Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 9.870
Filtrer
1.
BMC Vet Res ; 20(1): 311, 2024 Jul 12.
Article de Anglais | MEDLINE | ID: mdl-38997753

RÉSUMÉ

BACKGROUND: The pleiotropic effects of the melanocortin system show promise in overcoming limitations associated with large variations in opioid analgesic effectiveness observed in equine practice. Of particular interest is variation in the melanocortin-1-receptor (MC1R) gene, which dictates pigment type expression through its epistatic interaction with the agouti signalling protein (ASIP) gene. MC1R has previously been implicated in opioid efficacy in other species; however, this relationship is yet to be explored in horses. In this study, analgesic effectiveness was scored (1-3) based on noted response to dura penetration during the performance of cerebrospinal fluid centisis after sedation and tested for association with known genetic regions responsible for pigmentation variation in horses. RESULTS: The chestnut phenotype was statistically significant (P < 0.05) in lowering analgesic effectiveness when compared to the bay base coat colour. The 11bp indel in ASIP known to cause the black base coat colour was not significant (P>0.05); however, six single nucleotide polymorphisms (SNPs) within the genomic region encoding the ASIP gene and one within MC1R were identified as being nominally significant (P<0.05) in association with opioid analgesic effectiveness. This included the location of the known e MC1R variant resulting in the chestnut coat colour. CONCLUSIONS: The current study provides promising evidence for important links between pigmentation genes and opioid effectiveness in horses. The application of an easily identifiable phenotype indicating variable sensitivity presents a promising opportunity for accessible precision medicine in the use of analgesics and warrants further investigation.


Sujet(s)
Analgésiques morphiniques , Polymorphisme de nucléotide simple , Récepteur de la mélanocortine de type 1 , Animaux , Equus caballus , Analgésiques morphiniques/pharmacologie , Analgésiques morphiniques/usage thérapeutique , Récepteur de la mélanocortine de type 1/génétique , Pigmentation/génétique , Protéine de signalisation Agouti/génétique , Mâle , Femelle , Phénotype , Liquide cérébrospinal/métabolisme
2.
Sci Signal ; 17(843): eadr3505, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38954639

RÉSUMÉ

Opioids trigger myelin insulation of reward circuit axons in a feedforward loop of addiction.


Sujet(s)
Analgésiques morphiniques , Humains , Analgésiques morphiniques/pharmacologie , Animaux , Axones/métabolisme , Axones/physiologie , Gaine de myéline/métabolisme , Récompense , Troubles liés aux opiacés
3.
Nature ; 631(8021): 686-693, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38961287

RÉSUMÉ

The µ-opioid receptor (µOR) is a well-established target for analgesia1, yet conventional opioid receptor agonists cause serious adverse effects, notably addiction and respiratory depression. These factors have contributed to the current opioid overdose epidemic driven by fentanyl2, a highly potent synthetic opioid. µOR negative allosteric modulators (NAMs) may serve as useful tools in preventing opioid overdose deaths, but promising chemical scaffolds remain elusive. Here we screened a large DNA-encoded chemical library against inactive µOR, counter-screening with active, G-protein and agonist-bound receptor to 'steer' hits towards conformationally selective modulators. We discovered a NAM compound with high and selective enrichment to inactive µOR that enhances the affinity of the key opioid overdose reversal molecule, naloxone. The NAM works cooperatively with naloxone to potently block opioid agonist signalling. Using cryogenic electron microscopy, we demonstrate that the NAM accomplishes this effect by binding a site on the extracellular vestibule in direct contact with naloxone while stabilizing a distinct inactive conformation of the extracellular portions of the second and seventh transmembrane helices. The NAM alters orthosteric ligand kinetics in therapeutically desirable ways and works cooperatively with low doses of naloxone to effectively inhibit various morphine-induced and fentanyl-induced behavioural effects in vivo while minimizing withdrawal behaviours. Our results provide detailed structural insights into the mechanism of negative allosteric modulation of the µOR and demonstrate how this can be exploited in vivo.


