Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 67.654
Filtrer
1.
J Mol Model ; 30(8): 248, 2024 Jul 05.
Article de Anglais | MEDLINE | ID: mdl-38965105

RÉSUMÉ

CONTEXT: Calcium-dependent signaling in plants is responsible for several major cellular events, including the activation of the salinity-responsive pathways. Calcium binds to calcineurin B-like protein (CBL), and the resulting CBL-Ca2+ complex binds to CBL-interacting protein kinase (CIPK). The CBL-CIPK complex enhances the CIPK interaction with an upstream kinase. The upstream kinase phosphorylates CIPK that, in turn, phosphorylates membrane transporters. Phosphorylation influences transporter activity to kick-start many downstream functions, such as balancing the cytosolic Na+-to-K+ ratio. The CBL-CIPK interaction is pivotal for Ca2+-dependent salinity stress signaling. METHODS: Computational methods are used to model the entire Arabidopsis thaliana CIPK24 protein structure in its autoinhibited and open-activated states. Arabidopsis thaliana CIPK24-CBL4 complex is predicted based on the protein-protein docking methods. The available structural and functional data support the CIPK24 and the CIPK24-CBL4 complex models. Models are energy-minimized and subjected to molecular dynamics (MD) simulations. MD simulations for 500 ns and 300 ns enabled us to predict the importance of conserved residues of the proteins. Finally, the work is extended to predict the CIPK24-CBL4 complex with the upstream kinase GRIK2. MD simulation for 300 ns on the ternary complex structure enabled us to identify the critical CIPK24-GRIK2 interactions. Together, these data could be used to engineer the CBL-CIPK interaction network for developing salt tolerance in crops.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Protéines de liaison au calcium , Simulation de dynamique moléculaire , Protein-Serine-Threonine Kinases , Stress salin , Protéines d'Arabidopsis/métabolisme , Protéines d'Arabidopsis/composition chimique , Protein-Serine-Threonine Kinases/métabolisme , Protein-Serine-Threonine Kinases/composition chimique , Arabidopsis/métabolisme , Protéines de liaison au calcium/métabolisme , Protéines de liaison au calcium/composition chimique , Liaison aux protéines , Phosphorylation , Simulation de docking moléculaire
2.
Proc Natl Acad Sci U S A ; 121(28): e2404887121, 2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-38968100

RÉSUMÉ

The timing of seed germination is controlled by the combination of internal dormancy and external factors. Temperature is a major environmental factor for seed germination. The permissive temperature range for germination is narrow in dormant seeds and expands during after-ripening (AR) (dormancy release). Quantitative trait loci analyses of preharvest sprouting in cereals have revealed that MKK3, a mitogen-activated protein kinase (MAPK) cascade protein, is a negative regulator of grain dormancy. Here, we show that the MAPKKK19/20-MKK3-MPK1/2/7/14 cascade modulates the germination temperature range in Arabidopsis seeds by elevating the germinability of the seeds at sub- and supraoptimal temperatures. The expression of MAPKKK19 and MAPKKK20 is induced around optimal temperature for germination in after-ripened seeds but repressed in dormant seeds. MPK7 activation depends on the expression levels of MAPKKK19/20, with expression occurring under conditions permissive for germination. Abscisic acid (ABA) and gibberellin (GA) are two major phytohormones which are involved in germination control. Activation of the MKK3 cascade represses ABA biosynthesis enzyme gene expression and induces expression of ABA catabolic enzyme and GA biosynthesis enzyme genes, resulting in expansion of the germinable temperature range. Our data demonstrate that the MKK3 cascade integrates temperature and AR signals to phytohormone metabolism and seed germination.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Régulation de l'expression des gènes végétaux , Germination , Graines , Température , Germination/physiologie , Germination/génétique , Arabidopsis/génétique , Arabidopsis/métabolisme , Arabidopsis/croissance et développement , Graines/croissance et développement , Graines/métabolisme , Graines/génétique , Protéines d'Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , MAP Kinase Kinase 3/métabolisme , MAP Kinase Kinase 3/génétique , Système de signalisation des MAP kinases/physiologie , Dormance des plantes/génétique , Dormance des plantes/physiologie , Transduction du signal , Mitogen-Activated Protein Kinases/métabolisme , Mitogen-Activated Protein Kinases/génétique
3.
Proc Natl Acad Sci U S A ; 121(28): e2309244121, 2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-38968115

