Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 286
Filtrer
1.
Sci China Life Sci ; 67(6): 1089-1105, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38842635

RÉSUMÉ

Histone H3 Lys36 (H3K36) methylation and its associated modifiers are crucial for DNA double-strand break (DSB) repair, but the mechanism governing whether and how different H3K36 methylation forms impact repair pathways is unclear. Here, we unveil the distinct roles of H3K36 dimethylation (H3K36me2) and H3K36 trimethylation (H3K36me3) in DSB repair via non-homologous end joining (NHEJ) or homologous recombination (HR). Yeast cells lacking H3K36me2 or H3K36me3 exhibit reduced NHEJ or HR efficiency. yKu70 and Rfa1 bind H3K36me2- or H3K36me3-modified peptides and chromatin, respectively. Disrupting these interactions impairs yKu70 and Rfa1 recruitment to damaged H3K36me2- or H3K36me3-rich loci, increasing DNA damage sensitivity and decreasing repair efficiency. Conversely, H3K36me2-enriched intergenic regions and H3K36me3-enriched gene bodies independently recruit yKu70 or Rfa1 under DSB stress. Importantly, human KU70 and RPA1, the homologs of yKu70 and Rfa1, exclusively associate with H3K36me2 and H3K36me3 in a conserved manner. These findings provide valuable insights into how H3K36me2 and H3K36me3 regulate distinct DSB repair pathways, highlighting H3K36 methylation as a critical element in the choice of DSB repair pathway.


Sujet(s)
Cassures double-brin de l'ADN , Réparation de l'ADN par jonction d'extrémités , Histone , Protéines de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Histone/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , Humains , Méthylation , Autoantigène Ku/métabolisme , Autoantigène Ku/génétique , Protéine A de réplication/métabolisme , Protéine A de réplication/génétique , Recombinaison homologue , Protéines de liaison à l'ADN/métabolisme , Protéines de liaison à l'ADN/génétique , Réparation de l'ADN , Chromatine/métabolisme , Chromatine/génétique
2.
Eur J Pharmacol ; 975: 176647, 2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-38754534

RÉSUMÉ

The emergence of chemoresistance poses a significant challenge to the efficacy of DNA-damaging agents in cancer treatment, in part due to the inherent DNA repair capabilities of cancer cells. The Ku70/80 protein complex (Ku) plays a central role in double-strand breaks (DSBs) repair through the classical non-homologous end joining (c-NHEJ) pathway, and has proven to be one of the most promising drug target for cancer treatment when combined with radiotherapy or chemotherapy. In this study, we conducted a high-throughput screening of small-molecule inhibitors targeting the Ku complex by using a fluorescence polarization-based DNA binding assay. From a library of 11,745 small molecules, UMI-77 was identified as a potent Ku inhibitor, with an IC50 value of 2.3 µM. Surface plasmon resonance and molecular docking analyses revealed that UMI-77 directly bound the inner side of Ku ring, thereby disrupting Ku binding with DNA. In addition, UMI-77 also displayed potent inhibition against MUS81-EME1, a key player in homologous recombination (HR), demonstrating its potential for blocking both NHEJ- and HR-mediated DSB repair pathways. Further cell-based studies showed that UMI-77 could impair bleomycin-induced DNA damage repair, and significantly sensitized multiple cancer cell lines to the DNA-damaging agents. Finally, in a mouse xenograft tumor model, UMI-77 significantly enhanced the chemotherapeutic efficacy of etoposide with little adverse physiological effects. Our work offers a new avenue to combat chemoresistance in cancer treatment, and suggests that UMI-77 could be further developed as a promising candidate in cancer treatment.


Sujet(s)
Antinéoplasiques , Autoantigène Ku , Humains , Autoantigène Ku/métabolisme , Animaux , Lignée cellulaire tumorale , Souris , Antinéoplasiques/pharmacologie , Antinéoplasiques/composition chimique , Altération de l'ADN/effets des médicaments et des substances chimiques , Simulation de docking moléculaire , Tests d'activité antitumorale sur modèle de xénogreffe , Réparation de l'ADN par jonction d'extrémités/effets des médicaments et des substances chimiques , Étoposide/pharmacologie , Découverte de médicament , Cassures double-brin de l'ADN/effets des médicaments et des substances chimiques , Résistance aux médicaments antinéoplasiques/effets des médicaments et des substances chimiques
3.
Nucleic Acids Res ; 52(11): 6360-6375, 2024 Jun 24.
Article de Anglais | MEDLINE | ID: mdl-38682589

RÉSUMÉ

Although DNA-PK inhibitors (DNA-PK-i) have been applied in clinical trials for cancer treatment, the biomarkers and mechanism of action of DNA-PK-i in tumor cell suppression remain unclear. Here, we observed that a low dose of DNA-PK-i and PARP inhibitor (PARP-i) synthetically suppresses BRCA-deficient tumor cells without inducing DNA double-strand breaks (DSBs). Instead, we found that a fraction of DNA-PK localized inside of nucleoli, where we did not observe obvious DSBs. Moreover, the Ku proteins recognize pre-rRNA that facilitates DNA-PKcs autophosphorylation independent of DNA damage. Ribosomal proteins are also phosphorylated by DNA-PK, which regulates pre-rRNA biogenesis. In addition, DNA-PK-i acts together with PARP-i to suppress pre-rRNA biogenesis and tumor cell growth. Collectively, our studies reveal a DNA damage repair-independent role of DNA-PK-i in tumor suppression.