Sujet(s)
Cryomicroscopie électronique , Morphine , Naloxone , Récepteur mu , Récepteur mu/métabolisme , Récepteur mu/agonistes , Récepteur mu/composition chimique , Naloxone/pharmacologie , Animaux , Souris , Régulation allostérique/effets des médicaments et des substances chimiques , Humains , Morphine/pharmacologie , Morphine/composition chimique , Mâle , Modèles moléculaires , Analgésiques morphiniques/composition chimique , Analgésiques morphiniques/pharmacologie , Analgésiques morphiniques/métabolisme , Antagonistes narcotiques/pharmacologie , Antagonistes narcotiques/composition chimique , Ligands , Femelle , Bibliothèques de petites molécules/composition chimique , Bibliothèques de petites molécules/pharmacologie , Surdose d'opiacés/traitement médicamenteux , Cinétique , Fentanyl/composition chimique , Fentanyl/pharmacologie , Fentanyl/analogues et dérivés
4.
PLoS One ; 19(7): e0304068, 2024.
Article de Anglais | MEDLINE | ID: mdl-38991032

RÉSUMÉ

This work focuses on the δ receptor (DOR), a G protein-coupled receptor (GPCR) belonging to the opioid receptor group. DOR is expressed in numerous tissues, particularly within the nervous system. Our study explores computationally the receptor's interactions with various ligands, including opiates and opioid peptides. It elucidates how these interactions influence the δ receptor response, relevant in a wide range of health and pathological processes. Thus, our investigation aims to explore the significance of DOR as an incoming drug target for pain relief and neurodegenerative diseases and as a source for novel opioid non-narcotic analgesic alternatives. We analyze the receptor's structural properties and interactions using Molecular Dynamics (MD) simulations and Gaussian-accelerated MD across different functional states. To thoroughly assess the primary differences in the structural and conformational ensembles across our different simulated systems, we initiated our study with 1 µs of conventional Molecular Dynamics. The strategy was chosen to encompass the full activation cycle of GPCRs, as activation processes typically occur within this microsecond range. Following the cMD, we extended our study with an additional 100 ns of Gaussian accelerated Molecular Dynamics (GaMD) to enhance the sampling of conformational states. This simulation approach allowed us to capture a comprehensive range of dynamic interactions and conformational changes that are crucial for GPCR activation as influenced by different ligands. Our study includes comparing agonist and antagonist complexes to uncover the collective patterns of their functional states, regarding activation, blocking, and inactivation of DOR, starting from experimental data. In addition, we also explored interactions between agonist and antagonist molecules from opiate and opioid classifications to establish robust structure-activity relationships. These interactions have been systematically quantified using a Quantitative Structure-Activity Relationships (QSAR) model. This research significantly contributes to our understanding of this significant pharmacological target, which is emerging as an attractive subject for drug development.


Sujet(s)
Simulation de dynamique moléculaire , Récepteur delta , Récepteur delta/métabolisme , Récepteur delta/composition chimique , Humains , Ligands , Analgésiques morphiniques/pharmacologie , Analgésiques morphiniques/composition chimique , Liaison aux protéines , Conformation des protéines
5.
Molecules ; 29(13)2024 Jun 21.
Article de Anglais | MEDLINE | ID: mdl-38998913

RÉSUMÉ

This study explored the potential of a series of PZM21 analogues for pain treatment. Specifically, the hydroxyphenyl ring of PZM21 was replaced with a naphthyl ring, the thienyl ring was substituted with either a phenyl ring or furan rings, and the essential dimethylamine and urea groups were retained. These compounds aimed to enhance safety and minimize the adverse effects associated with opioid drugs. The research findings suggest that compound 6a does not induce ß-arrestin recruitment at low-nanomolar concentrations but exhibits significant analgesic effects in established mouse models. Compared to morphine, 6a shows advantages in alleviating respiratory depression and minimizing physical dependence. Molecular docking studies underscore the pivotal role of the D147 amino acid residue in the analgesic mechanism of 6a. Consequently, 6a is a compelling candidate for the development of safer opioid analgesics and warrants further attention.


Sujet(s)
Analgésiques morphiniques , Simulation de docking moléculaire , Récepteur mu , Récepteur mu/agonistes , Récepteur mu/métabolisme , Animaux , Souris , Analgésiques morphiniques/pharmacologie , Analgésiques morphiniques/composition chimique , Analgésiques morphiniques/synthèse chimique , Humains , Relation structure-activité , Douleur/traitement médicamenteux , Mâle , Structure moléculaire , Thiophènes , Urée/analogues et dérivés
6.
Int J Mol Sci ; 25(11)2024 May 23.
Article de Anglais | MEDLINE | ID: mdl-38891855

