expression to cell-level polarity and growth, to shape diverse leaf forms.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Polarité de la cellule , Régulation de l'expression des gènes végétaux , Acides indolacétiques , Feuilles de plante , Acides indolacétiques/métabolisme , Feuilles de plante/croissance et développement , Feuilles de plante/génétique , Feuilles de plante/métabolisme , Polarité de la cellule/génétique , Arabidopsis/génétique , Arabidopsis/croissance et développement , Arabidopsis/métabolisme , Protéines d'Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , Cardamine/génétique , Cardamine/métabolisme , Cardamine/croissance et développement , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique
13.
Sci Rep ; 14(1): 14801, 2024 06 26.
Article de Anglais | MEDLINE | ID: mdl-38926600

RÉSUMÉ

Several factors, such as pruning and phytohormones, have demonstrated an influence on both the quantity and quality in the bell pepper. A factorial experiment using a completely randomized design was conducted on the Lumos yellow bell in a greenhouse. Treatments were the fruit pruning (0, 10, and 30%) and foliar application of phytohormones auxin (AUX) and gibberellic acid (GA3) at concentrations of 10 µM AUX, 10 µM GA3, 10 µM AUX + 10 µM GA3+, and 20 µM AUX + 10 µM GA3 along with controls. The plants were sprayed with phytohormones in four growth stages (1: flowering stage when 50% of the flowers were on the plant, 2: fruiting stage when 50% of the fruits were the size of peas, 3: fruit growth stage when 50% of the fruits had reached 50% of their growth, and 4: ripening stage when 50% of the fruits were at color break). The results of the present investigation showed that pruning rate of 30% yielded the highest flesh thickness and vitamin C content, decreased seed count and hastened fruit ripening. The use of GA3 along with AUX has been observed to augment diverse fruit quality characteristics. According to the results, the application of 10% pruning in combination with 20 µM AUX and 10 µM GA3 demonstrated the most significant levels of carotenoids, chlorophyll, and fruit length. The experimental group subjected to the combined treatment of 30% pruning and 10 µM AUX + 10 µM GA3 showed the most noteworthy levels of vitamin C, fruit weight, and fruit thickness. The groups that received the 10 µM GA3 and 20 µM AUX + 10 µM GA3 treatments exhibited the most favorable fruit flavor. According to the research results, the implementation of hormonal treatments 10 µM AUX and 10 µM AUX + 10 µM GA3 in combination with a 30% pruning strategy resulted in the most advantageous yield of bell peppers.


Sujet(s)
Capsicum , Fruit , Gibbérellines , Acides indolacétiques , Facteur de croissance végétal , Capsicum/croissance et développement , Capsicum/effets des médicaments et des substances chimiques , Capsicum/métabolisme , Facteur de croissance végétal/pharmacologie , Fruit/effets des médicaments et des substances chimiques , Fruit/croissance et développement , Fruit/métabolisme , Gibbérellines/pharmacologie , Gibbérellines/métabolisme , Acides indolacétiques/métabolisme , Acides indolacétiques/pharmacologie
14.
Genes (Basel) ; 15(6)2024 Jun 10.
Article de Anglais | MEDLINE | ID: mdl-38927696

RÉSUMÉ

Small auxin-upregulated RNAs (SAURs), as the largest family of early auxin-responsive genes, play important roles in plant growth and development processes, such as auxin signaling and transport, hypocotyl development, and tolerance to environmental stresses. However, the functions of few SAUR genes are known in the root development of sweet potatoes. In this study, an IbSAUR36 gene was cloned and functionally analyzed. The IbSAUR36 protein was localized to the nucleus and plasma membrane. The transcriptional level of this gene was significantly higher in the pencil root and leaf.This gene was strongly induced by indole-3-acetic acid (IAA), but it was downregulated under methyl-jasmonate(MeJA) treatment. The promoter of IbSAUR36 contained the core cis-elements for phytohormone responsiveness. Promoter ß-glucuronidase (GUS) analysis in Arabidopsis showed that IbSAUR36 is highly expressed in the young tissues of plants, such as young leaves, roots, and buds. IbSAUR36-overexpressing sweet potato roots were obtained by an efficient Agrobacterium rhizogenes-mediated root transgenic system. We demonstrated that overexpression of IbSAUR36 promoted the accumulation of IAA, upregulated the genes encoding IAA synthesis and its signaling pathways, and downregulated the genes encoding lignin synthesis and JA signaling pathways. Taken together, these results show that IbSAUR36 plays an important role in adventitious root (AR) development by regulating IAA signaling, lignin synthesis, and JA signaling pathways in transgenic sweet potatoes.


