Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 11.997
Filtrer
1.
Proc Natl Acad Sci U S A ; 121(28): e2404887121, 2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-38968100

RÉSUMÉ

The timing of seed germination is controlled by the combination of internal dormancy and external factors. Temperature is a major environmental factor for seed germination. The permissive temperature range for germination is narrow in dormant seeds and expands during after-ripening (AR) (dormancy release). Quantitative trait loci analyses of preharvest sprouting in cereals have revealed that MKK3, a mitogen-activated protein kinase (MAPK) cascade protein, is a negative regulator of grain dormancy. Here, we show that the MAPKKK19/20-MKK3-MPK1/2/7/14 cascade modulates the germination temperature range in Arabidopsis seeds by elevating the germinability of the seeds at sub- and supraoptimal temperatures. The expression of MAPKKK19 and MAPKKK20 is induced around optimal temperature for germination in after-ripened seeds but repressed in dormant seeds. MPK7 activation depends on the expression levels of MAPKKK19/20, with expression occurring under conditions permissive for germination. Abscisic acid (ABA) and gibberellin (GA) are two major phytohormones which are involved in germination control. Activation of the MKK3 cascade represses ABA biosynthesis enzyme gene expression and induces expression of ABA catabolic enzyme and GA biosynthesis enzyme genes, resulting in expansion of the germinable temperature range. Our data demonstrate that the MKK3 cascade integrates temperature and AR signals to phytohormone metabolism and seed germination.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Régulation de l'expression des gènes végétaux , Germination , Graines , Température , Germination/physiologie , Germination/génétique , Arabidopsis/génétique , Arabidopsis/métabolisme , Arabidopsis/croissance et développement , Graines/croissance et développement , Graines/métabolisme , Graines/génétique , Protéines d'Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , MAP Kinase Kinase 3/métabolisme , MAP Kinase Kinase 3/génétique , Système de signalisation des MAP kinases/physiologie , Dormance des plantes/génétique , Dormance des plantes/physiologie , Transduction du signal , Mitogen-Activated Protein Kinases/métabolisme , Mitogen-Activated Protein Kinases/génétique
2.
Planta ; 260(2): 42, 2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38958765

RÉSUMÉ

MAIN CONCLUSION: Ambient concentrations of atmospheric nitrogen dioxide (NO2) inhibit the binding of PIF4 to promoter regions of auxin pathway genes to suppress hypocotyl elongation in Arabidopsis. Ambient concentrations (10-50 ppb) of atmospheric nitrogen dioxide (NO2) positively regulate plant growth to the extent that organ size and shoot biomass can nearly double in various species, including Arabidopsis thaliana (Arabidopsis). However, the precise molecular mechanism underlying NO2-mediated processes in plants, and the involvement of specific molecules in these processes, remain unknown. We measured hypocotyl elongation and the transcript levels of PIF4, encoding a bHLH transcription factor, and its target genes in wild-type (WT) and various pif mutants grown in the presence or absence of 50 ppb NO2. Chromatin immunoprecipitation assays were performed to quantify binding of PIF4 to the promoter regions of its target genes. NO2 suppressed hypocotyl elongation in WT plants, but not in the pifq or pif4 mutants. NO2 suppressed the expression of target genes of PIF4, but did not affect the transcript level of the PIF4 gene itself or the level of PIF4 protein. NO2 inhibited the binding of PIF4 to the promoter regions of two of its target genes, SAUR46 and SAUR67. In conclusion, NO2 inhibits the binding of PIF4 to the promoter regions of genes involved in the auxin pathway to suppress hypocotyl elongation in Arabidopsis. Consequently, PIF4 emerges as a pivotal participant in this regulatory process. This study has further clarified the intricate regulatory mechanisms governing plant responses to environmental pollutants, thereby advancing our understanding of how plants adapt to changing atmospheric conditions.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Facteurs de transcription à motif basique hélice-boucle-hélice , Régulation de l'expression des gènes végétaux , Hypocotyle , Dioxyde d'azote , Arabidopsis/génétique , Arabidopsis/croissance et développement , Arabidopsis/métabolisme , Hypocotyle/croissance et développement , Hypocotyle/génétique , Hypocotyle/effets des médicaments et des substances chimiques , Facteurs de transcription à motif basique hélice-boucle-hélice/métabolisme , Facteurs de transcription à motif basique hélice-boucle-hélice/génétique , Protéines d'Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme , Régulation de l'expression des gènes végétaux/effets des médicaments et des substances chimiques , Dioxyde d'azote/pharmacologie , Dioxyde d'azote/métabolisme , Régions promotrices (génétique)/génétique , Acides indolacétiques/métabolisme , Mutation
3.
Proc Natl Acad Sci U S A ; 121(26): e2321877121, 2024 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-38905239