RÉSUMÉ

DNA is organized into chromatin-like structures that support the maintenance and regulation of genomes. A unique and poorly understood form of DNA organization exists in chloroplasts, which are organelles of endosymbiotic origin responsible for photosynthesis. Chloroplast genomes, together with associated proteins, form membrane-less structures known as nucleoids. The internal arrangement of the nucleoid, molecular mechanisms of DNA organization, and connections between nucleoid structure and gene expression remain mostly unknown. We show that Arabidopsis thaliana chloroplast nucleoids have a unique sequence-specific organization driven by DNA binding to the thylakoid membranes. DNA associated with the membranes has high protein occupancy, has reduced DNA accessibility, and is highly transcribed. In contrast, genes with low levels of transcription are further away from the membranes, have lower protein occupancy, and have higher DNA accessibility. Membrane association of active genes relies on the pattern of transcription and proper chloroplast development. We propose a speculative model that transcription organizes the chloroplast nucleoid into a transcriptionally active membrane-associated core and a less active periphery.


Sujet(s)
Arabidopsis , Chloroplastes , Thylacoïdes , Arabidopsis/génétique , Arabidopsis/métabolisme , Chloroplastes/génétique , Chloroplastes/métabolisme , Thylacoïdes/métabolisme , Thylacoïdes/génétique , Thylacoïdes/ultrastructure , Régulation de l'expression des gènes végétaux , Protéines d'Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme , Transcription génétique , ADN des chloroplastes/génétique , ADN des chloroplastes/métabolisme
4.
J Agric Food Chem ; 72(26): 14581-14591, 2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38957087

RÉSUMÉ

Plants withstand pathogen attacks by recruiting beneficial bacteria to the rhizosphere and passing their legacy on to the next generation. However, the underlying mechanisms involved in this process remain unclear. In our study, we combined microbiomic and transcriptomic analyses to reveal how the rhizosphere microbiome assembled through multiple generations and defense-related genes expressed in Arabidopsis thaliana under pathogen attack stress. Our results showed that continuous exposure to the pathogen Pseudomonas syringae pv tomato DC3000 led to improved growth and increased disease resistance in a third generation of rps2 mutant Arabidopsis thaliana. It could be attributed to the enrichment of specific rhizosphere bacteria, such as Bacillus and Bacteroides. Pathways associated with plant immunity and growth in A. thaliana, such as MAPK signaling pathways, phytohormone signal transduction, ABC transporter proteins, and flavonoid biosynthesis, were activated under the influence of rhizosphere bacterial communities. Our findings provide a scientific basis for explaining the relationship between beneficial microbes and defense-related gene expression. Understanding microbial communities and the mechanisms involved in plant responses to disease can contribute to better plant management and reduction of pesticide use.


Sujet(s)
Arabidopsis , Résistance à la maladie , Maladies des plantes , Pseudomonas syringae , Rhizosphère , Arabidopsis/microbiologie , Arabidopsis/génétique , Arabidopsis/immunologie , Maladies des plantes/microbiologie , Maladies des plantes/génétique , Maladies des plantes/immunologie , Résistance à la maladie/génétique , Microbiote , Bactéries/génétique , Bactéries/classification , Bactéries/métabolisme , Bactéries/isolement et purification , Microbiologie du sol , Protéines d'Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme , Adaptation physiologique , Racines de plante/microbiologie , Racines de plante/génétique , Racines de plante/immunologie , Racines de plante/métabolisme , Régulation de l'expression des gènes végétaux
5.
Planta ; 260(2): 42, 2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38958765