Sujet(s)
Cassures double-brin de l'ADN , Réparation de l'ADN , DNA-activated protein kinase , Autoantigène Ku , Précurseurs des ARN , DNA-activated protein kinase/métabolisme , DNA-activated protein kinase/génétique , Humains , Précurseurs des ARN/métabolisme , Précurseurs des ARN/génétique , Lignée cellulaire tumorale , Autoantigène Ku/métabolisme , Autoantigène Ku/génétique , Phosphorylation , Nucléole/métabolisme , Nucléole/génétique , Nucléole/effets des médicaments et des substances chimiques , Inhibiteurs de poly(ADP-ribose) polymérases/pharmacologie , Protéine BRCA1/génétique , Protéine BRCA1/métabolisme , ARN ribosomique/métabolisme , ARN ribosomique/génétique , Animaux , Protéines ribosomiques/génétique , Protéines ribosomiques/métabolisme
4.
Cell Death Differ ; 31(6): 792-803, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38664591

RÉSUMÉ

As the major DNA sensor that activates the STING-TBK1 signaling cascade, cGAS is mainly present in the cytosol. A number of recent reports have indicated that cGAS also plays critical roles in the nucleus. Our previous work demonstrated for the first time that cGAS is translocated to the nucleus upon the occurrence of DNA damage and inhibits homologous recombination (HR), one of the two major pathways of DNA double strand break (DSB) repair. However, whether nuclear cGAS regulates the other DSB repair pathway, nonhomologous end joining (NHEJ), which can be further divided into the less error-prone canonical NHEJ (c-NHEJ) and more mutagenic alternative NHEJ (alt-NHEJ) subpathways, has not been characterized. Here, we demonstrated that cGAS tipped the balance of the two NHEJ subpathways toward c-NHEJ. Mechanistically, the cGAS-Ku80 complex enhanced the interaction between DNA-PKcs and the deubiquitinase USP7 to improve DNA-PKcs protein stability, thereby promoting c-NHEJ. In contrast, the cGAS-Ku80 complex suppressed alt-NHEJ by directly binding to the promoter of Polθ to suppress its transcription. Together, these findings reveal a novel function of nuclear cGAS in regulating DSB repair, suggesting that the presence of cGAS in the nucleus is also important in the maintenance of genome integrity.


Sujet(s)
Réparation de l'ADN par jonction d'extrémités , Autoantigène Ku , Nucleotidyltransferases , Humains , Nucleotidyltransferases/métabolisme , Nucleotidyltransferases/génétique , Autoantigène Ku/métabolisme , Autoantigène Ku/génétique , Cassures double-brin de l'ADN , DNA-activated protein kinase/métabolisme , Cellules HEK293 , Animaux , Cellules HeLa , Souris
5.
Cell Death Differ ; 31(5): 683-696, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38589496

RÉSUMÉ

Protein phosphatase 1 catalytic subunit gamma (PPP1CC) promotes DNA repair and tumor development and progression, however, its underlying mechanisms remain unclear. This study investigated the molecular mechanism of PPP1CC's involvement in DNA repair and the potential clinical implications. High expression of PPP1CC was significantly correlated with radioresistance and poor prognosis in human nasopharyngeal carcinoma (NPC) patients. The mechanistic study revealed that PPP1CC bound to Ku70/Ku80 heterodimers and activated DNA-PKcs by promoting DNA-PK holoenzyme formation, which enhanced nonhomologous end junction (NHEJ) -mediated DNA repair and led to radioresistance. Importantly, BRCA1-BRCA2-containing complex subunit 3 (BRCC3) interacted with PPP1CC to enhance its stability by removing the K48-linked polyubiquitin chain at Lys234 to prevent PPP1CC degradation. Therefore, BRCC3 helped the overexpressed PPP1CC to maintain its high protein level, thereby sustaining the elevation of DNA repair capacity and radioresistance. Our study identified the molecular mechanism by which PPP1CC promotes NHEJ-mediated DNA repair and radioresistance, suggesting that the BRCC3-PPP1CC-Ku70 axis is a potential therapeutic target to improve the efficacy of radiotherapy.


Sujet(s)
Réparation de l'ADN par jonction d'extrémités , Cancer du nasopharynx , Tumeurs du rhinopharynx , Protein Phosphatase 1 , Radiotolérance , Humains , Cancer du nasopharynx/radiothérapie , Cancer du nasopharynx/anatomopathologie , Cancer du nasopharynx/génétique , Cancer du nasopharynx/métabolisme , Protein Phosphatase 1/métabolisme , Protein Phosphatase 1/génétique , Tumeurs du rhinopharynx/radiothérapie , Tumeurs du rhinopharynx/génétique , Tumeurs du rhinopharynx/anatomopathologie , Tumeurs du rhinopharynx/métabolisme , Radiotolérance/génétique , Pronostic , Lignée cellulaire tumorale , Autoantigène Ku/métabolisme , Autoantigène Ku/génétique , Animaux , DNA-activated protein kinase/métabolisme , DNA-activated protein kinase/génétique , Souris nude , Femelle , Mâle , Réparation de l'ADN , Souris
6.
BMC Cancer ; 24(1): 519, 2024 Apr 24.
Article de Anglais | MEDLINE | ID: mdl-38654216