RÉSUMÉ

How tissue-level information encoded by fields of regulatory gene activity is translated into the patterns of cell polarity and growth that generate the diverse shapes of different species remains poorly understood. Here, we investigate this problem in the case of leaf shape differences between Arabidopsis thaliana, which has simple leaves, and its relative Cardamine hirsuta that has complex leaves divided into leaflets. We show that patterned expression of the transcription factor CUP-SHAPED COTYLEDON1 in C. hirsuta (ChCUC1) is a key determinant of leaf shape differences between the two species. Through inducible genetic perturbations, time-lapse imaging of growth, and computational modeling, we find that ChCUC1 provides instructive input into auxin-based leaf margin patterning. This input arises via transcriptional regulation of multiple auxin homeostasis components, including direct activation of WAG kinases that are known to regulate the polarity of PIN-FORMED auxin transporters. Thus, we have uncovered a mechanism that bridges biological scales by linking spatially distributed and species-specific transcription factor expression to cell-level polarity and growth, to shape diverse leaf forms.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Polarité de la cellule , Régulation de l'expression des gènes végétaux , Acides indolacétiques , Feuilles de plante , Acides indolacétiques/métabolisme , Feuilles de plante/croissance et développement , Feuilles de plante/génétique , Feuilles de plante/métabolisme , Polarité de la cellule/génétique , Arabidopsis/génétique , Arabidopsis/croissance et développement , Arabidopsis/métabolisme , Protéines d'Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , Cardamine/génétique , Cardamine/métabolisme , Cardamine/croissance et développement , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique
4.
Plant Mol Biol ; 114(3): 70, 2024 Jun 06.
Article de Anglais | MEDLINE | ID: mdl-38842600

RÉSUMÉ

Melon (Cucumis melo L.) is an important horticultural and economic crop. ETHYLENE RESPONSE FACTOR1 (ERF1) plays an important role in regulating plant development, and the resistance to multiple biotic and abiotic stresses. In this study, developmental biology, molecular biology and biochemical assays were performed to explore the biological function of CmERF1 in melon. Abundant transcripts of CmERF1 were found in ovary at green-yellow bud (GYB) and rapid enlargement (ORE) stages. In CmERF1 promoter, the cis-regulatory elements for indoleacetic acid (IAA), methyl jasmonate (MeJA), salicylic acid (SA), abscisic acid (ABA), gibberellic acid (GA), light and low temperature responses were found. CmERF1 could be significantly induced by ethylene, IAA, MeJA, SA, ABA, and respond to continuous light and low temperature stresses in melon. Ectopic expression of CmERF1 increased the length of siliqua and carpopodium, and expanded the size of leaves in Arabidopsis. Knockdown of CmERF1 led to smaller ovary at anthesis, mature fruit and leaves in melon. In CmERF1-RNAi #2 plants, 75 genes were differently expressed compared with control, and the promoter regions of 28 differential expression genes (DEGs) contained the GCC-box (AGCCGCC) or DRE (A/GCCGAC) cis-acting elements of CmERF1. A homolog of cell division cycle protein 48 (CmCDC48) was proved to be the direct target of CmERF1 by the yeast one-hybrid assay and dual-luciferase (LUC) reporter (DLR) system. These results indicated that CmERF1 was able to promote the growth of fruits and leaves, and involved in multiple hormones and environmental signaling pathways in melon.


Sujet(s)
Cucumis melo , Cyclopentanes , Fruit , Régulation de l'expression des gènes végétaux , Facteur de croissance végétal , Feuilles de plante , Protéines végétales , Végétaux génétiquement modifiés , Cucumis melo/génétique , Cucumis melo/croissance et développement , Cucumis melo/métabolisme , Feuilles de plante/génétique , Feuilles de plante/métabolisme , Feuilles de plante/croissance et développement , Feuilles de plante/effets des médicaments et des substances chimiques , Protéines végétales/génétique , Protéines végétales/métabolisme , Facteur de croissance végétal/métabolisme , Facteur de croissance végétal/pharmacologie , Fruit/génétique , Fruit/croissance et développement , Fruit/métabolisme , Cyclopentanes/pharmacologie , Cyclopentanes/métabolisme , Régions promotrices (génétique) , Oxylipines/pharmacologie , Oxylipines/métabolisme , Acide abscissique/métabolisme , Acide abscissique/pharmacologie , Arabidopsis/génétique , Arabidopsis/croissance et développement , Arabidopsis/métabolisme , Acides indolacétiques/métabolisme , Acétates/pharmacologie , Acide salicylique/métabolisme , Acide salicylique/pharmacologie
5.
Proc Natl Acad Sci U S A ; 121(25): e2406090121, 2024 Jun 18.
Article de Anglais | MEDLINE | ID: mdl-38865274

RÉSUMÉ

Endoplasmic reticulum (ER)-associated degradation (ERAD) plays key roles in controlling protein levels and quality in eukaryotes. The Ring Finger Protein 185 (RNF185)/membralin ubiquitin ligase complex was recently identified as a branch in mammals and is essential for neuronal function, but its function in plant development is unknown. Here, we report the map-based cloning and characterization of Narrow Leaf and Dwarfism 1 (NLD1), which encodes the ER membrane-localized protein membralin and specifically interacts with maize homologs of RNF185 and related components. The nld1 mutant shows defective leaf and root development due to reduced cell number. The defects of nld1 were largely restored by expressing membralin genes from Arabidopsis thaliana and mice, highlighting the conserved roles of membralin proteins in animals and plants. The excessive accumulation of ß-hydroxy ß-methylglutaryl-CoA reductase in nld1 indicates that the enzyme is a membralin-mediated ERAD target. The activation of bZIP60 mRNA splicing-related unfolded protein response signaling and marker gene expression in nld1, as well as DNA fragment and cell viability assays, indicate that membralin deficiency induces ER stress and cell death in maize, thereby affecting organogenesis. Our findings uncover the conserved, indispensable role of the membralin-mediated branch of the ERAD pathway in plants. In addition, ZmNLD1 contributes to plant architecture in a dose-dependent manner, which can serve as a potential target for genetic engineering to shape ideal plant architecture, thereby enhancing high-density maize yields.