RÉSUMÉ

MAIN CONCLUSION: Ambient concentrations of atmospheric nitrogen dioxide (NO2) inhibit the binding of PIF4 to promoter regions of auxin pathway genes to suppress hypocotyl elongation in Arabidopsis. Ambient concentrations (10-50 ppb) of atmospheric nitrogen dioxide (NO2) positively regulate plant growth to the extent that organ size and shoot biomass can nearly double in various species, including Arabidopsis thaliana (Arabidopsis). However, the precise molecular mechanism underlying NO2-mediated processes in plants, and the involvement of specific molecules in these processes, remain unknown. We measured hypocotyl elongation and the transcript levels of PIF4, encoding a bHLH transcription factor, and its target genes in wild-type (WT) and various pif mutants grown in the presence or absence of 50 ppb NO2. Chromatin immunoprecipitation assays were performed to quantify binding of PIF4 to the promoter regions of its target genes. NO2 suppressed hypocotyl elongation in WT plants, but not in the pifq or pif4 mutants. NO2 suppressed the expression of target genes of PIF4, but did not affect the transcript level of the PIF4 gene itself or the level of PIF4 protein. NO2 inhibited the binding of PIF4 to the promoter regions of two of its target genes, SAUR46 and SAUR67. In conclusion, NO2 inhibits the binding of PIF4 to the promoter regions of genes involved in the auxin pathway to suppress hypocotyl elongation in Arabidopsis. Consequently, PIF4 emerges as a pivotal participant in this regulatory process. This study has further clarified the intricate regulatory mechanisms governing plant responses to environmental pollutants, thereby advancing our understanding of how plants adapt to changing atmospheric conditions.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Facteurs de transcription à motif basique hélice-boucle-hélice , Régulation de l'expression des gènes végétaux , Hypocotyle , Dioxyde d'azote , Arabidopsis/génétique , Arabidopsis/croissance et développement , Arabidopsis/métabolisme , Hypocotyle/croissance et développement , Hypocotyle/génétique , Hypocotyle/effets des médicaments et des substances chimiques , Facteurs de transcription à motif basique hélice-boucle-hélice/métabolisme , Facteurs de transcription à motif basique hélice-boucle-hélice/génétique , Protéines d'Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme , Régulation de l'expression des gènes végétaux/effets des médicaments et des substances chimiques , Dioxyde d'azote/pharmacologie , Dioxyde d'azote/métabolisme , Régions promotrices (génétique)/génétique , Acides indolacétiques/métabolisme , Mutation
6.
Physiol Plant ; 176(4): e14428, 2024.
Article de Anglais | MEDLINE | ID: mdl-38981693

RÉSUMÉ

Chlorophyll is essential in photosynthesis, converting sunlight into chemical energy in plants, algae, and certain bacteria. Its structure, featuring a porphyrin ring enclosing a central magnesium ion, varies in forms like chlorophyll a, b, c, d, and f, allowing light absorption at a broader spectrum. With a 20-carbon phytyl tail (except for chlorophyll c), chlorophyll is anchored to proteins. Previous findings suggested the presence of chlorophyll with a modified farnesyl tail in thermophilic cyanobacteria Thermosynechoccocus vestitus. In our Arabidopsis thaliana PSII cryo-EM map, specific chlorophylls showed incomplete phytyl tails, suggesting potential farnesyl modifications. However, further high-resolution mass spectrometry (HRMS) analysis in A. thaliana and T. vestitus did not confirm the presence of any farnesyl tails. Instead, we propose the truncated tails in PSII models may result from binding pocket flexibility rather than actual modifications.


Sujet(s)
Arabidopsis , Chlorophylle , Complexe protéique du photosystème II , Chlorophylle/métabolisme , Complexe protéique du photosystème II/métabolisme , Arabidopsis/métabolisme , Spectrométrie de masse , Thermosynechococcus (genre)/métabolisme , Cryomicroscopie électronique
7.
Physiol Plant ; 176(4): e14432, 2024.
Article de Anglais | MEDLINE | ID: mdl-38981735

RÉSUMÉ

WRKYs play important roles in plant stress resistance. However, the role of WRKYs in non-heading Chinese cabbage (Brassica campestris ssp. chinensis) against Botrytis cinerea (B. cinerea) remains poorly understood. Herein, the expression of BcWRKY1 was induced by B. cinerea. Further, the role of BcWRKY1 in B. cinerea infection was identified. Silencing of BcWRKY1 in non-heading Chinese cabbage enhanced plant resistance to B. cinerea. After B. cinerea inoculation, BcWRKY1-silencing plants exhibited lower reactive oxygen species (ROS) content, higher jasmonic acid (JA) content, and the expression level of JA biosynthesis genes, BcOPR3, BcLOX3-1 and BcLOX3-2 were upregulated. Overexpression of BcWRKY1 in Arabidopsis exhibited a complementary phenotype. By directly targeting W-boxes in the promoter of BcLOX3-2, BcWRKY1 inhibited the transcription of this gene. In addition, 13 candidate interacting proteins of BcWRKY1 were identified by yeast two-hybrid (Y2H) screening, and the interaction between BcWRKY1 and BcCaM6 weakened the inhibition of BcLOX3-2. In summary, our findings suggest that BcWRKY1 interacts with BcCaM6 to negatively regulate disease resistance.