Sujet(s)
Régulation de l'expression des gènes végétaux , Acides indolacétiques , Ipomoea batatas , Protéines végétales , Racines de plante , Végétaux génétiquement modifiés , Ipomoea batatas/génétique , Ipomoea batatas/croissance et développement , Ipomoea batatas/métabolisme , Racines de plante/croissance et développement , Racines de plante/génétique , Racines de plante/métabolisme , Végétaux génétiquement modifiés/génétique , Végétaux génétiquement modifiés/croissance et développement , Acides indolacétiques/métabolisme , Acides indolacétiques/pharmacologie , Protéines végétales/génétique , Protéines végétales/métabolisme , Facteur de croissance végétal/pharmacologie , Facteur de croissance végétal/métabolisme , Facteur de croissance végétal/génétique , Régions promotrices (génétique) , Cyclopentanes/pharmacologie , Cyclopentanes/métabolisme
15.
Int J Mol Sci ; 25(12)2024 Jun 10.
Article de Anglais | MEDLINE | ID: mdl-38928114

RÉSUMÉ

UV-B is an important environmental factor that differentially affects plant growth and secondary metabolites. The effects of supplemental ultraviolet-B (sUV-B) exposure (T1, 1.40 kJ·m-2·day-1; T2, 2.81 kJ·m-2·day-1; and T3, 5.62 kJ·m-2·day-1) on the growth biomass, physiological characteristics, and secondary metabolites were studied. Our results indicated that leaf thickness was significantly (p < 0.05) reduced under T3 relative to the control (natural light exposure, CK); The contents of 6-BA and IAA were significantly reduced (p < 0.05); and the contents of ABA, 10-deacetylbaccatin III, and baccatin III were significantly (p < 0.05) increased under T1 and T2. The paclitaxel content was the highest (0.036 ± 0.0018 mg·g-1) under T3. The cephalomannine content was significantly increased under T1. Hmgr gene expression was upregulated under T1 and T3. The gene expressions of Bapt and Dbtnbt were significantly (p < 0.05) upregulated under sUV-B exposure, and the gene expressions of CoA, Ts, and Dbat were significantly (p < 0.05) downregulated. A correlation analysis showed that the 6-BA content had a significantly (p < 0.05) positive correlation with Dbat gene expression. The IAA content had a significantly (p < 0.05) positive correlation with the gene expression of Hmgr, CoA, Ts, and Dbtnbt. The ABA content had a significantly (p < 0.05) positive correlation with Bapt gene expression. Dbat gene expression had a significantly (p < 0.05) positive correlation with the 10-deacetylbaccatin content. Hmgr gene expression was positively correlated with the contents of baccatin III and cephalomannine. Bapt gene expression had a significantly (p < 0.01) positive correlation with the paclitaxel content. A factor analysis showed that the accumulation of paclitaxel content was promoted under T2, which was helpful in clarifying the accumulation of taxane compounds after sUV-B exposure.


