Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 1.332
Filtrer
1.
Cell Mol Life Sci ; 81(1): 293, 2024 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-38976012

RÉSUMÉ

The function of astrocytes in response to gut microbiota-derived signals has an important role in the pathophysiological processes of central nervous system (CNS) diseases. However, the specific effects of microbiota-derived metabolites on astrocyte activation have not been elucidated yet. Experimental autoimmune encephalomyelitis (EAE) was induced in female C57BL/6 mice as a classical MS model. The alterations of gut microbiota and the levels of short-chain fatty acids (SCFAs) were assessed after EAE induction. We observed that EAE mice exhibit low levels of Allobaculum, Clostridium_IV, Clostridium_XlVb, Lactobacillus genera, and microbial-derived SCFAs metabolites. SCFAs supplementation suppressed astrocyte activation by increasing the level of tryptophan (Trp)-derived AhR ligands that activating the AhR. The beneficial effects of SCFAs supplementation on the clinical scores, histopathological alterations, and the blood brain barrier (BBB)-glymphatic function were abolished by intracisterna magna injection of AAV-GFAP-shAhR. Moreover, SCFAs supplementation suppressed the loss of AQP4 polarity within astrocytes in an AhR-dependent manner. Together, SCFAs potentially suppresses astrocyte activation by amplifying Trp-AhR-AQP4 signaling in EAE mice. Our study demonstrates that SCFAs supplementation may serve as a viable therapy for inflammatory disorders of the CNS.


Sujet(s)
Aquaporine-4 , Astrocytes , Encéphalomyélite auto-immune expérimentale , Acides gras volatils , Souris de lignée C57BL , Récepteurs à hydrocarbure aromatique , Transduction du signal , Tryptophane , Animaux , Encéphalomyélite auto-immune expérimentale/anatomopathologie , Encéphalomyélite auto-immune expérimentale/traitement médicamenteux , Encéphalomyélite auto-immune expérimentale/métabolisme , Astrocytes/métabolisme , Astrocytes/effets des médicaments et des substances chimiques , Acides gras volatils/pharmacologie , Acides gras volatils/métabolisme , Récepteurs à hydrocarbure aromatique/métabolisme , Souris , Tryptophane/métabolisme , Tryptophane/pharmacologie , Femelle , Transduction du signal/effets des médicaments et des substances chimiques , Aquaporine-4/métabolisme , Aquaporine-4/génétique , Microbiome gastro-intestinal/effets des médicaments et des substances chimiques , Barrière hémato-encéphalique/métabolisme , Barrière hémato-encéphalique/effets des médicaments et des substances chimiques
2.
Fluids Barriers CNS ; 21(1): 53, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38956598

RÉSUMÉ

AQP4 is expressed in the endfeet membranes of subpial and perivascular astrocytes and in the ependymal cells that line the ventricular system. The sporadic appearance of obstructive congenital hydrocephalus (OCHC) has been observed in the offspring of AQP4-/- mice (KO) due to stenosis of Silvio's aqueduct. Here, we explore whether the lack of AQP4 expression leads to abnormal development of ependymal cells in the aqueduct of mice. We compared periaqueductal samples from wild-type and KO mice. The microarray-based transcriptome analysis reflected a large number of genes with differential expression (809). Gene sets (GS) associated with ependymal development, ciliary function and the immune system were specially modified qPCR confirmed reduced expression in the KO mice genes: (i) coding for transcription factors for ependymal differentiation (Rfx4 and FoxJ1), (ii) involved in the constitution of the central apparatus of the axoneme (Spag16 and Hydin), (iii) associated with ciliary assembly (Cfap43, Cfap69 and Ccdc170), and (iv) involved in intercellular junction complexes of the ependyma (Cdhr4). By contrast, genes such as Spp1, Gpnmb, Itgax, and Cd68, associated with a Cd11c-positive microglial population, were overexpressed in the KO mice. Electron microscopy and Immunofluorescence of vimentin and γ-tubulin revealed a disorganized ependyma in the KO mice, with changes in the intercellular complex union, unevenly orientated cilia, and variations in the planar cell polarity of the apical membrane. These structural alterations translate into reduced cilia beat frequency, which might alter cerebrospinal fluid movement. The presence of CD11c + microglia cells in the periaqueductal zone of mice during the first postnatal week is a novel finding. In AQP4-/- mice, these cells remain present around the aqueduct for an extended period, showing peak expression at P11. We propose that these cells play an important role in the normal development of the ependyma and that their overexpression in KO mice is crucial to reduce ependyma abnormalities that could otherwise contribute to the development of obstructive hydrocephalus.


Sujet(s)
Aquaporine-4 , Épendyme , Hydrocéphalie , Souris knockout , Microglie , Animaux , Épendyme/métabolisme , Épendyme/anatomopathologie , Hydrocéphalie/métabolisme , Hydrocéphalie/génétique , Hydrocéphalie/anatomopathologie , Microglie/métabolisme , Aquaporine-4/métabolisme , Aquaporine-4/génétique , Souris , Aqueduc du mésencéphale/métabolisme , Aqueduc du mésencéphale/anatomopathologie , Antigènes CD11/métabolisme , Antigènes CD11/génétique , Souris de lignée C57BL
3.
Cell Mol Life Sci ; 81(1): 285, 2024 Jul 06.
Article de Anglais | MEDLINE | ID: mdl-38969941

RÉSUMÉ

Volume regulation is essential for cell homeostasis and physiological function. Amongst the sensory molecules that have been associated with volume regulation is the transient receptor potential vanilloid 4 (TRPV4), which is a non-selective cation channel that in conjunction with aquaporins, typically controls regulatory volume decrease (RVD). Here we show that the interaction between orthologous AQP4 (Aqp4a) and TRPV4 (Trpv4) is important for regulatory volume increase (RVI) in post-activated marine fish spermatozoa under high osmotic stress. Based upon electrophysiological, volumetric, and in vivo and ex vivo functional experiments using the pharmacological and immunological inhibition of Aqp4a and Trpv4 our model suggests that upon ejaculation and exposure to the hypertonic seawater, spermatozoon shrinkage is initially mediated by water efflux through Aqp1aa in the flagellar tail. The shrinkage results in an increase in intracellular Ca2+ concentration, and the activation of sperm motility and a Na+/K+/2Cl- (NKCC1) cotransporter. The activity of NKCC1 is required for the initiation of cell swelling, which secondarily activates the Aqp4a-Trpv4 complex to facilitate the influx of water via Aqp4a-M43 and Ca2+ via Trpv4 and L-type channels for the mediation of RVI. The inhibitory experiments show that blocking of each of these events prevents either shrinkage or RVI. Our data thus reveal that post-activated marine fish spermatozoa are capable of initiating RVI under a high hypertonic stress, which is essential for the maintenance of sperm motility.