Sujet(s)
Botrytis , Brassica , Cyclopentanes , Résistance à la maladie , Régulation de l'expression des gènes végétaux , Oxylipines , Maladies des plantes , Protéines végétales , Botrytis/physiologie , Botrytis/pathogénicité , Cyclopentanes/métabolisme , Maladies des plantes/microbiologie , Maladies des plantes/génétique , Oxylipines/métabolisme , Protéines végétales/génétique , Protéines végétales/métabolisme , Résistance à la maladie/génétique , Brassica/microbiologie , Brassica/génétique , Brassica/métabolisme , Arabidopsis/microbiologie , Arabidopsis/génétique , Arabidopsis/métabolisme , Espèces réactives de l'oxygène/métabolisme , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique , Végétaux génétiquement modifiés
8.
Proc Natl Acad Sci U S A ; 121(29): e2320470121, 2024 Jul 16.
Article de Anglais | MEDLINE | ID: mdl-38990951

RÉSUMÉ

Although the formation of new walls during plant cell division tends to follow maximal tensile stress direction, analyses of individual cells over time reveal a much more variable behavior. The origin of such variability as well as the exact role of interphasic microtubule behavior before cell division have remained mysterious so far. To approach this question, we took advantage of the Arabidopsis stem, where the tensile stress pattern is both highly anisotropic and stable. Although cortical microtubules (CMTs) generally align with maximal tensile stress, we detected a specific time window, ca. 3 h before cell division, where cells form a radial pattern of CMTs. This microtubule array organization preceded preprophase band (PPB) formation, a transient CMT array predicting the position of the future division plane. It was observed under different growth conditions and was not related to cell geometry or polar auxin transport. Interestingly, this cortical radial pattern correlated with the well-documented increase of cytoplasmic microtubule accumulation before cell division. This radial organization was prolonged in cells of the trm678 mutant, where CMTs are unable to form a PPB. Whereas division plane orientation in trm678 is noisier, we found that cell division symmetry was in contrast less variable between daughter cells. We propose that this "radial step" reflects a trade-off in robustness for two essential cell division attributes: symmetry and orientation. This involves a "reset" stage in G2, where an increased cytoplasmic microtubule accumulation transiently disrupts CMT alignment with tissue stress.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Division cellulaire , Microtubules , Arabidopsis/métabolisme , Arabidopsis/cytologie , Microtubules/métabolisme , Division cellulaire/physiologie , Protéines d'Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , Acides indolacétiques/métabolisme
9.
Proc Natl Acad Sci U S A ; 121(29): e2323040121, 2024 Jul 16.
Article de Anglais | MEDLINE | ID: mdl-38985761

RÉSUMÉ

Stomata in leaves regulate gas (carbon dioxide and water vapor) exchange and water transpiration between plants and the atmosphere. SLow Anion Channel 1 (SLAC1) mediates anion efflux from guard cells and plays a crucial role in controlling stomatal aperture. It serves as a central hub for multiple signaling pathways in response to environmental stimuli, with its activity regulated through phosphorylation via various plant protein kinases. However, the molecular mechanism underlying SLAC1 phosphoactivation has remained elusive. Through a combination of protein sequence analyses, AlphaFold-based modeling and electrophysiological studies, we unveiled that the highly conserved motifs on the N- and C-terminal segments of SLAC1 form a cytosolic regulatory domain (CRD) that interacts with the transmembrane domain(TMD), thereby maintaining the channel in an autoinhibited state. Mutations in these conserved motifs destabilize the CRD, releasing autoinhibition in SLAC1 and enabling its transition into an activated state. Our further studies demonstrated that SLAC1 activation undergoes an autoinhibition-release process and subsequent structural changes in the pore helices. These findings provide mechanistic insights into the activation mechanism of SLAC1 and shed light on understanding how SLAC1 controls stomatal closure in response to environmental stimuli.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Stomates de plante , Transduction du signal , Phosphorylation , Stomates de plante/métabolisme , Protéines d'Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , Arabidopsis/métabolisme , Arabidopsis/génétique , Protéines membranaires/métabolisme , Protéines membranaires/génétique , Domaines protéiques , Mutation
10.
Cell Host Microbe ; 32(7): 1114-1128.e10, 2024 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-38955187