RÉSUMÉ

Melatonin influences arterial biomechanics, and its absence could cause remodeling of the arterial wall, leading to increased stiffness. Direct effects of fentanyl on the aortic wall have also been observed previously. This study aimed to evaluate in vitro the effects of fentanyl on aortic viscoelasticity in a rat model of melatonin deficiency and to test the hypothesis that melatonin deficiency leads to increased arterial wall stiffness. The viscoelasticity was estimated in strip preparations from pinealectomized (pin, melatonin deficiency) and sham-operated (sham, normal melatonin) adult rats using the forced oscillations method. In the untreated aortic wall pin, the viscoelasticity was not significantly altered. However, combined with 10-9 M fentanyl, the pin increased the natural frequency (f0) and modulus of elasticity (E') compared to the sham-operated. Independently, fentanyl treatment decreased f0 and E' compared separately to untreated sham and pin preparations. The effects of fentanyl were neither dose-dependent nor affected by naloxone, suggesting a non-opioid mechanism. Furthermore, an independent effect of naloxone was also detected in the normal rat aortic wall, resulting in reduced E'. Additional studies are needed that may improve the clinical decisions for pain management and anesthesia for certain patients with co-occurring chronic low levels of blood plasma melatonin and some diseases.


Sujet(s)
Aorte , Élasticité , Fentanyl , Mélatonine , Animaux , Fentanyl/pharmacologie , Mélatonine/pharmacologie , Rats , Mâle , Aorte/effets des médicaments et des substances chimiques , Aorte/métabolisme , Élasticité/effets des médicaments et des substances chimiques , Viscosité , Modèles animaux de maladie humaine , Rigidité vasculaire/effets des médicaments et des substances chimiques , Analgésiques morphiniques/pharmacologie , Naloxone/pharmacologie
7.
Mol Pain ; 20: 17448069241260348, 2024.
Article de Anglais | MEDLINE | ID: mdl-38828868

RÉSUMÉ

Hyperalgesic priming is a preclinical model of the transition from acute to chronic pain characterized by a leftward shift in the dose-response curve for and marked prolongation of prostaglandin E2 (PGE2)-induced mechanical hyperalgesia, in vivo. In vitro, priming in nociceptors is characterized by a leftward shift in the concentration dependence for PGE2-induced nociceptor sensitization. In the present in vitro study we tested the hypothesis that a mu-opioid receptor (MOR) agonist opioid analgesic, morphine, can produce priming by its direct action on nociceptors. We report that treatment of nociceptors with morphine, in vitro, produces a leftward shift in the concentration dependence for PGE2-induced nociceptor sensitization. Our findings support the suggestion that opioids act directly on nociceptors to induce priming.


Sujet(s)
Dinoprostone , Morphine , Nocicepteurs , Morphine/pharmacologie , Animaux , Nocicepteurs/effets des médicaments et des substances chimiques , Nocicepteurs/métabolisme , Dinoprostone/métabolisme , Dinoprostone/pharmacologie , Récepteur mu/métabolisme , Analgésiques morphiniques/pharmacologie , Mâle , Rats , Ganglions sensitifs des nerfs spinaux/effets des médicaments et des substances chimiques , Ganglions sensitifs des nerfs spinaux/métabolisme , Hyperalgésie/induit chimiquement , Hyperalgésie/traitement médicamenteux , Rat Sprague-Dawley , Relation dose-effet des médicaments
8.
Adv Neurobiol ; 35: 287-313, 2024.
Article de Anglais | MEDLINE | ID: mdl-38874729

RÉSUMÉ

Kratom (Mitragyna speciosa) is a substance derived from botanical compounds native to Southeast Asia. This substance has been cultivated predominantly in Thailand, Malaysia, Vietnam, and Myanmar, where it has historically been used in traditional medicine as a near panacea for several health problems. Such ritualistic use of kratom has been present for centuries; however, recreational use appears to have increased globally, especially in the United States. Pharmacodynamic and pharmacokinetic studies have found that kratom demonstrates a unique parabolic, dose-dependent pattern of effects ranging from stimulation to opioid and analgesic effects. Pharmacological research indicates that kratom is both a mu opioid receptor (µ-OR; MOR) and a kappa opioid receptor (κ-OR; KOR) agonist, which mediates its analgesic effects. Other research suggests that kratom may simultaneously act on dopaminergic and serotonergic receptors, which mediate its stimulant effects. This chapter reviews the literature related to the structural, functional, and cultural characteristics of kratom use. We begin with an overview of current and historical patterns of kratom, followed by a review of data on the pharmacodynamics and pharmacokinetics of kratom thus far.