Sujet(s)
Dégradation associée au réticulum endoplasmique , Protéines végétales , Ubiquitin-protein ligases , Zea mays , Zea mays/génétique , Zea mays/métabolisme , Zea mays/croissance et développement , Protéines végétales/métabolisme , Protéines végétales/génétique , Ubiquitin-protein ligases/métabolisme , Ubiquitin-protein ligases/génétique , Réticulum endoplasmique/métabolisme , Arabidopsis/génétique , Arabidopsis/métabolisme , Arabidopsis/croissance et développement , Animaux , Régulation de l'expression des gènes végétaux , Stress du réticulum endoplasmique , Protéines membranaires/métabolisme , Protéines membranaires/génétique , Souris , Protéines d'Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , Feuilles de plante/métabolisme , Feuilles de plante/génétique , Feuilles de plante/croissance et développement , Réponse aux protéines mal repliées
6.
Plant Physiol Biochem ; 212: 108779, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38823090

RÉSUMÉ

Melatonin (Mel) is a phytohormone that plays a crucial role in various plant processes, including stress response. Despite numerous studies on the role of Mel in stress resistance, its significance in plants exposed to benzalkonium chloride (BAC) pollution remains unexplored. BAC, a common antiseptic, poses a threat to terrestrial plants due to its widespread use and inefficient removal, leading to elevated concentrations in the environment. This study investigated the impact of BAC (0.5 mg L-1) pollution on wild-type Col-0 and snat2 knockout mutant Arabidopsis lines, revealing reduced growth, altered water relations, and gas exchange parameters. On the other hand, exogenous Mel (100 µM) treatments mitigated BAC-induced phytotoxicity and increased the growth rate by 1.8-fold in Col-0 and 2-fold in snat2 plants. snat2 mutant seedlings had a suppressed carbon assimilation rate (A) under normal conditions, but BAC contamination led to further A repression by 71% and 48% in Col-0 and snat2 leaves, respectively. However, Mel treatment on stressed plants was successful in improving Fv/Fm and increased the total photosynthesis efficiency by regulating photochemical reactions. Excessive H2O2 accumulation in the guard cells of plants exposed to BAC pollution was detected by confocal microscopy. Mel treatments triggered almost all antioxidant enzyme activities (except POX) in both Arabidopsis lines under stress. This enhanced antioxidant activity, facilitated by foliar Mel application, contributed to the alleviation of oxidative damage, regulation of photosynthesis reactions, and promotion of plant growth in Arabidopsis. In addition to corroborating results observed in many agricultural plants regarding the development of tolerance to environmental stresses, this study provides novel insights into the action mechanisms of Mel under the emerging pollutant benzalkonium chloride.


Sujet(s)
Antioxydants , Arabidopsis , Composés de benzalkonium , Mélatonine , Arabidopsis/effets des médicaments et des substances chimiques , Arabidopsis/génétique , Arabidopsis/métabolisme , Arabidopsis/croissance et développement , Mélatonine/pharmacologie , Composés de benzalkonium/pharmacologie , Antioxydants/métabolisme , Protéines d'Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , Peroxyde d'hydrogène/métabolisme , Photosynthèse/effets des médicaments et des substances chimiques , Mutation
7.
EMBO J ; 43(13): 2733-2758, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38831122

RÉSUMÉ

Organ morphogenesis depends on mechanical interactions between cells and tissues. These interactions generate forces that can be sensed by cells and affect key cellular processes. However, how mechanical forces, together with biochemical signals, contribute to the shaping of complex organs is still largely unclear. We address this question using the seed of Arabidopsis as a model system. We show that seeds first experience a phase of rapid anisotropic growth that is dependent on the response of cortical microtubule (CMT) to forces, which guide cellulose deposition according to shape-driven stresses in the outermost layer of the seed coat. However, at later stages of development, we show that seed growth is isotropic and depends on the properties of an inner layer of the seed coat that stiffens its walls in response to tension but has isotropic material properties. Finally, we show that the transition from anisotropic to isotropic growth is due to the dampening of cortical microtubule responses to shape-driven stresses. Altogether, our work supports a model in which spatiotemporally distinct mechanical responses control the shape of developing seeds in Arabidopsis.