RÉSUMÉ

Plant immune homeostasis is achieved through a balanced immune activation and suppression, enabling effective defense while averting autoimmunity. In Arabidopsis, disrupting a mitogen-activated protein (MAP) kinase cascade triggers nucleotide-binding leucine-rich-repeat (NLR) SUPPRESSOR OF mkk1/2 2 (SUMM2)-mediated autoimmunity. Through an RNAi screen, we identify PUB5, a putative plant U-box E3 ligase, as a critical regulator of SUMM2-mediated autoimmunity. In contrast to typical E3 ligases, PUB5 stabilizes CRCK3, a calmodulin-binding receptor-like cytoplasmic kinase involved in SUMM2 activation. A closely related E3 ligase, PUB44, functions oppositely with PUB5 to degrade CRCK3 through monoubiquitylation and internalization. Furthermore, CRCK3, highly expressed in roots and conserved across plant species, confers resistance to Fusarium oxysporum, a devastating soil-borne fungal pathogen, in both Arabidopsis and cotton. These findings demonstrate the antagonistic role of an E3 ligase pair in fine-tuning kinase proteostasis for the regulation of NLR-mediated autoimmunity and highlight the function of autoimmune activators in governing plant root immunity against fungal pathogens.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Auto-immunité , Résistance à la maladie , Fusarium , Maladies des plantes , Immunité des plantes , Ubiquitin-protein ligases , Arabidopsis/immunologie , Arabidopsis/microbiologie , Arabidopsis/génétique , Ubiquitin-protein ligases/métabolisme , Ubiquitin-protein ligases/génétique , Protéines d'Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , Maladies des plantes/microbiologie , Maladies des plantes/immunologie , Fusarium/immunologie , Protéines NLR/métabolisme , Protéines NLR/génétique , Régulation de l'expression des gènes végétaux , Ubiquitination , Protéines de transport
11.
Planta ; 260(2): 48, 2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-38980389

RÉSUMÉ

MAIN CONCLUSION: We studied the D3-type cyclin function during gynoecium development in Arabidopsis and how they are related to the hormone cytokinin and the transcription factor SPATULA. Growth throughout the life of plants is sustained by cell division and differentiation processes in meristematic tissues. In Arabidopsis, gynoecium development implies a multiphasic process where the tissues required for pollination, fertilization, and seed development form. The Carpel Margin Meristem (CMM) is a mass of undifferentiated cells that gives rise to the gynoecium internal tissues, such as septum, ovules, placenta, funiculus, transmitting tract, style, and stigma. Different genetic and hormonal factors, including cytokinin, control the CMM function. Cytokinin regulates the cell cycle transitions through the activation of cell cycle regulators as cyclin genes. D3-type cyclins are expressed in proliferative tissues, favoring the mitotic cell cycle over the endoreduplication. Though the role of cytokinin in CMM and gynoecium development is highly studied, its specific role in regulating the cell cycle in this tissue remains unclear. Additionally, despite extensive research on the relationship between CYCD3 genes and cytokinin, the regulatory mechanism that connects them remains elusive. Here, we found that D3-type cyclins are expressed in proliferative medial and lateral tissues. Conversely, the depletion of the three CYCD3 genes showed that they are not essential for gynoecium development. However, the addition of exogenous cytokinin showed that they could control the division/differentiation balance in gynoecium internal tissues and outgrowths. Finally, we found that SPATULA can be a mechanistic link between cytokinin and the D3-type cyclins. The data suggest that the role of D3-type cyclins in gynoecium development is related to the cytokinin response, and they might be activated by the transcription factor SPATULA.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Facteurs de transcription à motif basique hélice-boucle-hélice , Cytokinine , Fleurs , Régulation de l'expression des gènes végétaux , Cytokinine/métabolisme , Arabidopsis/génétique , Arabidopsis/croissance et développement , Arabidopsis/métabolisme , Protéines d'Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , Fleurs/croissance et développement , Fleurs/génétique , Fleurs/métabolisme , Facteurs de transcription à motif basique hélice-boucle-hélice/métabolisme , Facteurs de transcription à motif basique hélice-boucle-hélice/génétique , Cycline D3/métabolisme , Cycline D3/génétique , Méristème/génétique , Méristème/croissance et développement , Méristème/métabolisme , Cyclines
12.
BMC Biol ; 22(1): 153, 2024 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-38982460

RÉSUMÉ

Pre-mRNA splicing is a significant step for post-transcriptional modifications and functions in a wide range of physiological processes in plants. Human NHP2L binds to U4 snRNA during spliceosome assembly; it is involved in RNA splicing and mediates the development of human tumors. However, no ortholog has yet been identified in plants. Therefore, we report At4g12600 encoding the ortholog NHP2L protein, and AtSNU13 associates with the component of the spliceosome complex; the atsnu13 mutant showed compromised resistance in disease resistance, indicating that AtSNU13 is a positive regulator of plant immunity. Compared to wild-type plants, the atsnu13 mutation resulted in altered splicing patterns for defense-related genes and decreased expression of defense-related genes, such as RBOHD and ALD1. Further investigation shows that AtSNU13 promotes the interaction between U4/U6.U5 tri-snRNP-specific 27 K and the motif in target mRNAs to regulate the RNA splicing. Our study highlights the role of AtSNU13 in regulating plant immunity by affecting the pre-mRNA splicing of defense-related genes.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Immunité des plantes , Précurseurs des ARN , Épissage des ARN , Immunité des plantes/génétique , Arabidopsis/génétique , Arabidopsis/immunologie , Précurseurs des ARN/génétique , Précurseurs des ARN/métabolisme , Protéines d'Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme , Régulation de l'expression des gènes végétaux , Splicéosomes/métabolisme , Splicéosomes/génétique , Maladies des plantes/génétique , Maladies des plantes/immunologie
13.
Planta ; 260(2): 38, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38951258