Sujet(s)
Régulation de l'expression des gènes végétaux , Taxoïdes , Taxus , Rayons ultraviolets , Taxus/métabolisme , Taxus/génétique , Taxoïdes/métabolisme , Régulation de l'expression des gènes végétaux/effets des médicaments et des substances chimiques , Paclitaxel , Feuilles de plante/métabolisme , Feuilles de plante/effets des médicaments et des substances chimiques , Composés pontés/métabolisme , Acides indolacétiques/métabolisme , Facteur de croissance végétal/métabolisme , Facteur de croissance végétal/pharmacologie , Acide abscissique/métabolisme , Alcaloïdes
16.
Sci Rep ; 14(1): 14645, 2024 06 25.
Article de Anglais | MEDLINE | ID: mdl-38918548

RÉSUMÉ

Soil salinity is a major environmental stressor impacting global food production. Staple crops like wheat experience significant yield losses in saline environments. Bioprospecting for beneficial microbes associated with stress-resistant plants offers a promising strategy for sustainable agriculture. We isolated two novel endophytic bacteria, Bacillus cereus (ADJ1) and Priestia aryabhattai (ADJ6), from Agave desmettiana Jacobi. Both strains displayed potent plant growth-promoting (PGP) traits, such as producing high amounts of indole-3-acetic acid (9.46, 10.00 µgml-1), ammonia (64.67, 108.97 µmol ml-1), zinc solubilization (Index of 3.33, 4.22, respectively), ACC deaminase production and biofilm formation. ADJ6 additionally showed inorganic phosphate solubilization (PSI of 2.77), atmospheric nitrogen fixation, and hydrogen cyanide production. Wheat seeds primed with these endophytes exhibited enhanced germination, improved growth profiles, and significantly increased yields in field trials. Notably, both ADJ1 and ADJ6 tolerated high salinity (up to 1.03 M) and significantly improved wheat germination and seedling growth under saline stress, acting both independently and synergistically. This study reveals promising stress-tolerance traits within endophytic bacteria from A. desmettiana. Exploiting such under-explored plant microbiomes offers a sustainable approach to developing salt-tolerant crops, mitigating the impact of climate change-induced salinization on global food security.


Sujet(s)
Produits agricoles , Tolérance au sel , Triticum , Triticum/microbiologie , Triticum/croissance et développement , Produits agricoles/microbiologie , Produits agricoles/croissance et développement , Bacillus/isolement et purification , Bacillus/physiologie , Bacillus/métabolisme , Endophytes/physiologie , Salinité , Acides indolacétiques/métabolisme , Microbiologie du sol , Fixation de l'azote , Germination , Bacillus cereus/physiologie , Bacillus cereus/croissance et développement , Bacillus cereus/isolement et purification , Plant/microbiologie , Plant/croissance et développement , Carbon-carbon lyases/métabolisme
17.
Plant Signal Behav ; 19(1): 2365574, 2024 Dec 31.
Article de Anglais | MEDLINE | ID: mdl-38912872

RÉSUMÉ

The potential of rhizobacteria with plant growth promoting (PGP) traits in alleviating abiotic stresses, especially drought, is significant. However, their exploitation in the semi-arid regions of Ethiopian soils remains largely unexplored. This research aimed to isolate and evaluate the PGP potential of bacterial isolates collected from groundnut cultivation areas in Ethiopia. Multiple traits were assessed, including phosphate solubilization, indole-3-acetic acid (IAA) production, ammonia production, salt and heavy metal tolerance, drought tolerance, enzyme activities, hydrogen cyanide production, antibiotic resistance, and antagonistic activity against fungal pathogens. The identification of potent isolates was carried out using MALDI-TOF MS. Out of the 82 isolates, 63 were gram-negative and 19 were gram-positive. Among them, 19 isolates exhibited phosphate solubilization, with AAURB 34 demonstrating the highest efficiency, followed by AURB 12. Fifty-six isolates produce IAA in varying amounts and all isolates produce ammonia with AAURB12, AAURB19, and AAURB34 displaying strong production. Most isolates demonstrated tolerance to temperatures up to 40°C and salt concentrations up to 3%. Notably, AAURB12 and AAURB34 exhibited remarkable drought tolerance at an osmotic potential of -2.70 Mpa. When subjected to levels above 40%, the tested isolates moderately produced lytic enzymes and hydrogen cyanide. The isolates displayed resistance to antibiotics, except gentamicin, and all isolates demonstrated resistance to zinc, with 81-91% showing resistance to other heavy metals. AAURB34 and AAURB12 exhibited suppression against fungal pathogens, with percent inhibition of 38% and 46%, respectively. Using MALDI-TOF MS, the promising PGP isolates were identified as Bacillus megaterium, Bacillus pumilus, and Enterobacter asburiae. This study provides valuable insights into the potential of rhizobacteria as PGP agents for mitigating abiotic stresses and contribute to the understanding of sustainable agricultural practices in Ethiopia and similar regions facing comparable challenges.