Sujet(s)
Mitragyna , Extraits de plantes , Récepteur kappa , Humains , Extraits de plantes/pharmacologie , Animaux , Récepteur kappa/métabolisme , Récepteur kappa/agonistes , Analgésiques morphiniques/pharmacologie , Analgésiques morphiniques/usage thérapeutique , Récepteur mu/métabolisme , Récepteur mu/agonistes , Asie du Sud-Est
9.
Molecules ; 29(11)2024 Jun 03.
Article de Anglais | MEDLINE | ID: mdl-38893511

RÉSUMÉ

The opioid crisis in the United States is a significant public health issue, with a nearly threefold increase in opioid-related fatalities between 1999 and 2014. In response to this crisis, society has made numerous efforts to mitigate its impact. Recent advancements in understanding the structural intricacies of the κ opioid receptor (KOR) have improved our knowledge of how opioids interact with their receptors, triggering downstream signaling pathways that lead to pain relief. This review concentrates on the KOR, offering crucial structural insights into the binding mechanisms of both agonists and antagonists to the receptor. Through comparative analysis of the atomic details of the binding site, distinct interactions specific to agonists and antagonists have been identified. These insights not only enhance our understanding of ligand binding mechanisms but also shed light on potential pathways for developing new opioid analgesics with an improved risk-benefit profile.


Sujet(s)
Analgésiques morphiniques , Récepteur kappa , Récepteur kappa/métabolisme , Récepteur kappa/composition chimique , Humains , Analgésiques morphiniques/composition chimique , Analgésiques morphiniques/pharmacologie , Animaux , Sites de fixation , Ligands , Transduction du signal/effets des médicaments et des substances chimiques , Liaison aux protéines , Relation structure-activité , Antagonistes narcotiques/composition chimique , Douleur/traitement médicamenteux , Douleur/métabolisme
10.
Science ; 384(6700): eadn0886, 2024 Jun 07.
Article de Anglais | MEDLINE | ID: mdl-38843332

RÉSUMÉ

In addition to their intrinsic rewarding properties, opioids can also evoke aversive reactions that protect against misuse. Cellular mechanisms that govern the interplay between opioid reward and aversion are poorly understood. We used whole-brain activity mapping in mice to show that neurons in the dorsal peduncular nucleus (DPn) are highly responsive to the opioid oxycodone. Connectomic profiling revealed that DPn neurons innervate the parabrachial nucleus (PBn). Spatial and single-nuclei transcriptomics resolved a population of PBn-projecting pyramidal neurons in the DPn that express µ-opioid receptors (µORs). Disrupting µOR signaling in the DPn switched oxycodone from rewarding to aversive and exacerbated the severity of opioid withdrawal. These findings identify the DPn as a key substrate for the abuse liability of opioids.


Sujet(s)
Analgésiques morphiniques , Apprentissage par évitement , Troubles liés aux opiacés , Oxycodone , Noyau parabrachial , Cortex préfrontal , Récepteur mu , Récompense , Animaux , Mâle , Souris , Analgésiques morphiniques/pharmacologie , Connectome , Souris de lignée C57BL , Neurones/métabolisme , Neurones/physiologie , Troubles liés aux opiacés/métabolisme , Oxycodone/pharmacologie , Noyau parabrachial/métabolisme , Cortex préfrontal/métabolisme , Cortex préfrontal/effets des médicaments et des substances chimiques , Cortex préfrontal/physiologie , Cellules pyramidales/métabolisme , Récepteur mu/métabolisme , Récepteur mu/génétique , Syndrome de sevrage/métabolisme , Transcriptome
12.
Bioorg Chem ; 149: 107507, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38850778

RÉSUMÉ

Opioids are currently the most effective and widely used painkillers in the world. Unfortunately, the clinical use of opioid analgesics is limited by serious adverse effects. Many researchers have been working on designing and optimizing structures in search of novel µ opioid receptor(MOR) agonists with improved analgesic activity and reduced incidence of adverse effects. There are many strategies to develop MOR drugs, mainly focusing on new low efficacy agonists (potentially G protein biased agonists), MOR agonists acting on different Gα subtype, targeting opioid receptors in the periphery, acting on multiple opioid receptor, and targeting allosteric sites of opioid receptors, and others. This review summarizes the design methods, clinical applications, and structure-activity relationships of small-molecule agonists for MOR based on these different design strategies, providing ideas for the development of safer novel opioid ligands with therapeutic potential.


Sujet(s)
Analgésiques morphiniques , Récepteur mu , Récepteur mu/agonistes , Récepteur mu/métabolisme , Humains , Relation structure-activité , Analgésiques morphiniques/pharmacologie , Analgésiques morphiniques/composition chimique , Animaux , Structure moléculaire
13.
Behav Pharmacol ; 35(5): 263-268, 2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-38847464