RÉSUMÉ

BACKGROUND: Uveal melanoma (UVM) is the most common primary intraocular tumor in adults, with a median survival of 4-5 months following metastasis. DNA damage response (DDR) upregulation in UVM, which could be linked to its frequent activation of the PI3K/AKT pathway, contributes to its treatment resistance. We have reported that embryonic stem cell microenvironments (ESCMe) can revert cancer cells to less aggressive states through downregulation of the PI3K signaling, showing promise in modulating the DDR of UVM. METHODS: Since nonhomologous end joining (NHEJ) is the main DNA repair mechanism in UVM, this study utilized gene expression analysis and survival prognosis analysis to investigate the role of NHEJ-related genes in UVM based on public databases. Xenograft mouse models were established to assess the therapeutic potential of ESC transplantation and exposure to ESC-conditioned medium (ESC-CM) on key DNA repair pathways in UVM. Quantitative PCR and immunohistochemistry were used to analyze NHEJ pathway-related gene expression in UVM and surrounding normal tissues. Apoptosis in UVM tissues was evaluated using the TUNEL assay. RESULTS: PRKDC, KU70, XRCC5, LIG4 and PARP1 showed significant correlations with UM progression. High expression of PRKDC and XRCC5 predicted poorer overall survival, while low PARP1 and XRCC6 expression predicted better disease-free survival in UVM patients. ESCMe treatment significantly inhibited the NHEJ pathway transcriptionally and translationally and promoted apoptosis in tumor tissues in mice bearing UVM. Furthermore, ESC transplantation enhanced DDR activities in surrounding normal cells, potentially mitigating the side effects of cancer therapy. Notably, direct cell-to-cell contact with ESCs was more effective than their secreted factors in regulating the NHEJ pathway. CONCLUSIONS: Our results suggest that NHEJ-related genes might serve as prognostic markers and therapeutic targets in UVM. These findings support the therapeutic potential of ESC-based therapy in enhancing UVM sensitivity to radiochemotherapy and improving treatment outcomes while minimizing damage to healthy cells.


Sujet(s)
Altération de l'ADN , Mélanome , Microenvironnement tumoral , Tumeurs de l'uvée , Animaux , Humains , Tumeurs de l'uvée/génétique , Tumeurs de l'uvée/anatomopathologie , Tumeurs de l'uvée/métabolisme , Tumeurs de l'uvée/mortalité , Souris , Mélanome/génétique , Mélanome/anatomopathologie , Mélanome/métabolisme , Mélanome/thérapie , Cellules souches embryonnaires/métabolisme , Réparation de l'ADN par jonction d'extrémités , Lignée cellulaire tumorale , Apoptose/génétique , Régulation de l'expression des gènes tumoraux , Femelle , Tests d'activité antitumorale sur modèle de xénogreffe , Pronostic , Mâle , Autoantigène Ku/métabolisme , Autoantigène Ku/génétique , Transduction du signal , Réparation de l'ADN
7.
Cell Signal ; 119: 111164, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38583745

RÉSUMÉ

The development of resistance to cisplatin (CDDP) in bladder cancer presents a notable obstacle, with indications pointing to the substantial role of circular RNAs (circRNAs) in this resistance. Nevertheless, the precise mechanisms through which circRNAs govern resistance are not yet fully understood. Our findings demonstrate that circUGGT2 is significantly upregulated in bladder cancer, facilitating cancer cell migration and invasion. Additionally, our analysis of eighty patient outcomes revealed a negative correlation between circUGGT2 expression levels and prognosis. Using circRNA pull-down assays, mass spectrometry analyses, and RNA Immunoprecipitation (RIP), it was shown that circUGGT2 interacts with the KU heterodimer, consisting of KU70 and KU80. Both KU70 and KU80 are critical components of the non-homologous end joining (NHEJ) pathway, which plays a role in CDDP resistance. Flow cytometry was utilized in this study to illustrate the impact of circUGGT2 on the sensitivity of bladder cancer cell lines to CDDP through its interaction with KU70 and KU80. Additionally, a reduction in the levels of DNA repair factors associated with the NHEJ pathway, such as KU70, KU80, DNA-PKcs, and XRCC4, was observed in chromatin of bladder cancer cells following circUGGT2 knockdown post-CDDP treatment, while the levels of DNA repair factors in total cellular proteins remained constant. Thus, the promotion of CDDP resistance by circUGGT2 is attributed to its facilitation of repair factor recruitment to DNA breaks via interaction with the KU heterodimer. Furthermore, our study demonstrated that knockdown of circUGGT2 resulted in reduced levels of γH2AX, a marker of DNA damage response, in CDDP-treated bladder cancer cells, implicating circUGGT2 in the NHEJ pathway for DNA repair.