Sujet(s)
Rhizosphère , Microbiologie du sol , Éthiopie , Stress physiologique , Acides indolacétiques/métabolisme , Sécheresses , Sol/composition chimique , Arachis/microbiologie , Arachis/croissance et développement , Arachis/métabolisme , Bactéries/métabolisme
18.
Plant Mol Biol ; 114(3): 70, 2024 Jun 06.
Article de Anglais | MEDLINE | ID: mdl-38842600

RÉSUMÉ

Melon (Cucumis melo L.) is an important horticultural and economic crop. ETHYLENE RESPONSE FACTOR1 (ERF1) plays an important role in regulating plant development, and the resistance to multiple biotic and abiotic stresses. In this study, developmental biology, molecular biology and biochemical assays were performed to explore the biological function of CmERF1 in melon. Abundant transcripts of CmERF1 were found in ovary at green-yellow bud (GYB) and rapid enlargement (ORE) stages. In CmERF1 promoter, the cis-regulatory elements for indoleacetic acid (IAA), methyl jasmonate (MeJA), salicylic acid (SA), abscisic acid (ABA), gibberellic acid (GA), light and low temperature responses were found. CmERF1 could be significantly induced by ethylene, IAA, MeJA, SA, ABA, and respond to continuous light and low temperature stresses in melon. Ectopic expression of CmERF1 increased the length of siliqua and carpopodium, and expanded the size of leaves in Arabidopsis. Knockdown of CmERF1 led to smaller ovary at anthesis, mature fruit and leaves in melon. In CmERF1-RNAi #2 plants, 75 genes were differently expressed compared with control, and the promoter regions of 28 differential expression genes (DEGs) contained the GCC-box (AGCCGCC) or DRE (A/GCCGAC) cis-acting elements of CmERF1. A homolog of cell division cycle protein 48 (CmCDC48) was proved to be the direct target of CmERF1 by the yeast one-hybrid assay and dual-luciferase (LUC) reporter (DLR) system. These results indicated that CmERF1 was able to promote the growth of fruits and leaves, and involved in multiple hormones and environmental signaling pathways in melon.


Sujet(s)
Cucumis melo , Cyclopentanes , Fruit , Régulation de l'expression des gènes végétaux , Facteur de croissance végétal , Feuilles de plante , Protéines végétales , Végétaux génétiquement modifiés , Cucumis melo/génétique , Cucumis melo/croissance et développement , Cucumis melo/métabolisme , Feuilles de plante/génétique , Feuilles de plante/métabolisme , Feuilles de plante/croissance et développement , Feuilles de plante/effets des médicaments et des substances chimiques , Protéines végétales/génétique , Protéines végétales/métabolisme , Facteur de croissance végétal/métabolisme , Facteur de croissance végétal/pharmacologie , Fruit/génétique , Fruit/croissance et développement , Fruit/métabolisme , Cyclopentanes/pharmacologie , Cyclopentanes/métabolisme , Régions promotrices (génétique) , Oxylipines/pharmacologie , Oxylipines/métabolisme , Acide abscissique/métabolisme , Acide abscissique/pharmacologie , Arabidopsis/génétique , Arabidopsis/croissance et développement , Arabidopsis/métabolisme , Acides indolacétiques/métabolisme , Acétates/pharmacologie , Acide salicylique/métabolisme , Acide salicylique/pharmacologie
19.
Curr Microbiol ; 81(7): 207, 2024 Jun 04.
Article de Anglais | MEDLINE | ID: mdl-38831110