RÉSUMÉ

MAIN CONCLUSION: Our findings shed light on the regulation of anthocyanin and proanthocyanidin biosynthesis in chickpea seed coats. Expression of R2R3-MYB transcription factors CaLAP1 and CaLAP2 enhanced the anthocyanins and proanthocyanidins content in chickpea. The seed coat color is a major economic trait in leguminous crop chickpea (Cicer arietinum). Anthocyanins and proanthocyanidins (PAs) are two classes of flavonoids that mainly contribute to the flower, seed coat and color of Desi chickpea cultivars. Throughout the land plant lineage, the accumulation of anthocyanins and PAs is regulated by MYB and bHLH transcription factors (TFs), which form an MBW (MYB, bHLH, and WD40) complex. Here, we report two R2R3-MYB TFs in chickpea belonging to the anthocyanin-specific subgroup-6, CaLAP1 (Legume Anthocyanin Production 1), and CaLAP2 (Legume Anthocyanin Production 2), which are mainly expressed in the flowers and developmental stages of the seeds. CaLAP1 and CaLAP2 interact with TT8-like CabHLH1 and WD40, forming the MBW complex, and bind to the promoter sequences of anthocyanin- and PA biosynthetic genes CaCHS6, CaDFR2, CaANS, and CaANR, leading to anthocyanins and PA accumulation in the seed coat of chickpea. Moreover, these CaLAPs partially complement the anthocyanin-deficient phenotype in the Arabidopsis thaliana sextuple mutant seedlings. Overexpression of CaLAPs in chickpea resulted in significantly higher expression of anthocyanin and PA biosynthetic genes leading to a darker seed coat color with higher accumulation of anthocyanin and PA. Our findings show that CaLAPs positively modulate anthocyanin and PA content in seed coats, which might influence plant development and resistance to various biotic and abiotic stresses.


Sujet(s)
Anthocyanes , Cicer , Régulation de l'expression des gènes végétaux , Protéines végétales , Proanthocyanidines , Graines , Facteurs de transcription , Cicer/génétique , Cicer/métabolisme , Graines/génétique , Graines/métabolisme , Graines/croissance et développement , Anthocyanes/biosynthèse , Anthocyanes/métabolisme , Protéines végétales/génétique , Protéines végétales/métabolisme , Proanthocyanidines/biosynthèse , Proanthocyanidines/métabolisme , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme , Végétaux génétiquement modifiés/génétique , Arabidopsis/génétique , Arabidopsis/métabolisme , Fleurs/génétique , Fleurs/métabolisme , Fleurs/croissance et développement
14.
Methods Mol Biol ; 2830: 81-91, 2024.
Article de Anglais | MEDLINE | ID: mdl-38977570

RÉSUMÉ

Chromatin immunoprecipitation (ChIP) is used to analyze the targeting of a protein to a specific region of chromatin in vivo. Here, we present an instructive ChIP protocol for Arabidopsis imbibed seeds. The protocol covers all steps, from the sampling of imbibed seeds to the reverse crosslinking of immunoprecipitated protein-DNA complexes, and includes experimental tips and notes. The targeting of the protein to DNA is determined by quantitative PCR (qPCR) using reverse crosslinked DNA. The protocol can be further scaled up for ChIP-sequencing (ChIP-seq) analysis. As an example of the protocol, we include a ChIP-quantitative PCR (ChIP-qPCR) analysis demonstrating the targeting of PIF1 to the ABI5 promoter.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Immunoprécipitation de la chromatine , Graines , Arabidopsis/génétique , Arabidopsis/métabolisme , Immunoprécipitation de la chromatine/méthodes , Graines/génétique , Graines/métabolisme , Protéines d'Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme , Chromatine/génétique , Chromatine/métabolisme , Régions promotrices (génétique) , ADN des plantes/génétique , Réaction de polymérisation en chaine en temps réel/méthodes
15.
Methods Mol Biol ; 2830: 93-104, 2024.
Article de Anglais | MEDLINE | ID: mdl-38977571

RÉSUMÉ

In flowering plants, proper seed development is achieved through the constant interplay of fertilization products, embryo and endosperm, and maternal tissues. Understanding such a complex biological process requires microscopy techniques able to unveil the seed internal morphological structure. Seed thickness and relatively low permeability make conventional tissue staining techniques impractical unless combined with time-consuming dissecting methods. Here, we describe two techniques to imaging the three-dimensional structure of Arabidopsis seeds by confocal laser scanning microscopy. Both procedures, while differing in their time of execution and resolution, are based on cell wall staining of seed tissues with fluorescent dyes.