Sujet(s)
Cisplatine , Réparation de l'ADN par jonction d'extrémités , Résistance aux médicaments antinéoplasiques , Autoantigène Ku , ARN circulaire , Tumeurs de la vessie urinaire , Humains , Tumeurs de la vessie urinaire/génétique , Tumeurs de la vessie urinaire/anatomopathologie , Tumeurs de la vessie urinaire/métabolisme , Tumeurs de la vessie urinaire/traitement médicamenteux , Cisplatine/pharmacologie , Cisplatine/usage thérapeutique , Résistance aux médicaments antinéoplasiques/génétique , ARN circulaire/métabolisme , ARN circulaire/génétique , Lignée cellulaire tumorale , Autoantigène Ku/métabolisme , Autoantigène Ku/génétique , Régulation de l'expression des gènes tumoraux/effets des médicaments et des substances chimiques , Mouvement cellulaire/effets des médicaments et des substances chimiques , Protéines de liaison à l'ADN/métabolisme , Protéines de liaison à l'ADN/génétique , Évolution de la maladie
8.
In Vivo ; 38(3): 1470-1476, 2024.
Article de Anglais | MEDLINE | ID: mdl-38688633

RÉSUMÉ

BACKGROUND/AIM: Automated measurement of immunostained samples can enable more convenient and objective prediction of treatment outcome from radiotherapy. We aimed to validate the performance of the QuPath image analysis software in immune cell markers detection by comparing QuPath cell counting results with those of physician manual cell counting. PATIENTS AND METHODS: CD8- and FoxP3-stained cervical, CD8-stained oropharyngeal, and Ku70-stained prostate cancer tumor sections were analyzed in 104 cervical, 92 oropharyngeal, and 58 prostate cancer patients undergoing radiotherapy at our Institution. RESULTS: QuPath and manual counts were highly correlated. When divided into two groups using ROC curves, the agreement between QuPath and manual counts was 89.4% for CD8 and 88.5% for FoxP3 in cervical cancer, 87.0% for CD8 in oropharyngeal cancer and 80.7% for Ku70 in prostate cancer. In cervical cancer, the high CD8 group based on QuPath counts had a better prognosis and the low CD8 group had a significantly worse prognosis [p=0.0003; 5-year overall survival (OS), 65.9% vs. 34.7%]. QuPath counts were more predictive than manual counts. Similar results were observed for FoxP3 in cervical cancer (p=0.002; 5-year OS, 62.1% vs. 33.6%) and CD8 in oropharyngeal cancer (p=0.013; 5-year OS, 80.2% vs. 47.2%). In prostate cancer, high Ku70 group had worse and low group significantly better outcome [p=0.007; 10-year progression-free survival (PFS), 56.0% vs. 93.8%]. CONCLUSION: QuPath showed a strong correlation with manual counting, confirming its utility and accuracy and potential applicability in clinical practice.


Sujet(s)
Logiciel , Humains , Mâle , Femelle , Pronostic , Adulte d'âge moyen , Sujet âgé , Résultat thérapeutique , Marqueurs biologiques tumoraux/métabolisme , Adulte , Autoantigène Ku/métabolisme , Facteurs de transcription Forkhead/métabolisme , Tumeurs de la prostate/radiothérapie , Tumeurs de la prostate/anatomopathologie , Tumeurs de la prostate/métabolisme , Courbe ROC , Antigènes CD8/métabolisme , Traitement d'image par ordinateur , Immunohistochimie , Tumeurs/radiothérapie , Tumeurs/métabolisme , Tumeurs/anatomopathologie
9.
Cell Rep ; 43(4): 114001, 2024 Apr 23.
Article de Anglais | MEDLINE | ID: mdl-38547127

RÉSUMÉ

In the ciliate Paramecium, precise excision of numerous internal eliminated sequences (IESs) from the somatic genome is essential at each sexual cycle. DNA double-strands breaks (DSBs) introduced by the PiggyMac endonuclease are repaired in a highly concerted manner by the non-homologous end joining (NHEJ) pathway, illustrated by complete inhibition of DNA cleavage when Ku70/80 proteins are missing. We show that expression of a DNA-binding-deficient Ku70 mutant (Ku70-6E) permits DNA cleavage but leads to the accumulation of unrepaired DSBs. We uncoupled DNA cleavage and repair by co-expressing wild-type and mutant Ku70. High-throughput sequencing of the developing macronucleus genome in these conditions identifies the presence of extremities healed by de novo telomere addition and numerous translocations between IES-flanking sequences. Coupling the two steps of IES excision ensures that both extremities are held together throughout the process, suggesting that DSB repair proteins are essential for assembly of a synaptic precleavage complex.


Sujet(s)
Clivage de l'ADN , Paramecium , Paramecium/génétique , Paramecium/métabolisme , Cassures double-brin de l'ADN , Génome de protozoaire , Autoantigène Ku/métabolisme , Autoantigène Ku/génétique , Réparation de l'ADN , Protéines de protozoaire/métabolisme , Protéines de protozoaire/génétique , Réparation de l'ADN par jonction d'extrémités
10.
Mol Cell ; 84(7): 1206-1223.e15, 2024 Apr 04.
Article de Anglais | MEDLINE | ID: mdl-38423014

RÉSUMÉ

Appropriate DNA end synapsis, regulated by core components of the synaptic complex including KU70-KU80, LIG4, XRCC4, and XLF, is central to non-homologous end joining (NHEJ) repair of chromatinized DNA double-strand breaks (DSBs). However, it remains enigmatic whether chromatin modifications can influence the formation of NHEJ synaptic complex at DNA ends, and if so, how this is achieved. Here, we report that the mitotic deacetylase complex (MiDAC) serves as a key regulator of DNA end synapsis during NHEJ repair in mammalian cells. Mechanistically, MiDAC removes combinatorial acetyl marks on histone H2A (H2AK5acK9ac) around DSB-proximal chromatin, suppressing hyperaccumulation of bromodomain-containing protein BRD4 that would otherwise undergo liquid-liquid phase separation with KU80 and prevent the proper installation of LIG4-XRCC4-XLF onto DSB ends. This study provides mechanistic insight into the control of NHEJ synaptic complex assembly by a specific chromatin signature and highlights the critical role of H2A hypoacetylation in restraining unscheduled compartmentalization of DNA repair machinery.