Sujet(s)
Taille de la cellule , Pression osmotique , Mobilité des spermatozoïdes , Spermatozoïdes , Canaux cationiques TRPV , Animaux , Mâle , Canaux cationiques TRPV/métabolisme , Canaux cationiques TRPV/génétique , Spermatozoïdes/métabolisme , Mobilité des spermatozoïdes/physiologie , Aquaporine-4/métabolisme , Aquaporine-4/génétique , Calcium/métabolisme , Poissons/métabolisme , Poissons/physiologie , Natation , Membre-2 de la famille-12 des transporteurs de solutés/métabolisme , Membre-2 de la famille-12 des transporteurs de solutés/génétique
4.
J Physiol ; 602(13): 3151-3168, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38924526

RÉSUMÉ

Aquaporin-4 (AQP4) is the main water channel in brain and is enriched in perivascular astrocyte processes abutting brain microvessels. There is a rich literature on the role of AQP4 in experimental stroke. While its role in oedema formation following middle cerebral artery occlusion (MCAO) has been studied extensively, its specific impact on infarct volume remains unclear. This study investigated the effects of total and partial AQP4 deletion on infarct volume in mice subjected to distal medial cerebral artery (dMCAO) occlusion. Compared to MCAO, this model induces smaller infarcts confined to neocortex, and less oedema. We show that AQP4 deletion significantly reduced infarct volume as assessed 1 week after dMCAO, suggesting that the role of AQP4 in stroke goes beyond its effect on oedema formation and dissolution. The reduction in infarct volume was associated with increased astrocyte reactivity in the peri-infarct areas. No significant differences were observed in the number of microglia among the genotypes. These findings provide new insights in the role of AQP4 in ischaemic injury indicating that AQP4 affects both infarct volume and astrocyte reactivity in the peri-infarct zone. KEY POINTS: Aquaporin-4 (AQP4) is the main water channel in brain and is enriched in perivascular astrocyte processes abutting microvessels. A rich literature exists on the role of AQP4 in oedema formation following middle cerebral artery occlusion (MCAO). We investigated the effects of total and partial AQP4 deletion on infarct volume in mice subjected to distal medial cerebral artery occlusion (dMCAO), a model inducing smaller infarcts confined to neocortex and less oedema compared to MCAO. AQP4 deletion significantly reduced infarct volume 1 week after dMCAO, suggesting a broader role for AQP4 in stroke beyond oedema formation. The reduction in infarct volume was associated with increased astrocyte reactivity in the peri-infarct areas, while no significant differences were observed in the number of microglia among the genotypes. These findings provide new insights into the role of AQP4 in stroke, indicating that AQP4 affects both infarct volume and astrocyte reactivity in the peri-infarct zone.


Sujet(s)
Aquaporine-4 , Astrocytes , Animaux , Aquaporine-4/génétique , Aquaporine-4/métabolisme , Astrocytes/métabolisme , Astrocytes/anatomopathologie , Souris , Mâle , Infarctus du territoire de l'artère cérébrale moyenne/métabolisme , Infarctus du territoire de l'artère cérébrale moyenne/génétique , Infarctus du territoire de l'artère cérébrale moyenne/anatomopathologie , Infarctus du territoire de l'artère cérébrale moyenne/physiopathologie , Souris de lignée C57BL , Modèles animaux de maladie humaine , Accident vasculaire cérébral/anatomopathologie , Accident vasculaire cérébral/métabolisme , Accident vasculaire cérébral/génétique , Souris knockout , Oedème cérébral/anatomopathologie , Oedème cérébral/métabolisme , Oedème cérébral/génétique
5.
Cell Death Dis ; 15(6): 448, 2024 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-38918408

RÉSUMÉ

Multiple sevoflurane exposures may damage the developing brain. The neuroprotective function of dexmedetomidine has been widely confirmed in animal experiments and human studies. However, the effect of dexmedetomidine on the glymphatic system has not been clearly studied. We hypothesized that dexmedetomidine could alleviate sevoflurane-induced circulatory dysfunction of the glymphatic system in young mice. Six-day-old C57BL/6 mice were exposed to 3% sevoflurane for 2 h daily, continuously for 3 days. Intraperitoneal injection of either normal saline or dexmedetomidine was administered before every anaesthesia. Meanwhile the circulatory function of glymphatic system was detected by tracer injection at P8 and P32. On P30-P32, behavior tests including open field test, novel object recognition test, and Y-maze test were conducted. Primary astrocyte cultures were established and treated with the PI3K activator 740Y-P, dexmedetomidine, and small interfering RNA (siRNA) to silence ΔFosB. We propose for the first time that multiple exposure to sevoflurane induces circulatory dysfunction of the glymphatic system in young mice. Dexmedetomidine improves the circulatory capacity of the glymphatic system in young mice following repeated exposure to sevoflurane through the PI3K/AKT/ΔFosB/AQP4 signaling pathway, and enhances their long-term learning and working memory abilities.