RÉSUMÉ

This study determined whether consumption of a highly palatable liquid is a reliable measure of inflammatory pain and antinociception in male and female rats. After a 10-day acquisition period, the impact of intraplantar oil vs. complete Freund adjuvant (CFA) on consumption of vanilla-flavored Ensure was assessed, with a sipper tube height 12 or 19 cm above the floor. CFA significantly decreased Ensure consumption, which completely recovered within 4-7 days to levels in oil-treated controls; neither sex nor sipper tube height significantly influenced Ensure consumption. CFA also significantly suppressed Ensure consumption in rats not exposed to the 10-day acquisition period, but only in males. To test the predictive validity of Ensure consumption as a measure of pain, separate rats were pretreated with a vehicle, an opioid, a nonsteroidal anti-inflammatory drug, or a cannabinoid the day after CFA treatment. Morphine and ibuprofen significantly attenuated CFA-suppressed drinking in at least one sex, and tetrahydrocannabinol did not. Neither ibuprofen nor tetrahydrocannabinol significantly altered drinking in oil-injected, 'pain-free' controls, but morphine increased drinking. These results demonstrate that CFA decreases consumption of a highly palatable liquid regardless of previous exposure (training) to the consumption procedure, but only in males. Although standard analgesics attenuate CFA-suppressed drinking, nonspecific hyperphagic effects can confound the interpretation of results. Thus, consumption of a highly palatable liquid is not an optimal measure for candidate analgesic screening.


Sujet(s)
Adjuvant Freund , Douleur , Animaux , Mâle , Femelle , Rats , Douleur/traitement médicamenteux , Adjuvant Freund/pharmacologie , Morphine/pharmacologie , Analgésiques morphiniques/pharmacologie , Rat Sprague-Dawley , Ibuprofène/pharmacologie , Mesure de la douleur/méthodes , Anti-inflammatoires non stéroïdiens/pharmacologie , Dronabinol/pharmacologie , Facteurs sexuels
14.
Behav Pharmacol ; 35(5): 280-292, 2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-38900102

RÉSUMÉ

Drug dependence is a chronic brain disease characterized by craving and recurrent episodes of relapse. Tramadol HCl is a promising agent for withdrawal symptoms management, considering its relatively low abuse potential and safety. Oral administration, however, is not preferred in abstinence maintenance programs. Introducing an implantable, long-lasting formula is suggested to help outpatient abstinence programs achieve higher rates of treatment continuation. Tramadol implants (T350 and T650) were prepared on polycaprolactone polymer ribbons by the wet method. Male Wistar rats were adapted to heroin-conditioned place preference (CPP) at escalating doses (3-30 mg/kg, intraperitoneally, for 14 days). Implants were surgically implanted in the back skin of rats. After 14 days, the CPP score was recorded. Naloxone (1 mg/kg, intraperitoneally) was used to induce withdrawal on day 15, and symptoms were scored. Elevated plus maze and open field tests were performed for anxiety-related symptoms. Striata were analyzed for neurochemical changes reflected in dopamine, 3,4-dihydroxyphenyl acetic acid, gamma-aminobutyric acid, and serotonin levels. Brain oxidative changes including glutathione and lipid peroxides were assessed. The tramadol implants (T350 and T650) reduced heroin CPP and limited naloxone-induced withdrawal symptoms. The striata showed increased levels of 3,4-dihydroxyphenyl acetic acid, and serotonin and decreased levels of gamma-aminobutyric acid and dopamine after heroin withdrawal induction, which were reversed after implanting T350 and T650. Implants restore the brain oxidative state. Nonsignificant low naloxone-induced withdrawal score after the implant was used in naive subjects indicating low abuse potential of the implants. The presented tramadol implants were effective at diminishing heroin CPP and withdrawal in rats, suggesting further investigations for application in the management of opioid withdrawal.


Sujet(s)
Héroïne , Naloxone , Polyesters , Rat Wistar , Syndrome de sevrage , Tramadol , Animaux , Tramadol/pharmacologie , Syndrome de sevrage/traitement médicamenteux , Mâle , Héroïne/pharmacologie , Héroïne/administration et posologie , Rats , Polyesters/pharmacologie , Naloxone/pharmacologie , Implant pharmaceutique , Dépendance à l'héroïne/traitement médicamenteux , Relation dose-effet des médicaments , Analgésiques morphiniques/pharmacologie , Analgésiques morphiniques/administration et posologie , Antagonistes narcotiques/pharmacologie
15.
Sci Rep ; 14(1): 14715, 2024 06 26.
Article de Anglais | MEDLINE | ID: mdl-38926482