Sujet(s)
Arabidopsis , Microtubules , Graines , Arabidopsis/croissance et développement , Arabidopsis/métabolisme , Arabidopsis/génétique , Graines/croissance et développement , Graines/métabolisme , Microtubules/métabolisme , Phénomènes biomécaniques , Contrainte mécanique , Anisotropie , Cellulose/métabolisme
8.
Planta ; 260(1): 27, 2024 Jun 12.
Article de Anglais | MEDLINE | ID: mdl-38865018

RÉSUMÉ

MAIN CONCLUSION: In Brassica rapa, the epigenetic modifier BraA.CLF orchestrates flowering by modulating H3K27me3 levels at the floral integrator genes FT, SOC1, and SEP3, thereby influencing their expression. CURLY LEAF (CLF) is the catalytic subunit of the plant Polycomb Repressive Complex 2 that mediates the trimethylation of histone H3 lysine 27 (H3K27me3), an epigenetic modification that leads to gene silencing. While the function of CURLY LEAF (CLF) has been extensively studied in Arabidopsis thaliana, its role in Brassica crops is barely known. In this study, we focused on the Brassica rapa homolog of CLF and found that the loss-of-function mutant braA.clf-1 exhibits an accelerated flowering together with pleiotropic phenotypic alterations compared to wild-type plants. In addition, we carried out transcriptomic and H3K27me3 genome-wide analyses to identify the genes regulated by BraA.CLF. Interestingly, we observed that several floral regulatory genes, including the B. rapa homologs of FT, SOC1 and SEP3, show reduced H3K27me3 levels and increased transcript levels compared to wild-type plants, suggesting that they are direct targets of BraA.CLF and key players in regulating flowering time in this crop. In addition, the results obtained will enhance our understanding of the epigenetic mechanisms regulating key developmental traits and will aid to increase crop yield by engineering new Brassica varieties with different flowering time requirements.


Sujet(s)
Brassica rapa , Fleurs , Régulation de l'expression des gènes végétaux , Histone , Brassica rapa/génétique , Brassica rapa/physiologie , Brassica rapa/croissance et développement , Fleurs/génétique , Fleurs/croissance et développement , Fleurs/physiologie , Histone/métabolisme , Histone/génétique , Protéines végétales/génétique , Protéines végétales/métabolisme , Épigenèse génétique , Arabidopsis/génétique , Arabidopsis/physiologie , Arabidopsis/croissance et développement , Protéines d'Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme , Histone-lysine N-methyltransferase/génétique , Histone-lysine N-methyltransferase/métabolisme
9.
Mol Plant ; 17(7): 1110-1128, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38825830

RÉSUMÉ

Spatiotemporal regulation of gene expression by polycomb repressive complex 2 (PRC2) is critical for animal and plant development. The Arabidopsis fertilization independent seed (FIS)-PRC2 complex functions specifically during plant reproduction from gametogenesis to seed development. After a double fertilization event, triploid endosperm proliferates early, followed by the growth of a diploid embryo, which replaces the endosperm in Arabidopsis and many dicots. Key genes critical for endosperm proliferation such as IKU2 and MINI3 are activated after fertilization. Here we report that two MADS-box AGAMOUS-LIKE (AGL) proteins associate with the key endosperm proliferation loci and recruit the FIS-PRC2 repressive complex at 4-5 days after pollination (DAP). Interestingly, AGL9 and AGL15 only accumulate toward the end of endosperm proliferation at 4-5 DAP and promote the deposition of H3K27me3 marks at key endosperm proliferation loci. Disruption of AGL9 and AGL15 or overexpression of AGL9 or AGL15 significantly influence endosperm proliferation and cellularization. Genome-wide analysis with cleavage Under Targets and tagmentation (CUT&Tag) sequencing and RNA sequencing revealed the landscape of endosperm H3K27me3 marks and gene expression profiles in Col-0 and agl9 agl15. CUT&Tag qPCR also demonstrated the occupancy of the two MADS-box proteins and FIS-PRC2 on a few representative target loci. Our studies suggest that MADS-box proteins could potentially recruit PRC2 to regulate many other developmental processes in plants or even in fungi and animals.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Endosperme , Régulation de l'expression des gènes végétaux , Protéines à domaine MADS , Arabidopsis/métabolisme , Arabidopsis/génétique , Arabidopsis/croissance et développement , Protéines d'Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , Endosperme/métabolisme , Endosperme/croissance et développement , Endosperme/génétique , Protéines à domaine MADS/métabolisme , Protéines à domaine MADS/génétique , Complexe répresseur Polycomb-2/métabolisme , Complexe répresseur Polycomb-2/génétique , Graines/métabolisme , Graines/croissance et développement , Graines/génétique , Prolifération cellulaire
10.
Plant Physiol Biochem ; 213: 108804, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38852237

RÉSUMÉ

Fruit development is mainly regulated by cell division and expansion. As a negative regulator of the anaphase-promoting complex/cyclosome, UVI4 plays important roles in plant growth and development via coordinating cell cycle. However, currently there is no report on UVI4's functions in regulating fruit development in strawberry. Here, Fragaria vesca homolog FvUVI4 is identified and localizes in the nucleus. FvUVI4 has high gene expression in roots, leaves, flower, buds and green fruits, and low expression in petiole, stem, white and yellow fruit. Fruit development of F. vesca 'Hawaii4' is regulated by endoreduplication, and the expression of FvUVI4 is negatively correlated with fruit cell size. Overexpression of FvUVI4 inhibits endoreduplication of leaves, flowers and fruits in both Arabidopsis and F. vesca 'Hawaii4', thereby limiting cell expansion and decreasing cell area. Overexpression of FvUVI4 also inhibits mitotic cell cycle leading to decreased cell number, and ultimately affects the growth of leaves, petals and seeds or fruits. Arabidopsis uvi4 mutants obtained via CRISPR-Cas9 technology display opposite growth phenotypes to Arabidopsis and F. vesca 'Hawaii4' overexpression lines, which can be restored by overexpression of FvUVI4 in Arabidopsis uvi4 mutants. In conclusion, our study indicates that FvUVI4 inhibits cell expansion and cell division to modulate receptacle development in woodland strawberry.