Sujet(s)
Aquaporine-4 , Dexmédétomidine , Système glymphatique , Souris de lignée C57BL , Phosphatidylinositol 3-kinases , Protéines proto-oncogènes c-akt , Sévoflurane , Transduction du signal , Animaux , Dexmédétomidine/pharmacologie , Sévoflurane/pharmacologie , Sévoflurane/effets indésirables , Système glymphatique/effets des médicaments et des substances chimiques , Système glymphatique/métabolisme , Protéines proto-oncogènes c-akt/métabolisme , Souris , Phosphatidylinositol 3-kinases/métabolisme , Aquaporine-4/métabolisme , Aquaporine-4/génétique , Transduction du signal/effets des médicaments et des substances chimiques , Astrocytes/effets des médicaments et des substances chimiques , Astrocytes/métabolisme , Mâle
6.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(3): 487-494, 2024 Jun 18.
Article de Chinois | MEDLINE | ID: mdl-38864135

RÉSUMÉ

OBJECTIVE: To unveil the pathological changes associated with demyelination in schizophrenia (SZ) and its consequential impact on interstitial fluid (ISF) drainage, and to investigate the therapeutic efficacy of ursolic acid (UA) in treating demyelination and the ensuing abnormalities in ISF drainage in SZ. METHODS: Female C57BL/6J mice, aged 6-8 weeks and weighing (20±2) g, were randomly divided into three groups: control, SZ model, and UA treatment. The control group received intraperitoneal injection (ip) of physiological saline and intragastric administration (ig) of 1% carboxymethylcellulose sodium (CMC-Na). The SZ model group was subjected to ip injection of 2 mg/kg dizocilpine maleate (MK-801) and ig administration of 1% CMC-Na. The UA treatment group underwent ig administration of 25 mg/kg UA and ip injection of 2 mg/kg MK-801. The treatment group received UA pretreatment via ig administration for one week, followed by a two-week drug intervention for all the three groups. Behavioral assessments, including the open field test and prepulse inhibition experiment, were conducted post-modeling. Subsequently, changes in the ISF partition drainage were investigated through fluorescent tracer injection into specific brain regions. Immunofluorescence analysis was employed to examine alterations in aquaporin 4 (AQP4) polarity distribution in the brain and changes in protein expression. Myelin reflex imaging using Laser Scanning Confocal Microscopy (LSCM) was utilized to study modifications in myelin within the mouse brain. Quantitative data underwent one-way ANOVA, followed by TukeyHSD for post hoc pairwise comparisons between the groups. RESULTS: The open field test revealed a significantly longer total distance [(7 949.39±1 140.55) cm vs. (2 831.01±1 212.72) cm, P < 0.001] and increased central area duration [(88.43±22.06) s vs. (56.85±18.58) s, P=0.011] for the SZ model group compared with the controls. The UA treatment group exhibited signifi-cantly reduced total distance [(2 415.80±646.95) cm vs. (7 949.39±1 140.55) cm, P < 0.001] and increased central area duration [(54.78±11.66) s vs. (88.43±22.06) s, P=0.007] compared with the model group. Prepulse inhibition test results demonstrated a markedly lower inhibition rate of the startle reflex in the model group relative to the controls (P < 0.001 for both), with the treatment group displaying significant improvement (P < 0.001 for both). Myelin sheath analysis indicated significant demyelination in the model group, while UA treatment reversed this effect. Fluorescence tracing exhibited a significantly larger tracer diffusion area towards the rostral cortex and reflux area towards the caudal thalamus in the model group relative to the controls [(13.93±3.35) mm2 vs. (2.79±0.94) mm2, P < 0.001 for diffusion area; (2.48±0.38) mm2 vs. (0.05±0.12) mm2, P < 0.001 for reflux area], with significant impairment of drainage in brain regions. The treatment group demonstrated significantly reduced tracer diffusion and reflux areas [(7.93±2.48) mm2 vs. (13.93±3.35) mm2, P < 0.001 for diffusion area; (0.50±0.30) mm2 vs. (2.48±0.38) mm2, P < 0.001 for reflux area]. Immunofluorescence staining revealed disrupted AQP4 polarity distribution and reduced AQP4 protein expression in the model group compared with the controls [(3 663.88±733.77) µm2 vs. (13 354.92±4 054.05) µm2, P < 0.001]. The treatment group exhibited restored AQP4 polarity distribution and elevated AQP4 protein expression [(11 104.68±3 200.04) µm2 vs. (3 663.88±733.77) µm2, P < 0.001]. CONCLUSION: UA intervention ameliorates behavioral performance in SZ mice, Thus alleviating hyperactivity and anxiety symptoms and restoring sensorimotor gating function. The underlying mechanism may involve the improvement of demyelination and ISF drainage dysregulation in SZ mice.


Sujet(s)
Maladies démyélinisantes , Modèles animaux de maladie humaine , Liquide extracellulaire , Souris de lignée C57BL , Schizophrénie , Triterpènes , , Animaux , Souris , Triterpènes/usage thérapeutique , Triterpènes/pharmacologie , Schizophrénie/traitement médicamenteux , Femelle , Maladies démyélinisantes/traitement médicamenteux , Liquide extracellulaire/effets des médicaments et des substances chimiques , Liquide extracellulaire/métabolisme , Maléate de dizocilpine , Aquaporine-4/métabolisme
7.
Genes Brain Behav ; 23(3): e12895, 2024 06.
Article de Anglais | MEDLINE | ID: mdl-38837620

RÉSUMÉ

Duchenne muscular dystrophy is a severe neuromuscular disorder that is caused by mutations in the DMD gene, resulting in a disruption of dystrophin production. Next to dystrophin expression in the muscle, different isoforms of the protein are also expressed in the brain and lack of these isoforms leads to cognitive and behavioral deficits in patients. It remains unclear how the loss of the shorter dystrophin isoform Dp140 affects these processes. Using a variety of behavioral tests, we found that mdx and mdx4cv mice (which lack Dp427 or Dp427 + Dp140, respectively) exhibit similar deficits in working memory, movement patterns and blood-brain barrier integrity. Neither model showed deficits in spatial learning and memory, learning flexibility, anxiety or spontaneous behavior, nor did we observe differences in aquaporin 4 and glial fibrillary acidic protein. These results indicate that in contrast to Dp427, Dp140 does not play a crucial role in processes of learning, memory and spontaneous behavior.