RÉSUMÉ

Opioids are the gold standard for the treatment of chronic pain but are limited by adverse side effects. In our earlier work, we showed that Heat shock protein 90 (Hsp90) has a crucial role in regulating opioid signaling in spinal cord; Hsp90 inhibition in spinal cord enhances opioid anti-nociception. Building on these findings, we injected the non-selective Hsp90 inhibitor KU-32 by the intrathecal route into male and female CD-1 mice, showing that morphine anti-nociceptive potency was boosted by 1.9-3.5-fold in acute and chronic pain models. At the same time, tolerance was reduced from 21-fold to 2.9 fold and established tolerance was rescued, while the potency of constipation and reward was unchanged. These results demonstrate that spinal Hsp90 inhibition can improve the therapeutic index of morphine. However, we also found that systemic non-selective Hsp90 inhibition blocked opioid pain relief. To avoid this effect, we used selective small molecule inhibitors and CRISPR gene editing to identify 3 Hsp90 isoforms active in spinal cord (Hsp90α, Hsp90ß, and Grp94) while only Hsp90α was active in brain. We thus hypothesized that a systemically delivered selective inhibitor to Hsp90ß or Grp94 could selectively inhibit spinal cord Hsp90 activity, resulting in enhanced opioid therapy. We tested this hypothesis using intravenous delivery of KUNB106 (Hsp90ß) and KUNG65 (Grp94), showing that both drugs enhanced morphine anti-nociceptive potency while rescuing tolerance. Together, these results suggest that selective inhibition of spinal cord Hsp90 isoforms is a novel, translationally feasible strategy to improve the therapeutic index of opioids.


Sujet(s)
Analgésiques morphiniques , Protéines du choc thermique HSP90 , Morphine , Moelle spinale , Animaux , Protéines du choc thermique HSP90/antagonistes et inhibiteurs , Protéines du choc thermique HSP90/métabolisme , Moelle spinale/métabolisme , Moelle spinale/effets des médicaments et des substances chimiques , Souris , Analgésiques morphiniques/pharmacologie , Mâle , Femelle , Morphine/pharmacologie , Isoformes de protéines/métabolisme , Tolérance aux médicaments , Douleur chronique/traitement médicamenteux , Douleur chronique/métabolisme , Modèles animaux de maladie humaine , Injections rachidiennes
16.
Nature ; 630(8017): 677-685, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38839962

RÉSUMÉ

All drugs of abuse induce long-lasting changes in synaptic transmission and neural circuit function that underlie substance-use disorders1,2. Another recently appreciated mechanism of neural circuit plasticity is mediated through activity-regulated changes in myelin that can tune circuit function and influence cognitive behaviour3-7. Here we explore the role of myelin plasticity in dopaminergic circuitry and reward learning. We demonstrate that dopaminergic neuronal activity-regulated myelin plasticity is a key modulator of dopaminergic circuit function and opioid reward. Oligodendroglial lineage cells respond to dopaminergic neuronal activity evoked by optogenetic stimulation of dopaminergic neurons, optogenetic inhibition of GABAergic neurons, or administration of morphine. These oligodendroglial changes are evident selectively within the ventral tegmental area but not along the axonal projections in the medial forebrain bundle nor within the target nucleus accumbens. Genetic blockade of oligodendrogenesis dampens dopamine release dynamics in nucleus accumbens and impairs behavioural conditioning to morphine. Taken together, these findings underscore a critical role for oligodendrogenesis in reward learning and identify dopaminergic neuronal activity-regulated myelin plasticity as an important circuit modification that is required for opioid reward.


Sujet(s)
Analgésiques morphiniques , Gaine de myéline , Voies nerveuses , Plasticité neuronale , Récompense , Aire tegmentale ventrale , Animaux , Femelle , Mâle , Souris , Analgésiques morphiniques/pharmacologie , Dopamine/métabolisme , Neurones dopaminergiques/effets des médicaments et des substances chimiques , Neurones dopaminergiques/métabolisme , Neurones GABAergiques/métabolisme , Neurones GABAergiques/effets des médicaments et des substances chimiques , Souris de lignée C57BL , Morphine/pharmacologie , Gaine de myéline/effets des médicaments et des substances chimiques , Gaine de myéline/métabolisme , Plasticité neuronale/effets des médicaments et des substances chimiques , Plasticité neuronale/physiologie , Noyau accumbens/cytologie , Noyau accumbens/métabolisme , Noyau accumbens/physiologie , Noyau accumbens/effets des médicaments et des substances chimiques , Oligodendroglie/métabolisme , Oligodendroglie/cytologie , Oligodendroglie/effets des médicaments et des substances chimiques , Optogénétique , Aire tegmentale ventrale/physiologie , Aire tegmentale ventrale/cytologie , Aire tegmentale ventrale/effets des médicaments et des substances chimiques , Voies nerveuses/effets des médicaments et des substances chimiques , Lignage cellulaire
17.
J Med Chem ; 67(12): 10447-10463, 2024 Jun 27.
Article de Anglais | MEDLINE | ID: mdl-38869493