RÉSUMÉ

The current study aimed to evaluate the plant growth-promoting (PGP) potential of endophytic strain Bacillus subtilis KU21 isolated from the roots of Rosmarinus officinalis. The strain exhibited multiple traits of plant growth promotion viz., phosphate (P) solubilization, nitrogen fixation, indole-3-acetic acid (IAA), siderophore, hydrogen cyanide (HCN), lytic enzymes production, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. The isolate also exhibited antagonistic activity against phytopathogenic fungi, i.e., Fusarium oxysporum, Fusarium graminiarum, and Rhizoctonia solani. The P-solubilization activity of B. subtilis KU21 was further elucidated via detection of glucose dehydrogenase (gdh) gene involved in the production of gluconic acid which is responsible for P-solubilization. Further, B. subtilis KU21 was evaluated for in vivo growth promotion studies of tomato (test crop) under net house conditions. A remarkable increase in seed germination, plant growth parameters, nutrient acquisition, and soil quality parameters (NPK) was observed in B. subtilis KU21-treated plants over untreated control. Hence, the proposed module could be recommended for sustainable tomato production in the Northwest Himalayan region without compromising soil health and fertility.


Sujet(s)
Bacillus subtilis , Endophytes , Racines de plante , Rosmarinus , Bacillus subtilis/génétique , Bacillus subtilis/croissance et développement , Bacillus subtilis/isolement et purification , Bacillus subtilis/métabolisme , Endophytes/isolement et purification , Endophytes/métabolisme , Endophytes/génétique , Endophytes/classification , Rosmarinus/composition chimique , Rosmarinus/microbiologie , Racines de plante/microbiologie , Racines de plante/croissance et développement , Solanum lycopersicum/microbiologie , Solanum lycopersicum/croissance et développement , Fusarium/croissance et développement , Fusarium/génétique , Fusarium/métabolisme , Microbiologie du sol , Développement des plantes , Germination , Acides indolacétiques/métabolisme , Rhizoctonia/croissance et développement , Rhizoctonia/effets des médicaments et des substances chimiques , Fixation de l'azote , Phosphates/métabolisme
20.
Plant Physiol Biochem ; 213: 108827, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38875779

RÉSUMÉ

Salvia miltiorrhiza is a widely utilized medicinal herb in China. Its roots serve as crucial raw materials for multiple drugs. The root morphology is essential for the quality of this herb, but little is known about the molecular mechanism underlying the root development in S. miltiorrhiza. Previous study reveals that the polar auxin transport is critical for lateral root development in S. miltiorrhiza. Whether the auxin efflux carriers PIN-FORMEDs (PINs) are involved in this process is worthy investigation. In this study, we identified nine SmPIN genes in S. miltiorrhiza, and their chromosome localization, physico-chemical properties, and phylogenetic relationship were analyzed. SmPINs were unevenly distributed across four chromosomes, and a variety of hormone responsive elements were detected in their promoter regions. The SmPIN proteins were divided into three branches according to the phylogenetic relationship. SmPINs with close evolutionary distance showed similar conserved motif features. The nine SmPINs showed distinct tissue-specific expression patterns and most of them were auxin-inducible genes. We generated SmPIN3 overexpression S. miltiorrhiza seedlings to investigate the function of SmPIN3 in the root development in this species. The results demonstrated that SmPIN3 regulated the root morphogenesis of S. miltiorrhiza by simultaneously affecting the lateral root development and the root anatomical structure. The root morphology, patterns of root xylem and phloem as well as the expressions of genes in the auxin signaling pathway all altered in the SmPIN3 overexpression lines. Our findings provide new insights for elucidating the regulatory roles of SmPINs in the auxin-mediated root development in S. miltiorrhiza.


Sujet(s)
Régulation de l'expression des gènes végétaux , Phylogenèse , Protéines végétales , Racines de plante , Salvia miltiorrhiza , Salvia miltiorrhiza/génétique , Salvia miltiorrhiza/métabolisme , Salvia miltiorrhiza/croissance et développement , Racines de plante/croissance et développement , Racines de plante/génétique , Racines de plante/anatomie et histologie , Racines de plante/métabolisme , Protéines végétales/génétique , Protéines végétales/métabolisme , Acides indolacétiques/métabolisme , Gènes de plante
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...