Sujet(s)
Barrière hémato-encéphalique , Dystrophine , Myopathie de Duchenne , Animaux , Souris , Barrière hémato-encéphalique/métabolisme , Myopathie de Duchenne/génétique , Myopathie de Duchenne/métabolisme , Myopathie de Duchenne/physiopathologie , Dystrophine/génétique , Dystrophine/métabolisme , Mâle , Souris de lignée mdx , Souris de lignée C57BL , Aquaporine-4/génétique , Aquaporine-4/métabolisme , Mémoire à court terme , Mémoire
8.
CNS Neurosci Ther ; 30(6): e14803, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38887168

RÉSUMÉ

The glymphatic system is cerebrospinal fluid-brain tissue fluid exchange flow mediated by aquaporin-4 (AQP4) on the end feet of astrocytes for a system, which is capable of rapidly removing brain metabolites and thus maintaining brain homeostasis, and is known as the central immune system. Dysfunction of the glymphatic system causes accumulation of misfolded and highly phosphorylated proteins (amyloid-ß and Tau proteins), which destabilizes the proteins, and the body's neuroinflammatory factors are altered causing aging of the immune system and leading to neurodegenerative diseases. Damage to the glymphatic system and aging share common manifestations, as well as unstudied biological mechanisms that are also linked, such as mitochondria, oxidative stress, chronic inflammation, and sleep. In this paper, we first summarize the structure, function, and research methods of the glymphatic system and the relationship between the glymphatic system and the peripheral immune system, and second, sort out and summarize the factors of the glymphatic system in removing metabolites and resolving aging-related diseases and factors affecting aging, to explore its related biological mechanisms, and moreover, to provide a new way of thinking for treating or intervening aging-related diseases.


Sujet(s)
Vieillissement , Système glymphatique , Humains , Système glymphatique/physiologie , Système glymphatique/métabolisme , Vieillissement/physiologie , Vieillissement/métabolisme , Animaux , Astrocytes/métabolisme , Encéphale/métabolisme , Aquaporine-4/métabolisme
9.
Int J Mol Sci ; 25(12)2024 Jun 14.
Article de Anglais | MEDLINE | ID: mdl-38928258

RÉSUMÉ

Aquaporins (AQPs), particularly AQP4, play a crucial role in regulating fluid dynamics in the brain, impacting the development and resolution of edema following traumatic brain injury (TBI). This review examines the alterations in AQP expression and localization post-injury, exploring their effects on brain edema and overall injury outcomes. We discuss the underlying molecular mechanisms regulating AQP expression, highlighting potential therapeutic strategies to modulate AQP function. These insights provide a comprehensive understanding of AQPs in TBI and suggest novel approaches for improving clinical outcomes through targeted interventions.


Sujet(s)
Aquaporines , Lésions traumatiques de l'encéphale , Lésions traumatiques de l'encéphale/métabolisme , Humains , Animaux , Aquaporines/métabolisme , Oedème cérébral/métabolisme , Oedème cérébral/étiologie , Aquaporine-4/métabolisme , Hydrodynamique , Encéphale/métabolisme
10.
Neuroimage ; 295: 120662, 2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-38823503

RÉSUMÉ

Understanding the physiological processes in aging and how neurodegenerative disorders affect cognitive function is a high priority for advancing human health. One specific area of recently enabled research is the in vivo biomechanical state of the brain. This study utilized reverberant optical coherence elastography, a high-resolution elasticity imaging method, to investigate stiffness changes during the sleep/wake cycle, aging, and Alzheimer's disease in murine models. Four-dimensional scans of 44 wildtype mice, 13 mice with deletion of aquaporin-4 water channel, and 12 mice with Alzheimer-related pathology (APP/PS1) demonstrated that (1) cortical tissue became softer (on the order of a 10% decrease in shear wave speed) when young wildtype mice transitioned from wake to anesthetized, yet this effect was lost in aging and with mice overexpressing amyloid-ß or lacking the water channel AQP4. (2) Cortical stiffness increased with age in all mice lines, but wildtype mice exhibited the most prominent changes as a function of aging. The study provides novel insight into the brain's biomechanics, the constraints of fluid flow, and how the state of brain activity affects basic properties of cortical tissues.


Sujet(s)
Vieillissement , Maladie d'Alzheimer , Encéphale , Imagerie d'élasticité tissulaire , Sommeil , Animaux , Maladie d'Alzheimer/imagerie diagnostique , Maladie d'Alzheimer/physiopathologie , Vieillissement/physiologie , Imagerie d'élasticité tissulaire/méthodes , Souris , Encéphale/imagerie diagnostique , Encéphale/physiopathologie , Sommeil/physiologie , Vigilance/physiologie , Souris transgéniques , Aquaporine-4/métabolisme , Aquaporine-4/génétique , Mâle , Souris de lignée C57BL
11.
J Neuroinflammation ; 21(1): 130, 2024 May 15.
Article de Anglais | MEDLINE | ID: mdl-38750510

RÉSUMÉ

Epidemiological studies have unveiled a robust link between exposure to repetitive mild traumatic brain injury (r-mTBI) and elevated susceptibility to develop neurodegenerative disorders, notably chronic traumatic encephalopathy (CTE). The pathogenic lesion in CTE cases is characterized by the accumulation of hyperphosphorylated tau in neurons around small cerebral blood vessels which can be accompanied by astrocytes that contain phosphorylated tau, the latter termed tau astrogliopathy. However, the contribution of tau astrogliopathy to the pathobiology and functional consequences of r-mTBI/CTE or whether it is merely a consequence of aging remains unclear. We addressed these pivotal questions by utilizing a mouse model harboring tau-bearing astrocytes, GFAPP301L mice, subjected to our r-mTBI paradigm. Despite the fact that r-mTBI did not exacerbate tau astrogliopathy or general tauopathy, it increased phosphorylated tau in the area underneath the impact site. Additionally, gene ontology analysis of tau-bearing astrocytes following r-mTBI revealed profound alterations in key biological processes including immunological and mitochondrial bioenergetics. Moreover, gene array analysis of microdissected astrocytes accrued from stage IV CTE human brains revealed an immunosuppressed astroglial phenotype similar to tau-bearing astrocytes in the GFAPP301L model. Additionally, hippocampal reduction of proteins involved in water transport (AQP4) and glutamate homeostasis (GLT1) was found in the mouse model of tau astrogliopathy. Collectively, these findings reveal the importance of understanding tau astrogliopathy and its role in astroglial pathobiology under normal circumstances and following r-mTBI. The identified mechanisms using this GFAPP301L model may suggest targets for therapeutic interventions in r-mTBI pathogenesis in the context of CTE.