Sujet(s)
Chromatine , Protéines nucléaires , Animaux , Chromatine/génétique , Protéines nucléaires/métabolisme , Facteurs de transcription/métabolisme , ADN/génétique , Réparation de l'ADN par jonction d'extrémités , Histone/génétique , Histone/métabolisme , Appariement des chromosomes , Autoantigène Ku/génétique , Autoantigène Ku/métabolisme , Mammifères/métabolisme
11.
Nucleic Acids Res ; 52(9): 5048-5066, 2024 May 22.
Article de Anglais | MEDLINE | ID: mdl-38412274

RÉSUMÉ

Two DNA repair pathways, non-homologous end joining (NHEJ) and alternative end joining (A-EJ), are involved in V(D)J recombination and chromosome translocation. Previous studies reported distinct repair mechanisms for chromosome translocation, with NHEJ involved in humans and A-EJ in mice predominantly. NHEJ depends on DNA-PKcs, a critical partner in synapsis formation and downstream component activation. While DNA-PKcs inhibition promotes chromosome translocations harboring microhomologies in mice, its synonymous effect in humans is not known. We find partial DNA-PKcs inhibition in human cells leads to increased translocations and the continued involvement of a dampened NHEJ. In contrast, complete DNA-PKcs inhibition substantially increased microhomology-mediated end joining (MMEJ), thus bridging the two different translocation mechanisms between human and mice. Similar to a previous study on Ku70 deletion, DNA-PKcs deletion in G1/G0-phase mouse progenitor B cell lines, significantly impairs V(D)J recombination and generated higher rates of translocations as a consequence of dysregulated coding and signal end joining. Genetic DNA-PKcs inhibition suppresses NHEJ entirely, with repair phenotypically resembling Ku70-deficient A-EJ. In contrast, we find DNA-PKcs necessary in generating the near-exclusive MMEJ associated with Lig4 deficiency. Our study underscores DNA-PKcs in suppressing illegitimate chromosome rearrangement while also contributing to MMEJ in both species.


Sujet(s)
Aberrations des chromosomes , Réparation de l'ADN par jonction d'extrémités , DNA-activated protein kinase , Animaux , Humains , Souris , Lignée cellulaire , DNA ligase ATP/génétique , DNA ligase ATP/métabolisme , DNA-activated protein kinase/génétique , DNA-activated protein kinase/métabolisme , Protéines de liaison à l'ADN/génétique , Protéines de liaison à l'ADN/métabolisme , Autoantigène Ku/génétique , Autoantigène Ku/métabolisme , Translocation génétique , Recombinaison V(D)J
12.
Nucleic Acids Res ; 52(8): 4313-4327, 2024 May 08.
Article de Anglais | MEDLINE | ID: mdl-38407308

RÉSUMÉ

The complex formed by Ku70/80 and DNA-PKcs (DNA-PK) promotes the synapsis and the joining of double strand breaks (DSBs) during canonical non-homologous end joining (c-NHEJ). In c-NHEJ during V(D)J recombination, DNA-PK promotes the processing of the ends and the opening of the DNA hairpins by recruiting and/or activating the nuclease Artemis/DCLRE1C/SNM1C. Paradoxically, DNA-PK is also required to prevent the fusions of newly replicated leading-end telomeres. Here, we describe the role for DNA-PK in controlling Apollo/DCLRE1B/SNM1B, the nuclease that resects leading-end telomeres. We show that the telomeric function of Apollo requires DNA-PKcs's kinase activity and the binding of Apollo to DNA-PK. Furthermore, AlphaFold-Multimer predicts that Apollo's nuclease domain has extensive additional interactions with DNA-PKcs, and comparison to the cryo-EM structure of Artemis bound to DNA-PK phosphorylated on the ABCDE/Thr2609 cluster suggests that DNA-PK can similarly grant Apollo access to the DNA end. In agreement, the telomeric function of DNA-PK requires the ABCDE/Thr2609 cluster. These data reveal that resection of leading-end telomeres is regulated by DNA-PK through its binding to Apollo and its (auto)phosphorylation-dependent positioning of Apollo at the DNA end, analogous but not identical to DNA-PK dependent regulation of Artemis at hairpins.