Sujet(s)
Division cellulaire , Fragaria , Fruit , Régulation de l'expression des gènes végétaux , Protéines végétales , Fragaria/génétique , Fragaria/métabolisme , Fragaria/croissance et développement , Fruit/génétique , Fruit/croissance et développement , Fruit/métabolisme , Protéines végétales/génétique , Protéines végétales/métabolisme , Arabidopsis/génétique , Arabidopsis/métabolisme , Arabidopsis/croissance et développement , Végétaux génétiquement modifiés
11.
Plant Physiol Biochem ; 213: 108841, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38879987

RÉSUMÉ

Epigenetic modifications, such as histone alterations, play crucial roles in regulating the flowering process in Arabidopsis, a typical long-day model plant. Histone modifications are notably involved in the intricate regulation of FLC, a key inhibitor of flowering. Although sirtuin-like protein and NAD+-dependent deacetylases play an important role in regulating energy metabolism, plant stress responses, and hormonal signal transduction, the mechanisms underlying their developmental transitions remain unclear. Thus, this study aimed to reveal how Arabidopsis NAD + -dependent deacetylase AtSRT1 affects flowering by regulating the expression of flowering integrators. Genetic and molecular evidence demonstrated that AtSRT1 mediates histone deacetylation by directly binding near the transcriptional start sites (TSS) of the flowering integrator genes FT and SOC1 and negatively regulating their expression by modulating the expression of the downstream gene LFY to inhibit flowering. Additionally, AtSRT1 directly down-regulates the expression of TOR, a glucose-driven central hub of energy signaling, which controls cell metabolism and growth in response to nutritional and environmental factors. This down-regulation occurs through binding near the TSS of TOR, facilitating the addition of H3K27me3 marks on FLC via the TOR-FIE-PRC2 pathway, further repressing flowering. These results uncover a multi-pathway regulatory network involving deacetylase AtSRT1 during the flowering process, highlighting its interaction with TOR as a hub for the coordinated regulation of energy metabolism and flowering initiation. These findings significantly enhance understanding of the complexity of histone modifications in the regulation of flowering.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Fleurs , Régulation de l'expression des gènes végétaux , Arabidopsis/génétique , Arabidopsis/métabolisme , Arabidopsis/croissance et développement , Arabidopsis/physiologie , Protéines d'Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , Fleurs/génétique , Fleurs/croissance et développement , Transduction du signal , Protéines à domaine MADS/métabolisme , Protéines à domaine MADS/génétique , Histone/métabolisme , Métabolisme énergétique/génétique , Histone deacetylases/métabolisme , Histone deacetylases/génétique
12.
Plant Physiol Biochem ; 213: 108842, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38889533

RÉSUMÉ

Initiation of flowering is a key switch for plants to shift from the vegetative growth to the phase of reproductive growth. This critical phase is essential not only for achieving successful reproduction, but also for facilitating environmental adaptation and maximizing yield potential. In the past decades, the environmental factors and genetic pathways that control flowering time have undergone extensive investigation in both model plant Arabidopsis and various crop species. The impact of environmental factors on plant flowering time is well documented. This paper focuses on the multilayered modulation of flowering time. Recent multi-omics approaches, and genetic screens have revealed additional components that modulate flowering time across various levels, encompassing chromatin modification, transcriptional and post-transcriptional control, as well as translational and post-translational regulation. The interplay between these various layers of regulation creates a finely-tuned system that can respond to a wide variety of inputs and allows plants to adjust flowering time in response to changing environmental conditions. In this review, we present a comprehensive overview of the recent progress made in understanding the intricate regulation of flowering time in plants, emphasizing the pivotal molecular components and their intricate interactions. Additionally, we provide an exhaustive list of key genes implicated in the intricate modulation of flowering time and offer a detailed summary of regulators of FLOWERING LOCUS T (FT) and FLOWERING LOCUS (FLC). We also discuss the implications of this knowledge for crop improvement and adaptation to changing environments.