Sujet(s)
Aquaporine-4 , Astrocytes , Transporteur-2 d'acides aminés excitateurs , Souris transgéniques , Tauopathies , Protéines tau , Astrocytes/métabolisme , Astrocytes/anatomopathologie , Animaux , Souris , Protéines tau/métabolisme , Protéines tau/génétique , Aquaporine-4/métabolisme , Aquaporine-4/génétique , Tauopathies/métabolisme , Tauopathies/anatomopathologie , Tauopathies/génétique , Humains , Transporteur-2 d'acides aminés excitateurs/métabolisme , Transporteur-2 d'acides aminés excitateurs/génétique , Transporteur-2 d'acides aminés excitateurs/biosynthèse , Commotion de l'encéphale/métabolisme , Commotion de l'encéphale/anatomopathologie , Mâle , Phénotype , Souris de lignée C57BL
12.
Brain ; 147(6): 2214-2229, 2024 Jun 03.
Article de Anglais | MEDLINE | ID: mdl-38802114

RÉSUMÉ

Mild traumatic brain injury (mTBI) has emerged as a potential risk factor for the development of neurodegenerative conditions such as Alzheimer's disease and chronic traumatic encephalopathy. Blast mTBI, caused by exposure to a pressure wave from an explosion, is predominantly experienced by military personnel and has increased in prevalence and severity in recent decades. Yet the underlying pathology of blast mTBI is largely unknown. We examined the expression and localization of AQP4 in human post-mortem frontal cortex and observed distinct laminar differences in AQP4 expression following blast exposure. We also observed similar laminar changes in AQP4 expression and localization and delayed impairment of glymphatic function that emerged 28 days following blast injury in a mouse model of repetitive blast mTBI. In a cohort of veterans with blast mTBI, we observed that blast exposure was associated with an increased burden of frontal cortical MRI-visible perivascular spaces, a putative neuroimaging marker of glymphatic perivascular dysfunction. These findings suggest that changes in AQP4 and delayed glymphatic impairment following blast injury may render the post-traumatic brain vulnerable to post-concussive symptoms and chronic neurodegeneration.


Sujet(s)
Aquaporine-4 , Traumatismes par explosion , Système glymphatique , Adulte , Sujet âgé , Animaux , Femelle , Humains , Mâle , Souris , Adulte d'âge moyen , Aquaporine-4/métabolisme , Traumatismes par explosion/complications , Traumatismes par explosion/anatomopathologie , Traumatismes par explosion/métabolisme , Commotion de l'encéphale/métabolisme , Commotion de l'encéphale/complications , Commotion de l'encéphale/anatomopathologie , Commotion de l'encéphale/physiopathologie , Lésions traumatiques de l'encéphale/métabolisme , Lésions traumatiques de l'encéphale/complications , Lésions traumatiques de l'encéphale/anatomopathologie , Lobe frontal/métabolisme , Lobe frontal/anatomopathologie , Lobe frontal/imagerie diagnostique , Système glymphatique/métabolisme , Système glymphatique/anatomopathologie , Imagerie par résonance magnétique , Souris de lignée C57BL , Anciens combattants
13.
J Neuroinflammation ; 21(1): 138, 2024 May 27.
Article de Anglais | MEDLINE | ID: mdl-38802927

RÉSUMÉ

Sepsis-associated encephalopathy (SAE) is a significant cause of mortality in patients with sepsis. Despite extensive research, its exact cause remains unclear. Our previous research indicated a relationship between non-hepatic hyperammonemia (NHH) and SAE. This study aimed to investigate the relationship between NHH and SAE and the potential mechanisms causing cognitive impairment. In the in vivo experimental results, there were no significant abnormalities in the livers of mice with moderate cecal ligation and perforation (CLP); however, ammonia levels were elevated in the hippocampal tissue and serum. The ELISA study suggest that fecal microbiota transplantation in CLP mice can reduce ammonia levels. Reduction in ammonia levels improved cognitive dysfunction and neurological impairment in CLP mice through behavioral, neuroimaging, and molecular biology studies. Further studies have shown that ammonia enters the brain to regulate the expression of aquaporins-4 (AQP4) in astrocytes, which may be the mechanism underlying brain dysfunction in CLP mice. The results of the in vitro experiments showed that ammonia up-regulated AQP4 expression in astrocytes, resulting in astrocyte damage. The results of this study suggest that ammonia up-regulates astrocyte AQP4 expression through the gut-brain axis, which may be a potential mechanism for the occurrence of SAE.