RÉSUMÉ

In recent years, synthetic opioids have emerged as a predominant cause of drug-overdose-related fatalities, causing the "opioid crisis." To design safer therapeutic agents, we accidentally discovered µ-opioid receptor (MOR) antagonists based on fentanyl with a relatively uncomplicated chemical composition that potentiates structural modifications. Here, we showed the development of novel atropisomeric fentanyl analogues that exhibit more potent antagonistic activity against MOR than naloxone, a morphinan MOR antagonist. Derivatives displaying stable axial chirality were synthesized based on the amide structure of fentanyl. The aS- and aR-enantiomers exerted antagonistic and agonistic effects on the MOR, respectively, and each atropisomer interacted with the MOR by assuming a distinct binding mode through molecular docking. These findings suggest that introducing atropisomerism into fentanyl may serve as a key feature in the molecular design of future MOR antagonists to help mitigate the opioid crisis.


Sujet(s)
Fentanyl , Récepteur mu , Récepteur mu/antagonistes et inhibiteurs , Récepteur mu/métabolisme , Fentanyl/pharmacologie , Fentanyl/analogues et dérivés , Fentanyl/composition chimique , Stéréoisomérie , Humains , Simulation de docking moléculaire , Relation structure-activité , Animaux , Antagonistes narcotiques/composition chimique , Antagonistes narcotiques/pharmacologie , Conformation moléculaire , Analgésiques morphiniques/pharmacologie , Analgésiques morphiniques/composition chimique , Analgésiques morphiniques/synthèse chimique , Cellules CHO , Cricetulus
18.
Behav Pharmacol ; 35(5): 269-279, 2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-38847447

RÉSUMÉ

Excessive prescribing and misuse of prescription opioids, such as oxycodone, significantly contributed to the current opioid crisis. Although oxycodone is typically consumed orally by humans, parenteral routes of administration have primarily been used in preclinical models of oxycodone dependence. To address this issue, more recent studies have used oral self-administration procedures to study oxycodone seeking and withdrawal in rodents. Behavioral differences, however, following oral oxycodone intake versus parenteral oxycodone administration remain unclear. Thus, the goal of the current studies was to compare anxiety- and withdrawal-like behaviors using established opioid dependence models of either home cage oral intake of oxycodone (0.5 mg/ml) or repeated subcutaneous (s.c.) injections of oxycodone (10 mg/kg) in male and female mice. Here, mice received 10 days of oral or s.c. oxycodone administration, and following 72 h of forced abstinence, anxiety- and withdrawal-like behaviors were measured using elevated zero maze, open field, and naloxone-induced precipitated withdrawal procedures. Global withdrawal scores were increased to a similar degree following oral and s.c. oxycodone use, while both routes of oxycodone administration had minimal effects on anxiety-like behaviors. When examining individual withdrawal-like behaviors, mice receiving s.c. oxycodone exhibited more paw tremors and jumps during naloxone-induced precipitated withdrawal compared with oral oxycodone mice. These results indicate that both models of oxycodone administration are sufficient to elevate global withdrawal scores, but, when compared with oral consumption, s.c. oxycodone injections yielded more pronounced effects on some withdrawal-like behaviors.


Sujet(s)
Analgésiques morphiniques , Anxiété , Souris de lignée C57BL , Oxycodone , Syndrome de sevrage , Animaux , Oxycodone/pharmacologie , Oxycodone/administration et posologie , Mâle , Femelle , Administration par voie orale , Injections sous-cutanées , Souris , Analgésiques morphiniques/pharmacologie , Analgésiques morphiniques/administration et posologie , Troubles liés aux opiacés , Naloxone/pharmacologie , Naloxone/administration et posologie , Comportement animal/effets des médicaments et des substances chimiques , Antagonistes narcotiques/pharmacologie , Antagonistes narcotiques/administration et posologie
19.
Int J Nanomedicine ; 19: 4759-4777, 2024.
Article de Anglais | MEDLINE | ID: mdl-38828199