Sujet(s)
Fleurs , Régulation de l'expression des gènes végétaux , Fleurs/génétique , Fleurs/croissance et développement , Fleurs/physiologie , Arabidopsis/génétique , Arabidopsis/physiologie , Arabidopsis/croissance et développement , Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme
13.
Plant Physiol Biochem ; 213: 108873, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38914037

RÉSUMÉ

BBXs are B-Box zinc finger proteins that can act as transcription factors and regulators of protein complexes. Several BBX proteins play important roles in plant development. Two Arabidopsis thaliana microProteins belonging to the BBX family, named miP1a and miP1b, homotypically interact with and modulate the activity of other BBX proteins, including CONSTANS, which transcriptionally activates the florigen, FLOWERING LOCUS T. Arabidopsis plants overexpressing miP1a and miP1b showed delayed flowering. In tomato, the closest homologs of miP1a and miP1b are the microProteins SlBBX16 and SlBBX17. This study was aimed at investigating whether the constitutive expression of SlBBX16/17 in Arabidopsis and tomato impacted reproductive development. The heterologous expression of the two tomato microProteins in Arabidopsis caused a delay in the flowering transition; however, the effect was weaker than that observed when the native miP1a/b were overexpressed. In tomato, overexpression of SlBBX17 prolonged the flowering period; this effect was accompanied by downregulation of the flowering inhibitors Self Pruning (SP) and SP5G. SlBBX16 and SlBBX17 can hetero-oligomerize with TCMP-2, a cystine-knot peptide involved in flowering pattern regulation and early fruit development in tomato. The increased expression of both microProteins also caused alterations in tomato fruit development: we observed in the case of SlBBX17 a decrease in the number and size of ripe fruits as compared to WT plants, while for SlBBX16, a delay in fruit production up to the breaker stage. These effects were associated with changes in the expression of GA-responsive genes.


Sujet(s)
Arabidopsis , Fleurs , Régulation de l'expression des gènes végétaux , Protéines végétales , Solanum lycopersicum , Solanum lycopersicum/génétique , Solanum lycopersicum/métabolisme , Solanum lycopersicum/croissance et développement , Protéines végétales/métabolisme , Protéines végétales/génétique , Arabidopsis/génétique , Arabidopsis/métabolisme , Arabidopsis/croissance et développement , Fleurs/génétique , Fleurs/croissance et développement , Fleurs/métabolisme , Végétaux génétiquement modifiés , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique , Fruit/croissance et développement , Fruit/métabolisme , Fruit/génétique , Reproduction ,
14.
Biochem Biophys Res Commun ; 725: 150228, 2024 Sep 17.
Article de Anglais | MEDLINE | ID: mdl-38936167

RÉSUMÉ

The DEAD-box family is the largest family of RNA helicases (RHs), playing crucial roles in RNA metabolism and plant stress resistance. In this study, we report that an RNA helicase, RH12, positively regulates plant salt tolerance, as rh12 knockout mutants exhibit heightened sensitivity to salt stress. Further analysis indicates that RH12 is involved in the abscisic acid (ABA) response, as rh12 knockout mutants show increased sensitivity to ABA. Examination of reactive oxygen species (ROS) revealed that RH12 helps inhibit ROS accumulation under salt stress during seed germination. Additionally, RH12 accelerates the degradation of specific germination-related transcripts. In conclusion, our results demonstrate that RH12 plays multiple roles in the salt stress response in Arabidopsis.


Sujet(s)
Acide abscissique , Protéines d'Arabidopsis , Arabidopsis , DEAD-box RNA helicases , Germination , Tolérance au sel , Graines , Arabidopsis/génétique , Arabidopsis/métabolisme , Arabidopsis/croissance et développement , Germination/génétique , Tolérance au sel/génétique , Protéines d'Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , DEAD-box RNA helicases/métabolisme , DEAD-box RNA helicases/génétique , Graines/génétique , Graines/croissance et développement , Graines/métabolisme , Acide abscissique/métabolisme , Régulation de l'expression des gènes végétaux , Espèces réactives de l'oxygène/métabolisme
15.
Int J Mol Sci ; 25(11)2024 May 27.
Article de Anglais | MEDLINE | ID: mdl-38892028

RÉSUMÉ

Amino acid permeases (AAPs) transporters are crucial for the long-distance transport of amino acids in plants, from source to sink. While Arabidopsis and rice have been extensively studied, research on foxtail millet is limited. This study identified two transcripts of SiAAP9, both of which were induced by NO3- and showed similar expression patterns. The overexpression of SiAAP9L and SiAAP9S in Arabidopsis inhibited plant growth and seed size, although SiAAP9 was found to transport more amino acids into seeds. Furthermore, SiAAP9-OX transgenic Arabidopsis showed increased tolerance to high concentrations of glutamate (Glu) and histidine (His). The high overexpression level of SiAAP9 suggested its protein was not only located on the plasma membrane but potentially on other organelles, as well. Interestingly, sequence deletion reduced SiAAP9's sensitivity to Brefeldin A (BFA), and SiAAP9 had ectopic localization on the endoplasmic reticulum (ER). Protoplast amino acid uptake experiments indicated that SiAAP9 enhanced Glu transport into foxtail millet cells. Overall, the two transcripts of SiAAP9 have similar functions, but SiAAP9L shows a higher colocalization with BFA compartments compared to SiAAP9S. Our research identifies a potential candidate gene for enhancing the nutritional quality of foxtail millet through breeding.