Sujet(s)
Aquaporine-4 , Astrocytes , Axe cerveau-intestin , Hyperammoniémie , Encéphalopathie associée au sepsis , Animaux , Souris , Aquaporine-4/métabolisme , Aquaporine-4/génétique , Aquaporine-4/biosynthèse , Astrocytes/métabolisme , Hyperammoniémie/métabolisme , Encéphalopathie associée au sepsis/métabolisme , Mâle , Axe cerveau-intestin/physiologie , Souris de lignée C57BL , Ammoniac/métabolisme , Ammoniac/sang , Encéphale/métabolisme , Transplantation de microbiote fécal
14.
Eur J Pharmacol ; 976: 176670, 2024 Aug 05.
Article de Anglais | MEDLINE | ID: mdl-38795755

RÉSUMÉ

INTRODUCTION: Ischemia/reperfusion is a pathological condition by the restoration of perfusion and oxygenation following a period of restricted blood flow to an organ. To address existing uncertainty in the literature regarding the effects of 3', 4'-dihydroxy flavonol (DiOHF) on cerebral ischemia/reperfusion injury, our study aims to investigate the impact of DiOHF on neurological parameters, apoptosis (Caspase-3), aquaporin 4 (AQP4), and interleukin-10 (IL-10) levels in an experimental rat model of brain ischemia-reperfusion injury. MATERIALS/METHODS: A total of 28 Wistar-albino male rats were used in this study. Experimental groups were formed as 1-Control, 2-Sham, 3-Ischemia-reperfusion, 4-Ischemia-reperfusion + DiOHF (10 mg/kg). The animals were anaesthetized, and the carotid arteries were ligated (ischemia) for 30 min, followed by reperfusion for 30 min. Following reperfusion, DiOHF was administered intraperitoneally to the animals at a dose of 10 mg/kg for 1 week. During the one-week period neurological scores and new object recognition tests were performed. Then, caspase 3 and AQP4 levels were determined by PCR method and IL-10 by ELISA method in hippocampus tissue samples taken from animals sacrificed under anaesthesia. RESULTS: Brain ischemia reperfusion significantly increased both caspase 3 and AQP4 values in the hippocampus tissue, while decreasing IL-10 levels. However, 1-week DiOHF supplementation significantly suppressed increased caspase 3 and AQP4 levels and increased IL-10 values. While I/R also increased neurological score values, it suppressed the ability to recognize new objects, and the administered treatment effectively ameliorated the adverse effects observed, resulting in a positive outcome. CONCLUSIONS: The results of the study show that brain ischemia caused by bilateral carotid occlusion in rats and subsequent reperfusion causes tissue damage, but 1-week DiOHF application has a healing effect on both hippocampus tissue and neurological parameters.


Sujet(s)
Aquaporine-4 , Caspase-3 , Cognition , Flavonols , Interleukine-10 , Rat Wistar , Lésion d'ischémie-reperfusion , Animaux , Mâle , Lésion d'ischémie-reperfusion/traitement médicamenteux , Lésion d'ischémie-reperfusion/anatomopathologie , Lésion d'ischémie-reperfusion/métabolisme , Flavonols/pharmacologie , Flavonols/usage thérapeutique , Rats , Cognition/effets des médicaments et des substances chimiques , Caspase-3/métabolisme , Aquaporine-4/métabolisme , Interleukine-10/métabolisme , Neuroprotecteurs/pharmacologie , Neuroprotecteurs/usage thérapeutique , Hippocampe/effets des médicaments et des substances chimiques , Hippocampe/métabolisme , Hippocampe/anatomopathologie , Neurones/effets des médicaments et des substances chimiques , Neurones/anatomopathologie , Neurones/métabolisme , Encéphalopathie ischémique/traitement médicamenteux , Encéphalopathie ischémique/métabolisme , Modèles animaux de maladie humaine , Apoptose/effets des médicaments et des substances chimiques
15.
Exp Cell Res ; 439(1): 114087, 2024 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-38735619

RÉSUMÉ

Diabetic retinopathy (DR) is a common microvascular complication that causes visual impairment or loss. Aquaporin 4 (AQP4) is a regulatory protein involved in water transport and metabolism. In previous studies, we found that AQP4 is related to hypoxia injury in Muller cells. Transient receptor potential cation channel subfamily V member 4 (TRPV4) is a non-selective cation channel protein involved in the regulation of a variety of ophthalmic diseases. However, the effects of AQP4 and TRPV4 on ferroptosis and oxidative stress in high glucose (HG)-treated Muller cells are unclear. In this study, we investigated the functions of AQP4 and TRPV4 in DR. HG was used to treat mouse Muller cells. Reverse transcription quantitative polymerase chain reaction was used to measure AQP4 mRNA expression. Western blotting was used to detect the protein levels of AQP4, PTGS2, GPX4, and TRPV4. Cell count kit-8, flow cytometry, 5,5',6,6'-tetrachloro-1,1,3,3'-tetraethylbenzimidazolyl carbocyanine iodide staining, and glutathione (GSH), superoxide dismutase (SOD), and malondialdehyde (MDA) kits were used to evaluate the function of the Muller cells. Streptozotocin was used to induce DR in rats. Haematoxylin and eosin staining was performed to stain the retina of rats. GSH, SOD, and MDA detection kits, immunofluorescence, and flow cytometry assays were performed to study the function of AQP4 and TRPV4 in DR rats. Results found that AQP4 and TRPV4 were overexpressed in HG-induced Muller cells and streptozotocin-induced DR rats. AQP4 inhibition promoted proliferation and cell cycle progression, repressed cell apoptosis, ferroptosis, and oxidative stress, and alleviated retinal injury in DR rats. Mechanistically, AQP4 positively regulated TRPV4 expression. Overexpression of TRPV4 enhanced ferroptosis and oxidative stress in HG-treated Muller cells, and inhibition of TRPV4 had a protective effect on DR-induced retinal injury in rats. In conclusion, inhibition of AQP4 inhibits the ferroptosis and oxidative stress in Muller cells by downregulating TRPV4, which may be a potential target for DR therapy.