RÉSUMÉ

Background: Opioids are irreplaceable analgesics owing to the lack of alternative analgesics that offer opioid-like pain relief. However, opioids have many undesirable central side effects. Restricting opioids to peripheral opioid receptors could reduce those effects while maintaining analgesia. Methods: To achieve this goal, we developed Tet1-LNP (morphine), a neural-targeting lipid nanoparticle encapsulating morphine that could specifically activate the peripheral opioid receptor in the dorsal root ganglion (DRG) and significantly reduce the side effects caused by the activation of opioid receptors in the brain. Tet1-LNP (morphine) were successfully prepared using the thin-film hydration method. In vitro, Tet1-LNP (morphine) uptake was assessed in differentiated neuron-like PC-12 cells and dorsal root ganglion (DRG) primary cells. The uptake of Tet1-LNP (morphine) in the DRGs and the brain was assessed in vivo. Von Frey filament and Hargreaves tests were used to assess the antinociception of Tet1-LNP (morphine) in the chronic constriction injury (CCI) neuropathic pain model. Morphine concentration in blood and brain were evaluated using ELISA. Results: Tet1-LNP (morphine) had an average size of 131 nm. Tet1-LNP (morphine) showed high cellular uptake and targeted DRG in vitro. CCI mice treated with Tet1-LNP (morphine) experienced prolonged analgesia for nearly 32 h compared with 3 h with free morphine (p < 0.0001). Notably, the brain morphine concentration in the Tet1-LNP (morphine) group was eight-fold lower than that in the morphine group (p < 0.0001). Conclusion: Our study presents a targeted lipid nanoparticle system for peripheral neural delivery of morphine. We anticipate Tet1-LNP (morphine) will offer a safe formulation for chronic neuropathic pain treatment, and promise further development for clinical applications.


Sujet(s)
Analgésiques morphiniques , Ganglions sensitifs des nerfs spinaux , Morphine , Nanoparticules , Animaux , Morphine/administration et posologie , Morphine/pharmacocinétique , Morphine/composition chimique , Morphine/pharmacologie , Ganglions sensitifs des nerfs spinaux/effets des médicaments et des substances chimiques , Ganglions sensitifs des nerfs spinaux/métabolisme , Nanoparticules/composition chimique , Rats , Cellules PC12 , Analgésiques morphiniques/administration et posologie , Analgésiques morphiniques/pharmacocinétique , Analgésiques morphiniques/composition chimique , Analgésiques morphiniques/pharmacologie , Mâle , Névralgie/traitement médicamenteux , Souris , Lipides/composition chimique , Protéines proto-oncogènes/métabolisme , Nerfs périphériques/effets des médicaments et des substances chimiques , Mixed function oxygenases/métabolisme , Protéines de liaison à l'ADN , Liposomes
20.
J Chem Inf Model ; 64(13): 5273-5284, 2024 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-38921627

RÉSUMÉ

Toll-like receptor 4 (TLR4) is pivotal as an innate immune receptor, playing a critical role in mediating neuropathic pain and drug addiction through its regulation of the neuroinflammatory response. The nonclassical (+)-opioid isomers represent a unique subset of TLR4 antagonists known for their effective blood-brain barrier permeability. Despite growing interest in the structure-activity relationship of these (+)-opioid-based TLR4 antagonists, the specific impact of heteroatoms on their TLR4 antagonistic activities has not been fully explored. This study investigated the influence of the hydroxyl group at C14 in six (+)-opioid TLR4 antagonists (1-6) using wet-lab experiments and in silico simulations. The corresponding C14-deoxy derivatives (7-12) were synthesized, and upon comparison with their corresponding counterparts (1-6), it was discovered that their TLR4 antagonistic activities were significantly diminished. Molecular dynamics simulations showed that the (+)-opioid TLR4 antagonists (1-6) possessed more negative binding free energies to the TLR4 coreceptor MD2, which was responsible for ligand recognition. This was primarily attributed to the formation of a hydrogen bond between the hydroxyl group at the C-14 position of the antagonists (1-6) and the R90 residue of MD2 during the binding process. Such an interaction facilitated the entry and subsequent binding of these molecules within the MD2 cavity. In contrast, the C14-deoxy derivatives (7-12), lacking the hydroxyl group at the C-14 position, missed this crucial hydrogen bond interaction with the R90 residue of MD2, leading to their egression from the MD2 cavity during simulations. This study underscores the significant role of the C14 hydroxyl moiety in enhancing the effectiveness of (+)-opioid TLR4 antagonists, which provides insightful guidance for designing future (+)-isomer opioid-derived TLR4 antagonists.


Sujet(s)
Simulation de dynamique moléculaire , Récepteur de type Toll-4 , Récepteur de type Toll-4/antagonistes et inhibiteurs , Récepteur de type Toll-4/métabolisme , Analgésiques morphiniques/composition chimique , Analgésiques morphiniques/pharmacologie , Humains , Relation structure-activité , Simulation de docking moléculaire , Antigène lymphocytaire-96/antagonistes et inhibiteurs , Antigène lymphocytaire-96/métabolisme , Antigène lymphocytaire-96/composition chimique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...