Sujet(s)
Arabidopsis , Réticulum endoplasmique , Régulation de l'expression des gènes végétaux , Protéines végétales , Végétaux génétiquement modifiés , Arabidopsis/génétique , Arabidopsis/métabolisme , Arabidopsis/croissance et développement , Protéines végétales/génétique , Protéines végétales/métabolisme , Réticulum endoplasmique/métabolisme , Graines/métabolisme , Graines/génétique , Graines/croissance et développement , Setaria (plante)/génétique , Setaria (plante)/métabolisme , Setaria (plante)/croissance et développement , Systèmes de transport d'acides aminés/métabolisme , Systèmes de transport d'acides aminés/génétique , Transport des protéines , Bréfeldine A/pharmacologie , Acides aminés/métabolisme , Acide glutamique/métabolisme
16.
Physiol Plant ; 176(3): e14371, 2024.
Article de Anglais | MEDLINE | ID: mdl-38837414

RÉSUMÉ

The WRKY transcription factor (TF) genes form a large family in higher plants, with 72 members in Arabidopsis (Arabidopsis thaliana). The gaseous phytohormone ethylene (ET) regulates multiple physiological processes in plants. It is known that 1-aminocyclopropane-1-carboxylic acid (ACC) synthases (ACSs, EC 4.4.1.14) limit the enzymatic reaction rate of ethylene synthesis. However, whether WRKY TFs regulate the expression of ACSs and/or ACC oxidases (ACOs, EC 1.14.17.4) remains largely elusive. Here, we demonstrated that Arabidopsis WRKY22 positively regulated the expression of a few ACS and ACO genes, thus promoting ethylene production. Inducible overexpression of WRKY22 caused shorter hypocotyls without ACC treatment. A qRT-PCR screening demonstrated that overexpression of WRKY22 activates the expression of several ACS and ACO genes. The promoter regions of ACS5, ACS11, and ACO5 were also activated by WRKY22, which was revealed by a dual luciferase reporter assay. A follow-up chromatin immunoprecipitation coupled with quantitative PCR (ChIP-qPCR) and electrophoretic mobility shift assay (EMSA) showed that the promoter regions of ACS5 and ACO5 could be bound by WRKY22 directly. Moreover, wrky22 mutants had longer primary roots and more lateral roots than wild type, while WRKY22-overexpressing lines showed the opposite phenotype. In conclusion, this study revealed that WRKY22 acts as a novel TF activating, at least, the expression of ACS5 and ACO5 to increase ethylene synthesis and modulate root development.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Éthylènes , Régulation de l'expression des gènes végétaux , Lyases , Racines de plante , Facteurs de transcription , Arabidopsis/génétique , Arabidopsis/croissance et développement , Arabidopsis/métabolisme , Éthylènes/métabolisme , Éthylènes/biosynthèse , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique , Protéines d'Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme , Racines de plante/génétique , Racines de plante/croissance et développement , Racines de plante/métabolisme , Lyases/génétique , Lyases/métabolisme , Amino-acid oxidoreductases/génétique , Amino-acid oxidoreductases/métabolisme , Régions promotrices (génétique)/génétique , Carbon-carbon lyases/métabolisme , Carbon-carbon lyases/génétique , Activation de la transcription/génétique
17.
Nat Commun ; 15(1): 4689, 2024 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-38824148

RÉSUMÉ

Global warming will lead to significantly increased temperatures on earth. Plants respond to high ambient temperature with altered developmental and growth programs, termed thermomorphogenesis. Here we show that thermomorphogenesis is conserved in Arabidopsis, soybean, and rice and that it is linked to a decrease in the levels of the two macronutrients nitrogen and phosphorus. We also find that low external levels of these nutrients abolish root growth responses to high ambient temperature. We show that in Arabidopsis, this suppression is due to the function of the transcription factor ELONGATED HYPOCOTYL 5 (HY5) and its transcriptional regulation of the transceptor NITRATE TRANSPORTER 1.1 (NRT1.1). Soybean and Rice homologs of these genes are expressed consistently with a conserved role in regulating temperature responses in a nitrogen and phosphorus level dependent manner. Overall, our data show that root thermomorphogenesis is a conserved feature in species of the two major groups of angiosperms, monocots and dicots, that it leads to a reduction of nutrient levels in the plant, and that it is dependent on environmental nitrogen and phosphorus supply, a regulatory process mediated by the HY5-NRT1.1 module.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Régulation de l'expression des gènes végétaux , Glycine max , Azote , Oryza , Phosphore , Racines de plante , Arabidopsis/génétique , Arabidopsis/croissance et développement , Arabidopsis/métabolisme , Phosphore/métabolisme , Azote/métabolisme , Racines de plante/croissance et développement , Racines de plante/métabolisme , Racines de plante/génétique , Oryza/génétique , Oryza/croissance et développement , Oryza/métabolisme , Protéines d'Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , Glycine max/génétique , Glycine max/croissance et développement , Glycine max/métabolisme , Nutriments/métabolisme , Protéines végétales/métabolisme , Protéines végétales/génétique , Protéines nucléaires/métabolisme , Protéines nucléaires/génétique , Température élevée , Transporteurs de nitrate , Transporteurs d'anions/métabolisme , Transporteurs d'anions/génétique , Température , Facteurs de transcription à motif basique et à glissière à leucines
18.
Mol Biol Rep ; 51(1): 763, 2024 Jun 14.
Article de Anglais | MEDLINE | ID: mdl-38874813