Sujet(s)
Arabidopsis , Microscopie confocale , Graines , Graines/croissance et développement , Microscopie confocale/méthodes , Imagerie tridimensionnelle/méthodes , Colorants fluorescents/composition chimique , Paroi cellulaire/ultrastructure , Coloration et marquage/méthodes
16.
Methods Mol Biol ; 2830: 27-34, 2024.
Article de Anglais | MEDLINE | ID: mdl-38977565

RÉSUMÉ

Germination test is fundamental and commonly used technique for seed dormancy and germination studies, and proper assessment of dormancy level and germination ability of a given set of seeds is prerequisite for most of the studies. However, germination is very sensitive to imbibition conditions, and dormancy development is also sensitive to growth conditions of the mother plants. In this chapter, we describe tips for plant growth and germination test mainly for physiological and molecular genetic studies with Arabidopsis. This protocol can be applied for other plant species with relatively small seeds and for various studies to analyze the effect of light, phytohormones, and other chemicals in seed germination.


Sujet(s)
Arabidopsis , Germination , Dormance des plantes , Facteur de croissance végétal , Graines , Dormance des plantes/génétique , Graines/croissance et développement , Graines/génétique , Graines/physiologie , Arabidopsis/génétique , Arabidopsis/physiologie , Arabidopsis/croissance et développement , Facteur de croissance végétal/métabolisme , Lumière
17.
Planta ; 260(2): 47, 2024 Jul 06.
Article de Anglais | MEDLINE | ID: mdl-38970694

RÉSUMÉ

MAIN CONCLUSION: Transcription of PagMYB147 was induced in poplar infected by Melampsora magnusiana, and a decline in its expression levels increases the host's susceptibility, whereas its overexpression promotes resistance to rust disease. Poplars are valuable tree species with diverse industrial and silvicultural applications. The R2R3-MYB subfamily of transcription factors plays a crucial role in response to biotic stresses. However, the functional studies on poplar R2R3-MYB genes in resistance to leaf rust disease are still insufficient. We identified 191 putative R2R3-MYB genes in the Populus trichocarpa genome. A phylogenetic analysis grouped poplar R2R3-MYBs and Arabidopsis R2R3-MYBs into 33 subgroups. We detected 12 tandem duplication events and 148 segmental duplication events, with the latter likely being the main contributor to the expansion of poplar R2R3-MYB genes. The promoter regions of these genes contained numerous cis-acting regulatory elements associated with response to stress and phytohormones. Analyses of RNA-Seq data identified a multiple R2R3-MYB genes response to Melampsora magnusiana (Mmag). Among them, PagMYB147 was significantly up-regulated under Mmag inoculation, salicylic acid (SA) and methyl jasmonate (MeJA) treatment, and its encoded product was primarily localized to the cell nucleus. Silencing of PagMYB147 exacerbated the severity of Mmag infection, likely because of decreased reactive oxygen species (ROS) production and phenylalanine ammonia-lyase (PAL) enzyme activity, and up-regulation of genes related to ROS scavenging and down-regulation of genes related to PAL, SA and JA signaling pathway. In contrast, plants overexpressing PagMYB147 showed the opposite ROS accumulation, PAL enzyme activity, SA and JA-related gene expressions, and improved Mmag resistance. Our findings suggest that PagMYB147 acts as a positive regulatory factor, affecting resistance in poplar to Mmag by its involvement in the regulation of ROS homeostasis, SA and JA signaling pathway.