Sujet(s)
DNA-activated protein kinase , Protéines de liaison à l'ADN , Endonucleases , Télomère , DNA-activated protein kinase/métabolisme , DNA-activated protein kinase/génétique , Télomère/métabolisme , Télomère/génétique , Humains , Protéines de liaison à l'ADN/métabolisme , Protéines de liaison à l'ADN/génétique , Endonucleases/métabolisme , Endonucleases/génétique , Réparation de l'ADN par jonction d'extrémités , Protéines nucléaires/métabolisme , Protéines nucléaires/génétique , Autoantigène Ku/métabolisme , Autoantigène Ku/génétique , Liaison aux protéines , Cassures double-brin de l'ADN , Phosphorylation , ADN/métabolisme , ADN/composition chimique , ADN/génétique
13.
Sci Rep ; 14(1): 1188, 2024 01 12.
Article de Anglais | MEDLINE | ID: mdl-38216643

RÉSUMÉ

Ku70 is a multifunctional protein with pivotal roles in DNA repair via non-homologous end-joining, V(D)J recombination, telomere maintenance, and neuronal apoptosis control. Nonetheless, its regulatory mechanisms remain elusive. Chicken Ku70 (GdKu70) cDNA has been previously cloned, and DT40 cells expressing it have significantly contributed to critical biological discoveries. GdKu70 features an additional 18 amino acids at its N-terminus compared to mammalian Ku70, the biological significance of which remains uncertain. Here, we show that the 5' flanking sequence of GdKu70 cDNA is not nearly encoded in the chicken genome. Notably, these 18 amino acids result from fusion events involving the NFE2L1 gene on chromosome 27 and the Ku70 gene on chromosome 1. Through experiments using newly cloned chicken Ku70 cDNA and specific antibodies, we demonstrated that Ku70 localizes within the cell nucleus as a heterodimer with Ku80 and promptly accumulates at DNA damage sites following injury. This suggests that the functions and spatiotemporal regulatory mechanisms of Ku70 in chickens closely resemble those in mammals. The insights and resources acquired will contribute to elucidate the various mechanisms by which Ku functions. Meanwhile, caution is advised when interpreting the previous numerous key studies that relied on GdKu70 cDNA and its expressing cells.


Sujet(s)
Antigènes nucléaires , Poulets , Altération de l'ADN , Autoantigène Ku , Animaux , Acides aminés/génétique , Antigènes nucléaires/métabolisme , Poulets/génétique , Poulets/métabolisme , Clonage moléculaire , Altération de l'ADN/génétique , Réparation de l'ADN , ADN complémentaire , Protéines de liaison à l'ADN/métabolisme , Autoantigène Ku/génétique , Autoantigène Ku/métabolisme , Mammifères/métabolisme
14.
DNA Repair (Amst) ; 134: 103627, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38219597

RÉSUMÉ

DNA double-strand breaks (DSBs) are harmful to mammalian cells and a few of them can cause cell death. Accumulating DSBs in these cells to analyze their genomic distribution and their potential impact on chromatin structure is difficult. In this study, we used CRISPR to generate Ku80-/- human cells and arrested the cells in G1 phase to accumulate DSBs before conducting END-seq and Nanopore analysis. Our analysis revealed that DNA with high methylation level accumulates DSB hotspots in Ku80-/- human cells. Furthermore, we identified chromosome structural variants (SVs) using Nanopore sequencing and observed a higher number of SVs in Ku80-/- human cells. Based on our findings, we suggest that the high efficiency of Ku80 knockout in human HCT116 cells makes it a promising model for characterizing SVs in the context of 3D chromatin structure and studying the alternative-end joining (Alt-EJ) DSB repair pathway.


Sujet(s)
Cassures double-brin de l'ADN , Réparation de l'ADN , Autoantigène Ku , Animaux , Humains , Chromatine , ADN , Réparation de l'ADN par jonction d'extrémités , Réparation de l'ADN/génétique , Cellules HCT116 , Autoantigène Ku/génétique , Autoantigène Ku/métabolisme , Mammifères/métabolisme
15.
J Mol Biol ; 436(2): 168367, 2024 01 15.
Article de Anglais | MEDLINE | ID: mdl-37972687

RÉSUMÉ

Mycobacterium tuberculosis is the causative agent of Tuberculosis. During the host response to infection, the bacterium is exposed to both reactive oxygen species and nitrogen intermediates that can cause DNA damage. It is becoming clear that the DNA damage response in Mtb and related actinobacteria function via distinct pathways as compared to well-studied model bacteria. For example, we have previously shown that the DNA repair helicase UvrD1 is activated for processive unwinding via redox-dependent dimerization. In addition, mycobacteria contain a homo-dimeric Ku protein, homologous to the eukaryotic Ku70/Ku80 dimer, that plays roles in double-stranded break repair via non-homologous end-joining. Kuhas been shown to stimulate the helicase activity of UvrD1, but the molecular mechanism, as well as which redox form of UvrD1 is activated, is unknown. We show here that Ku specifically stimulates multi-round unwinding by UvrD1 monomers which are able to slowly unwind DNA, but at rates 100-fold slower than the dimer. We also demonstrate that the UvrD1 C-terminal Tudor domain is required for the formation of a Ku-UvrD1 protein complex and activation. We show that Mtb Ku dimers bind with high nearest neighbor cooperativity to duplex DNA and that UvrD1 activation is observed when the DNA substrate is bound with two or three Ku dimers. Our observations reveal aspects of the interactions between DNA, Mtb Ku, and UvrD1 and highlight the potential role of UvrD1 in multiple DNA repair pathways through different mechanisms of activation.