RÉSUMÉ

BACKGROUND: Arabidopsis thaliana primary root growth has become a model for evo-devo studies due to its simplicity and facility to record cell proliferation and differentiation. To identify new genetic components relevant to primary root growth, we used a Genome-Wide Association Studies (GWAS) meta-analysis approach using data published in the last decade. In this work, we performed intra and inter-studies analyses to discover new genetic components that could participate in primary root growth. METHODS AND RESULTS: We used 639 accessions from nine different studies under control conditions and performed different GWAS tests. We found that primary root growth changes were associated with 41 genes, of which six (14.6%) have been previously described as inhibitors or promoters of primary root growth. The knockdown lines of two genes, Suppressor of Gene Silencing (SGS3), involved in tasiRNA processing, and a gene with a Sterile Alpha Motif (SAM) motif named NOJOCH MOOTS (NOJO), confirmed their role as repressors of primary root growth, none has been shown to participate in this developmental process before. CONCLUSIONS: In summary, our GWAS analysis of different available studies identified new genes that participate in primary root growth; two of them were identified as repressors of primary root growth.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Étude d'association pangénomique , Racines de plante , Arabidopsis/génétique , Arabidopsis/croissance et développement , Étude d'association pangénomique/méthodes , Racines de plante/génétique , Racines de plante/croissance et développement , Protéines d'Arabidopsis/génétique , Régulation de l'expression des gènes végétaux/génétique , Polymorphisme de nucléotide simple/génétique , Phénotype , Gènes de plante/génétique
19.
Sci Rep ; 14(1): 13788, 2024 06 14.
Article de Anglais | MEDLINE | ID: mdl-38877117

RÉSUMÉ

Root hair (RH) cells are important for the growth and survival of seedlings. They favor plant-microbe interactions and nutrients uptake. When invading the soil, RH cells have to penetrate a dense medium exhibiting a variety of physical properties, such as mechanical resistance, that impact the growth and survival of plants. Here we investigate the effect of the mechanical resistance of the culture medium on RH-physical and phenotypical parameters such as length, time, and speed of growth. We also analyze the impact of the environment on nuclear dynamics. We show that the RH growth rate and the nucleus speed decrease similarly as mechanical resistance increases while the time of growth of RH cells is invariable. Moreover, during RH growth, the nucleus-to-tip distance was found to decrease when the stiffness of the environment was increased. Along this line, using Latrunculin B treatment in liquid growth media, we could internally slow down RH growth to reach speeds similar to those observed in stiff solid media while the nucleus-to-tip distance was only slightly affected, supporting thus the idea of a specific effect of mechanical resistance of the environment on nucleus dynamics.


Sujet(s)
Noyau de la cellule , Racines de plante , Racines de plante/croissance et développement , Noyau de la cellule/métabolisme , Arabidopsis/croissance et développement , Arabidopsis/physiologie , Milieux de culture , Thiazolidines/pharmacologie , Plant/croissance et développement , Composés hétérocycliques bicycliques/pharmacologie
20.
Int J Mol Sci ; 25(11)2024 May 31.
Article de Anglais | MEDLINE | ID: mdl-38892282

RÉSUMÉ

The rhizobacterial strain BJ3 showed 16S rDNA sequence similarity to species within the Burkholderia genus. Its complete genome sequence revealed a 97% match with Burkholderia contaminans and uncovered gene clusters essential for plant-growth-promoting traits (PGPTs). These clusters include genes responsible for producing indole acetic acid (IAA), osmolytes, non-ribosomal peptides (NRPS), volatile organic compounds (VOCs), siderophores, lipopolysaccharides, hydrolytic enzymes, and spermidine. Additionally, the genome contains genes for nitrogen fixation and phosphate solubilization, as well as a gene encoding 1-aminocyclopropane-1-carboxylate (ACC) deaminase. The treatment with BJ3 enhanced root architecture, boosted vegetative growth, and accelerated early flowering in Arabidopsis. Treated seedlings also showed increased lignin production and antioxidant capabilities, as well as notably increased tolerance to water deficit and high salinity. An RNA-seq transcriptome analysis indicated that BJ3 treatment significantly activated genes related to immunity induction, hormone signaling, and vegetative growth. It specifically activated genes involved in the production of auxin, ethylene, and salicylic acid (SA), as well as genes involved in the synthesis of defense compounds like glucosinolates, camalexin, and terpenoids. The expression of AP2/ERF transcription factors was markedly increased. These findings highlight BJ3's potential to produce various bioactive metabolites and its ability to activate auxin, ethylene, and SA signaling in Arabidopsis, positioning it as a new Burkholderia strain that could significantly improve plant growth, stress resilience, and immune function.


Sujet(s)
Arabidopsis , Burkholderia , Stress physiologique , Burkholderia/génétique , Burkholderia/métabolisme , Burkholderia/croissance et développement , Arabidopsis/génétique , Arabidopsis/croissance et développement , Arabidopsis/microbiologie , Stress physiologique/génétique , Développement des plantes/génétique , Acides indolacétiques/métabolisme , Régulation de l'expression des gènes végétaux , Génomique/méthodes , Facteur de croissance végétal/métabolisme , Racines de plante/microbiologie , Racines de plante/croissance et développement , Racines de plante/génétique , Racines de plante/métabolisme , Éthylènes/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...