Sujet(s)
Basidiomycota , Cyclopentanes , Résistance à la maladie , Régulation de l'expression des gènes végétaux , Phylogenèse , Maladies des plantes , Protéines végétales , Populus , Facteurs de transcription , Populus/génétique , Populus/microbiologie , Maladies des plantes/microbiologie , Maladies des plantes/génétique , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme , Protéines végétales/génétique , Protéines végétales/métabolisme , Basidiomycota/physiologie , Résistance à la maladie/génétique , Cyclopentanes/métabolisme , Cyclopentanes/pharmacologie , Oxylipines/métabolisme , Oxylipines/pharmacologie , Étude d'association pangénomique , Facteur de croissance végétal/métabolisme , Espèces réactives de l'oxygène/métabolisme , Acétates/pharmacologie , Arabidopsis/génétique , Arabidopsis/microbiologie
18.
Physiol Plant ; 176(4): e14409, 2024.
Article de Anglais | MEDLINE | ID: mdl-38973450

RÉSUMÉ

Plants have evolved various mechanisms to adapt to the ever-changing external environment. Autophagy is one such mechanism and has been suggested to play a key role in responding to and adapting to abiotic stresses in plants. However, the role of autophagy in adaptation to cold and freezing stresses remains to be characterized in detail. Here, we investigated the role of autophagy in the low-temperature response of Arabidopsis using atg mutants. Both the atg5-1 and atg10-1 mutants exhibited normal freezing tolerance, regardless of cold acclimation. A comparison of fresh weights indicated that the difference in growth between the wild-type and atg plants under cold conditions was rather small compared with that under normal conditions. Analysis of COLD-REGULATED gene expression showed no significant differences between the atg mutants and wild type. Treatment with 3-methyladenine, an inhibitor of autophagy, did not impair the induction of COR15Apro::LUC expression upon exposure to low temperature. Evaluation of autophagic activity using transgenic plants expressing RBCS-mRFP demonstrated that autophagy was rarely induced by cold exposure, even in the dark. Taken together, these data suggest that autophagy is suppressed by low temperatures and is dispensable for cold acclimation and freezing tolerance in Arabidopsis.


Sujet(s)
Acclimatation , Protéines d'Arabidopsis , Arabidopsis , Autophagie , Basse température , Régulation de l'expression des gènes végétaux , Végétaux génétiquement modifiés , Arabidopsis/génétique , Arabidopsis/physiologie , Autophagie/génétique , Autophagie/physiologie , Acclimatation/génétique , Protéines d'Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme , Congélation , Mutation , Protéine-5 associée à l'autophagie/génétique , Protéine-5 associée à l'autophagie/métabolisme
19.
Commun Biol ; 7(1): 829, 2024 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-38977904

RÉSUMÉ

Modern plant breeding, such as genomic selection and gene editing, is based on the knowledge of the genetic architecture of desired traits. Quantitative trait loci (QTL) analysis, which combines high throughput phenotyping and genotyping of segregating populations, is a powerful tool to identify these genetic determinants and to decipher the underlying mechanisms. However, meiotic recombination, which shuffles genetic information between generations, is limited: Typically only one to two exchange points, called crossovers, occur between a pair of homologous chromosomes. Here we test the effect on QTL analysis of boosting recombination, by mutating the anti-crossover factors RECQ4 and FIGL1 in Arabidopsis thaliana full hybrids and lines in which a single chromosome is hybrid. We show that increasing recombination ~6-fold empowers the detection and resolution of QTLs, reaching the gene scale with only a few hundred plants. Further, enhanced recombination unmasks some secondary QTLs undetected under normal recombination. These results show the benefits of enhanced recombination to decipher the genetic bases of traits.


Sujet(s)
Arabidopsis , Cartographie chromosomique , Locus de caractère quantitatif , Recombinaison génétique , Arabidopsis/génétique , Cartographie chromosomique/méthodes , Protéines d'Arabidopsis/génétique , Phénotype , RecQ helicases/génétique , Amélioration des plantes/méthodes , Chromosomes de plante/génétique , Crossing-over
20.
Methods Mol Biol ; 2827: 145-153, 2024.
Article de Anglais | MEDLINE | ID: mdl-38985267

RÉSUMÉ

Plant cell suspension cultures (PCSCs) are in vitro-cultured cells that can divide indefinitely in a sterile growth medium. These PCSCs can be derived from various plant tissues, such as the root, stem, leaves, or seeds, and are maintained in a suitable culture medium containing nutrients, vitamins, hormones, and other essential components necessary for their growth. PCSCs have extensive applications in biotechnology, particularly in producing pharmaceutical and chemical compounds. This chapter presents a protocol for generating cell lines from Arabidopsis thaliana root callus under different light conditions, which can be used to investigate the effects of light on plant cell growth and development. The protocol described in this chapter is a valuable tool for researchers interested in utilizing PCSCs in their studies.


Sujet(s)
Arabidopsis , Techniques de culture cellulaire , Lumière , Arabidopsis/cytologie , Arabidopsis/croissance et développement , Techniques de culture cellulaire/méthodes , Racines de plante/cytologie , Racines de plante/croissance et développement , Milieux de culture/composition chimique , Cellules cultivées
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...