Sujet(s)
Protéines bactériennes , Réparation de l'ADN par jonction d'extrémités , Helicase , Autoantigène Ku , Mycobacterium tuberculosis , ADN/métabolisme , Helicase/métabolisme , Autoantigène Ku/métabolisme , Mycobacterium tuberculosis/génétique , Protéines bactériennes/métabolisme
16.
Anticancer Drugs ; 35(2): 163-176, 2024 02 01.
Article de Anglais | MEDLINE | ID: mdl-37948318

RÉSUMÉ

Chemotherapy is the main treatment option for acute myeloid leukemia (AML), but acquired resistance of leukemic cells to chemotherapeutic agents often leads to difficulties in AML treatment and disease relapse. High calcitonin receptor-like (CALCRL) expression is closely associated with poorer prognosis in AML patients. Therefore, this study was performed by performing CALCRL overexpression constructs in AML cell lines HL-60 and Molm-13 with low CALCRL expression. The results showed that overexpression of CALCRL in HL-60 and Molm-13 could confer resistance properties to AML cells and reduce the DNA damage and cell cycle G0/G1 phase blocking effects caused by daunorubicin (DNR) and others. Overexpression of CALCRL also reduced DNR-induced apoptosis. Mechanistically, the Cancer Clinical Research Database analyzed a significant positive correlation between XRCC5 and CALCRL in AML patients. Therefore, the combination of RT-PCR and Western blot studies further confirmed that the expression levels of XRCC5 and PDK1 genes and proteins were significantly upregulated after overexpression of CALCRL. In contrast, the phosphorylation levels of AKT/PKCε protein, a downstream pathway of XRCC5/PDK1, were significantly upregulated. In the response study, transfection of overexpressed CALCRL cells with XRCC5 siRNA significantly upregulated the drug sensitivity of AML to DNR. The expression levels of PDK1 protein and AKT/PKCε phosphorylated protein in the downstream pathway were inhibited considerably, and the expression of apoptosis-related proteins Bax and cleaved caspase-3 were upregulated. Animal experiments showed that the inhibitory effect of DNR on the growth of HL-60 cells and the number of bone marrow invasions were significantly reversed after overexpression of CALCRL in nude mice. However, infection of XCRR5 shRNA lentivirus in HL-60 cells with CALCRL overexpression attenuated the effect of CALCRL overexpression and upregulated the expression of apoptosis-related proteins induced by DNR. This study provides a preliminary explanation for the relationship between high CALCRL expression and poor prognosis of chemotherapy in AML patients. It offers a more experimental basis for DNR combined with molecular targets for precise treatment in subsequent studies.


Sujet(s)
Daunorubicine , Leucémie aigüe myéloïde , Animaux , Souris , Humains , Daunorubicine/pharmacologie , Régulation positive , Souris nude , Protéines proto-oncogènes c-akt/métabolisme , Leucémie aigüe myéloïde/traitement médicamenteux , Leucémie aigüe myéloïde/génétique , Leucémie aigüe myéloïde/métabolisme , Cellules HL-60 , Apoptose , Autoantigène Ku/génétique , Autoantigène Ku/métabolisme , Autoantigène Ku/pharmacologie , TYK2 Kinase/génétique , TYK2 Kinase/métabolisme , TYK2 Kinase/pharmacologie , Janus kinase 1/génétique , Janus kinase 1/métabolisme , Janus kinase 1/pharmacologie , Protéine apparentée au récepteur de la calcitonine/génétique , Protéine apparentée au récepteur de la calcitonine/métabolisme
17.
Nucleic Acids Res ; 51(21): 11732-11747, 2023 Nov 27.
Article de Anglais | MEDLINE | ID: mdl-37870477

RÉSUMÉ

The classical Non-Homologous End Joining (c-NHEJ) pathway is the predominant process in mammals for repairing endogenous, accidental or programmed DNA Double-Strand Breaks. c-NHEJ is regulated by several accessory factors, post-translational modifications, endogenous chemical agents and metabolites. The metabolite inositol-hexaphosphate (IP6) stimulates c-NHEJ by interacting with the Ku70-Ku80 heterodimer (Ku). We report cryo-EM structures of apo- and DNA-bound Ku in complex with IP6, at 3.5 Å and 2.74 Å resolutions respectively, and an X-ray crystallography structure of a Ku in complex with DNA and IP6 at 3.7 Å. The Ku-IP6 interaction is mediated predominantly via salt bridges at the interface of the Ku70 and Ku80 subunits. This interaction is distant from the DNA, DNA-PKcs, APLF and PAXX binding sites and in close proximity to XLF binding site. Biophysical experiments show that IP6 binding increases the thermal stability of Ku by 2°C in a DNA-dependent manner, stabilizes Ku on DNA and enhances XLF affinity for Ku. In cells, selected mutagenesis of the IP6 binding pocket reduces both Ku accrual at damaged sites and XLF enrolment in the NHEJ complex, which translate into a lower end-joining efficiency. Thus, this study defines the molecular bases of the IP6 metabolite stimulatory effect on the c-NHEJ repair activity.