Sujet(s)
Aquaporine-4 , Rétinopathie diabétique , Cellules épendymogliales , Ferroptose , Stress oxydatif , Canaux cationiques TRPV , Animaux , Mâle , Souris , Rats , Aquaporine-4/métabolisme , Aquaporine-4/génétique , Diabète expérimental/métabolisme , Diabète expérimental/anatomopathologie , Rétinopathie diabétique/métabolisme , Rétinopathie diabétique/anatomopathologie , Rétinopathie diabétique/génétique , Cellules épendymogliales/métabolisme , Cellules épendymogliales/anatomopathologie , Glucose/métabolisme , Glucose/pharmacologie , Souris de lignée C57BL , Rat Sprague-Dawley , Canaux cationiques TRPV/métabolisme , Canaux cationiques TRPV/génétique
16.
Invest Ophthalmol Vis Sci ; 65(5): 30, 2024 May 01.
Article de Anglais | MEDLINE | ID: mdl-38771571

RÉSUMÉ

Purpose: Earlier reports highlighted the predominant presence of aquaporin 4 (AQP4) in the duct cells of rabbit lacrimal glands (LGs). Whereas significant alterations in AQP4 mRNA levels have been observed in experimental dry eye and during pregnancy, the impact of AQP4 in LG ductal fluid production remains unclear. In our recent work, the role of AQP4 in LG ductal fluid secretion was investigated utilizing wild type (WT) and AQP4 knock out (KO) mice. Methods: Tear production was assessed in both WT and KO animals. Immunostaining was used to identify AQP4 protein. Duct segments were harvested from LGs of WT and KO mice. Fluid secretion and filtration permeability (Pf) were quantified using video-microscopy. Ductal tear production, elicited by a cell-permeable cAMP analogue (8-bromo cAMP), carbachol, vasoactive intestinal peptide (VIP), and phenylephrine (PHE), were assessed in both WT and KO ducts. Results: A higher expression of AQP4 protein was noted in the duct cells from WT mice when compared to acinar cells. Pf did not show notable alterations between WT and AQP4 KO ducts. Carbachol elicited comparable secretory responses in ducts from both WT and KO animals. However, 8-bromo cAMP, VIP, and PHE stimulation resulted in decreased secretion in ducts from AQP4 KO LGs. Conclusions: Our findings underscore the functional relevance of AQP4 in the fluid production of mouse LG ducts. AQP4 seems to play different roles in fluid secretions elicited by different secretagogues. Specifically, cAMP-mediated, and adrenergic agonist-related secretions were reduced in AQP4 KO ducts.


Sujet(s)
Aquaporine-4 , Appareil lacrymal , Souris knockout , Larmes , Animaux , Souris , Appareil lacrymal/métabolisme , Larmes/métabolisme , Aquaporine-4/métabolisme , Aquaporine-4/génétique , Souris de lignée C57BL , Femelle
17.
Neurochem Res ; 49(7): 1851-1862, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38733521

RÉSUMÉ

Alzheimer's disease (AD) is an age-dependent neurodegenerative disease that is typically sporadic and has a high social and economic cost. We utilized the intracerebroventricular administration of streptozotocin (STZ), an established preclinical model for sporadic AD, to investigate hippocampal astroglial changes during the first 4 weeks post-STZ, a period during which amyloid deposition has yet to occur. Astroglial proteins aquaporin 4 (AQP-4) and connexin-43 (Cx-43) were evaluated, as well as claudins, which are tight junction (TJ) proteins in brain barriers, to try to identify changes in the glymphatic system and brain barrier during the pre-amyloid phase. Glial commitment, glucose hypometabolism and cognitive impairment were characterized during this phase. Astroglial involvement was confirmed by an increase in glial fibrillary acidic protein (GFAP); concurrent proteolysis was also observed, possibly mediated by calpain. Levels of AQP-4 and Cx-43 were elevated in the fourth week post-STZ, possibly accelerating the clearance of extracellular proteins, since these proteins actively participate in the glymphatic system. Moreover, although we did not see a functional disruption of the blood-brain barrier (BBB) at this time, claudin 5 (present in the TJ of the BBB) and claudin 2 (present in the TJ of the blood-cerebrospinal fluid barrier) were reduced. Taken together, data support a role for astrocytes in STZ brain damage, and suggest that astroglial dysfunction accompanies or precedes neuronal damage in AD.


Sujet(s)
Maladie d'Alzheimer , Aquaporine-4 , Astrocytes , Streptozocine , Astrocytes/métabolisme , Animaux , Maladie d'Alzheimer/métabolisme , Maladie d'Alzheimer/anatomopathologie , Mâle , Aquaporine-4/métabolisme , Connexine 43/métabolisme , Barrière hémato-encéphalique/métabolisme , Eau/métabolisme , Hippocampe/métabolisme , Rat Wistar , Rats , Modèles animaux de maladie humaine
18.
Biomed Pharmacother ; 175: 116739, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38759288

RÉSUMÉ

BACKGROUND: Ketamine, as a non-competitive antagonist of N-methyl-D-aspartate (NMDA) receptors, was originally used in general anesthesia. Epidemiological data show that ketamine has become one of the most commonly abused drugs in China. Ketamine administration might cause cognitive impairment; however, its molecular mechanism remains unclear. The glymphatic system is a lymphoid system that plays a key role in metabolic waste removal and cognitive regulation in the central nervous system. METHODS: Focusing on the glymphatic system, this study evaluated the behavioral performance and circulatory function of the glymphatic system by building a short-term ketamine administration model in mice, and detected the expression levels of the 5-HT2c receptor, ΔFosb, Pten, Akt, and Aqp4 in the hippocampus. Primary astrocytes were cultured to verify the regulatory relationships among related indexes using a 5-HT2c receptor antagonist, a 5-HT2c receptor short interfering RNA (siRNA), and a ΔFosb siRNA. RESULTS: Ketamine administration induced ΔFosb accumulation by increasing 5-HT2c receptor expression in mouse hippocampal astrocytes and primary astrocytes. ΔFosb acted as a transcription factor to recognize the AATGATTAAT bases in the 5' regulatory region of the Aqp4 gene (-1096 bp to -1087 bp), which inhibited Aqp4 expression, thus causing the circulatory dysfunction of the glymphatic system, leading to cognitive impairment. CONCLUSIONS: Although this regulatory mechanism does not involve the Pten/Akt pathway, this study revealed a new mechanism of ketamine-induced cognitive impairment in non-neuronal systems, and provided a theoretical basis for the safety of clinical treatment and the effectiveness of withdrawal.