Sujet(s)
Protéines de liaison à l'ADN , Acide phytique , Animaux , ADN/métabolisme , Cassures double-brin de l'ADN , Réparation de l'ADN par jonction d'extrémités , Protéines de liaison à l'ADN/génétique , Autoantigène Ku/métabolisme , Mammifères/génétique , Humains
18.
Nucleic Acids Res ; 51(21): 11706-11716, 2023 Nov 27.
Article de Anglais | MEDLINE | ID: mdl-37850645

RÉSUMÉ

The evolutionarily conserved DNA repair complex Ku serves as the primary sensor of free DNA ends in eukaryotic cells. Its rapid association with DNA ends is crucial for several cellular processes, including non-homologous end joining (NHEJ) DNA repair and telomere protection. In this study, we conducted a transient kinetic analysis to investigate the impact of the SAP domain on individual phases of the Ku-DNA interaction. Specifically, we examined the initial binding, the subsequent docking of Ku onto DNA, and sliding of Ku along DNA. Our findings revealed that the C-terminal SAP domain of Ku70 facilitates the initial phases of the Ku-DNA interaction but does not affect the sliding process. This suggests that the SAP domain may either establish the first interactions with DNA, or stabilize these initial interactions during loading. To assess the biological role of the SAP domain, we generated Arabidopsis plants expressing Ku lacking the SAP domain. Intriguingly, despite the decreased efficiency of the ΔSAP Ku complex in loading onto DNA, the mutant plants exhibited full proficiency in classical NHEJ and telomere maintenance. This indicates that the speed with which Ku loads onto telomeres or DNA double-strand breaks is not the decisive factor in stabilizing these DNA structures.


Sujet(s)
Réparation de l'ADN , Autoantigène Ku , ADN/génétique , ADN/métabolisme , Réparation de l'ADN par jonction d'extrémités , Cinétique , Autoantigène Ku/génétique , Autoantigène Ku/métabolisme
19.
Nucleic Acids Res ; 51(15): 7972-7987, 2023 08 25.
Article de Anglais | MEDLINE | ID: mdl-37395399

RÉSUMÉ

DNA-dependent protein kinase (DNA-PK) plays a critical role in non-homologous end joining (NHEJ), the predominant pathway that repairs DNA double-strand breaks (DSB) in response to ionizing radiation (IR) to govern genome integrity. The interaction of the catalytic subunit of DNA-PK (DNA-PKcs) with the Ku70/Ku80 heterodimer on DSBs leads to DNA-PK activation; however, it is not known if upstream signaling events govern this activation. Here, we reveal a regulatory step governing DNA-PK activation by SIRT2 deacetylation, which facilitates DNA-PKcs localization to DSBs and interaction with Ku, thereby promoting DSB repair by NHEJ. SIRT2 deacetylase activity governs cellular resistance to DSB-inducing agents and promotes NHEJ. SIRT2 furthermore interacts with and deacetylates DNA-PKcs in response to IR. SIRT2 deacetylase activity facilitates DNA-PKcs interaction with Ku and localization to DSBs and promotes DNA-PK activation and phosphorylation of downstream NHEJ substrates. Moreover, targeting SIRT2 with AGK2, a SIRT2-specific inhibitor, augments the efficacy of IR in cancer cells and tumors. Our findings define a regulatory step for DNA-PK activation by SIRT2-mediated deacetylation, elucidating a critical upstream signaling event initiating the repair of DSBs by NHEJ. Furthermore, our data suggest that SIRT2 inhibition may be a promising rationale-driven therapeutic strategy for increasing the effectiveness of radiation therapy.


Sujet(s)
Cassures double-brin de l'ADN , Protein kinases , ADN/génétique , ADN/métabolisme , Réparation de l'ADN par jonction d'extrémités , Réparation de l'ADN , DNA-activated protein kinase/génétique , Protéines de liaison à l'ADN/génétique , Protéines de liaison à l'ADN/métabolisme , Autoantigène Ku/métabolisme , Protéines nucléaires/métabolisme , Protein kinases/génétique , Sirtuine-2/génétique , Sirtuine-2/métabolisme , Humains
20.
J Biol Chem ; 299(8): 105032, 2023 08.
Article de Anglais | MEDLINE | ID: mdl-37437887

RÉSUMÉ

Radiotherapy is one of the mainstay treatments for hepatocellular carcinoma (HCC). However, a substantial number of patients with HCC develop radioresistance and eventually suffer from tumor progression or relapse, which is a major impediment to the use of radiotherapy. Therefore, elucidating the mechanisms underlying radioresistance and identifying novel therapeutic targets to improve patient prognosis are important in HCC management. In this study, using in vitro and in vivo models, laser microirradiation and live cell imaging methods, and coimmunoprecipitation assays, we report that a DNA repair enhancer, human positive cofactor 4 (PC4), promotes nonhomologous end joining-based DNA repair and renders HCC cells resistant to radiation. Mechanistically, PC4 interacts with poly (ADP-ribose) polymerase 1 and directs Ku complex PARylation, resulting in the successful recruitment of the Ku complex to damaged chromatin and increasing the efficiency of nonhomologous end joining repair. Clinically, PC4 is highly expressed in tumor tissues and is correlated with poor prognosis in patients with HCC. Taken together, our data suggest that PC4 is a DNA repair driver that can be targeted to radiosensitize HCC cells.


Sujet(s)
Carcinome hépatocellulaire , Tumeurs du foie , Humains , Carcinome hépatocellulaire/génétique , Carcinome hépatocellulaire/radiothérapie , Altération de l'ADN , Réparation de l'ADN par jonction d'extrémités , Réparation de l'ADN , Autoantigène Ku/génétique , Autoantigène Ku/métabolisme , Tumeurs du foie/génétique , Récidive tumorale locale , Poly(ADP-ribosylation) , Radiotolérance
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...