Sujet(s)
Astrocytes , Dysfonctionnement cognitif , Système glymphatique , Hippocampe , Kétamine , Animaux , Kétamine/pharmacologie , Kétamine/toxicité , Astrocytes/effets des médicaments et des substances chimiques , Astrocytes/métabolisme , Dysfonctionnement cognitif/induit chimiquement , Dysfonctionnement cognitif/métabolisme , Souris , Mâle , Hippocampe/effets des médicaments et des substances chimiques , Hippocampe/métabolisme , Système glymphatique/effets des médicaments et des substances chimiques , Système glymphatique/métabolisme , Protéines proto-oncogènes c-akt/métabolisme , Aquaporine-4/métabolisme , Aquaporine-4/génétique , Récepteur de la sérotonine de type 5-HT2C/métabolisme , Récepteur de la sérotonine de type 5-HT2C/génétique , Souris de lignée C57BL , Cellules cultivées , Protéines proto-oncogènes c-fos/métabolisme , Protéines proto-oncogènes c-fos/génétique , Phosphohydrolase PTEN/métabolisme , Phosphohydrolase PTEN/génétique
19.
J Stroke Cerebrovasc Dis ; 33(6): 106578, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38636320

RÉSUMÉ

BACKGROUND: Notch1 signaling inhibiton with N-[N-(3,5-difluorophenacetyl)-1-alanyl]-S-phenylglycine t-butylester] (DAPT) treatment could promote brain recovery and the intervention effect is different between striatum (STR) and cortex (CTX), which might be accounted for different changes of glial activities, but the in-depth mechanism is still unknown. The purpose of this study was to identify whether DAPT could modulate microglial subtype shifts and astroglial-endfeet aquaporin-4 (AQP4) mediated waste solute drainage. METHODS: Sprague-Dawley rats (n=10) were subjected to 90min of middle cerebral artery occlusion (MCAO) and were treated with DAPT (n=5) or act as control with no treatment (n=5). Two groups of rats underwent MRI scans at 24h and 4 week, and sacrificed at 4 week after stroke for immunofluorescence (IF). RESULTS: Compared with control rats, MRI data showed structural recovery in ipsilateral STR but not CTX. And IF showed decreased pro-inflammatory M1 microglia and increased anti-inflammatory M2 microglia in striatal lesion core and peri-lesions of STR, CTX. Meanwhile, IF showed decreased AQP4 polarity in ischemic brain tissue, however, AQP4 polarity in striatal peri-lesions of DAPT treated rats was higher than that in control rats but shows no difference in cortical peri-lesions between control and treated rats. CONCLUSIONS: The present study indicated that DAPT could promote protective microglia subtype shift and striatal astrocyte mediated waste solute drainage, that the later might be the major contributor of waste solute metabolism and one of the accounts for discrepant recovery of STR and CTX.


Sujet(s)
Aquaporine-4 , Astrocytes , Dipeptides , Modèles animaux de maladie humaine , Infarctus du territoire de l'artère cérébrale moyenne , Microglie , Rat Sprague-Dawley , Récepteur Notch1 , Récupération fonctionnelle , Transduction du signal , Animaux , Aquaporine-4/métabolisme , Récepteur Notch1/métabolisme , Infarctus du territoire de l'artère cérébrale moyenne/métabolisme , Infarctus du territoire de l'artère cérébrale moyenne/anatomopathologie , Infarctus du territoire de l'artère cérébrale moyenne/traitement médicamenteux , Infarctus du territoire de l'artère cérébrale moyenne/physiopathologie , Mâle , Astrocytes/métabolisme , Astrocytes/effets des médicaments et des substances chimiques , Astrocytes/anatomopathologie , Microglie/métabolisme , Microglie/effets des médicaments et des substances chimiques , Microglie/anatomopathologie , Dipeptides/pharmacologie , Cortex cérébral/effets des médicaments et des substances chimiques , Cortex cérébral/métabolisme , Cortex cérébral/imagerie diagnostique , Cortex cérébral/anatomopathologie , Corps strié/métabolisme , Corps strié/effets des médicaments et des substances chimiques , Corps strié/anatomopathologie , Facteurs temps , Neuroprotecteurs/pharmacologie , Accident vasculaire cérébral ischémique/métabolisme , Accident vasculaire cérébral ischémique/traitement médicamenteux , Accident vasculaire cérébral ischémique/physiopathologie , Accident vasculaire cérébral ischémique/anatomopathologie
20.
Nanoscale ; 16(19): 9576-9582, 2024 May 16.
Article de Anglais | MEDLINE | ID: mdl-38682293

RÉSUMÉ

Aquaporin-4 (AQP4) facilitates water transport across astrocytic membranes in the brain, forming highly structured nanometric arrays. AQP4 has a central role in regulating cerebrospinal fluid (CSF) circulation and facilitating the clearance of solutes from the extracellular space of the brain. Adrenergic signaling has been shown to modulate the volume of the extracellular space of the brain via AQP4 localized at the end-feet of astrocytes, but the mechanisms by which AQP4 regulates CSF inflow and outflow in the brain remain elusive. Using advanced imaging techniques, including super-resolution microscopy and single-molecule tracking, we investigated the hypothesis that ß-adrenergic receptor activation induces cellular changes that regulate AQP4 array size and mobility, thus influencing water transport in the brain. We report that the ß-adrenergic agonist, isoproterenol hydrochloride, decreases AQP4 array size and enhances its membrane mobility, while hyperosmotic conditions induce the formation of larger, less mobile arrays. These findings reveal that AQP4 arrays are dynamic structures, responsive to adrenergic signals and osmotic changes, highlighting a novel regulatory mechanism of water transport in the brain. Our results provide insights into the molecular control of CSF circulation and extracellular brain space volume, laying the groundwork for understanding the relationship between astrocyte water transport, sleep physiology, and neurodegeneration.


Sujet(s)
Aquaporine-4 , Astrocytes , Isoprénaline , Imagerie de molécules uniques , Aquaporine-4/métabolisme , Astrocytes/métabolisme , Astrocytes/cytologie , Animaux , Isoprénaline/pharmacologie , Souris , Eau/composition chimique , Eau/métabolisme , Cellules cultivées , Récepteurs bêta-adrénergiques/métabolisme , Agonistes bêta-adrénergiques/pharmacologie , Encéphale/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...