Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 2.300
Filtrer
1.
Theranostics ; 14(9): 3719-3738, 2024.
Article de Anglais | MEDLINE | ID: mdl-38948070

RÉSUMÉ

Rationale: Autophagy dysregulation is known to be a mechanism of doxorubicin (DOX)-induced cardiotoxicity (DIC). Mitochondrial-Endoplasmic Reticulum Contacts (MERCs) are where autophagy initiates and autophagosomes form. However, the role of MERCs in autophagy dysregulation in DIC remains elusive. FUNDC1 is a tethering protein of MERCs. We aim to investigate the effect of DOX on MERCs in cardiomyocytes and explore whether it is involved in the dysregulated autophagy in DIC. Methods: We employed confocal microscopy and transmission electron microscopy to assess MERCs structure. Autophagic flux was analyzed using the mCherry-EGFP-LC3B fluorescence assay and western blotting for LC3BII. Mitophagy was studied through the mCherry-EGFP-FIS1 fluorescence assay and colocalization analysis between LC3B and mitochondria. A total dose of 18 mg/kg of doxorubicin was administrated in mice to construct a DIC model in vivo. Additionally, we used adeno-associated virus (AAV) to cardiac-specifically overexpress FUNDC1. Cardiac function and remodeling were evaluated by echocardiography and Masson's trichrome staining, respectively. Results: DOX blocked autophagic flux by inhibiting autophagosome biogenesis, which could be attributed to the downregulation of FUNDC1 and disruption of MERCs structures. FUNDC1 overexpression restored the blocked autophagosome biogenesis by maintaining MERCs structure and facilitating ATG5-ATG12/ATG16L1 complex formation without altering mitophagy. Furthermore, FUNDC1 alleviated DOX-induced oxidative stress and cardiomyocytes deaths in an autophagy-dependent manner. Notably, cardiac-specific overexpression of FUNDC1 protected DOX-treated mice against adverse cardiac remodeling and improved cardiac function. Conclusions: In summary, our study identified that FUNDC1-meditated MERCs exerted a cardioprotective effect against DIC by restoring the blocked autophagosome biogenesis. Importantly, this research reveals a novel role of FUNDC1 in enhancing macroautophagy via restoring MERCs structure and autophagosome biogenesis in the DIC model, beyond its previously known regulatory role as an mitophagy receptor.


Sujet(s)
Autophagie , Cardiotoxicité , Doxorubicine , Réticulum endoplasmique , Protéines membranaires , Protéines mitochondriales , Myocytes cardiaques , Animaux , Doxorubicine/effets indésirables , Doxorubicine/pharmacologie , Souris , Autophagie/effets des médicaments et des substances chimiques , Cardiotoxicité/métabolisme , Myocytes cardiaques/métabolisme , Myocytes cardiaques/effets des médicaments et des substances chimiques , Réticulum endoplasmique/métabolisme , Réticulum endoplasmique/effets des médicaments et des substances chimiques , Protéines membranaires/métabolisme , Protéines membranaires/génétique , Protéines mitochondriales/métabolisme , Protéines mitochondriales/génétique , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Mitophagie/effets des médicaments et des substances chimiques , Mâle , Autophagosomes/métabolisme , Autophagosomes/effets des médicaments et des substances chimiques , Souris de lignée C57BL , Modèles animaux de maladie humaine
2.
Nat Commun ; 15(1): 6311, 2024 Jul 26.
Article de Anglais | MEDLINE | ID: mdl-39060258

RÉSUMÉ

Respiratory syncytial virus (RSV) hijacks cholesterol or autophagy pathways to facilitate optimal replication. However, our understanding of the associated molecular mechanisms remains limited. Here, we show that RSV infection blocks cholesterol transport from lysosomes to the endoplasmic reticulum by downregulating the activity of lysosomal acid lipase, activates the SREBP2-LDLR axis, and promotes uptake and accumulation of exogenous cholesterol in lysosomes. High cholesterol levels impair the VAP-A-binding activity of ORP1L and promote the recruitment of dynein-dynactin, PLEKHM1, or HOPS VPS39 to Rab7-RILP, thereby facilitating minus-end transport of autophagosomes and autolysosome formation. Acidification inhibition and dysfunction of cholesterol-rich lysosomes impair autophagy flux by inhibiting autolysosome degradation, which promotes the accumulation of RSV fusion protein. RSV-F storage is nearly abolished after cholesterol depletion or knockdown of LDLR. Most importantly, the knockout of LDLR effectively inhibits RSV infection in vivo. These findings elucidate the molecular mechanism of how RSV co-regulates lysosomal cholesterol reprogramming and autophagy and reveal LDLR as a novel target for anti-RSV drug development.


Sujet(s)
Autophagie , Cholestérol , Lysosomes , Récepteurs aux lipoprotéines LDL , Infections à virus respiratoire syncytial , Protéines du transport vésiculaire , Réplication virale , Protéines G rab , Protéines Rab7 liant le GTP , Lysosomes/métabolisme , Cholestérol/métabolisme , Humains , Animaux , Récepteurs aux lipoprotéines LDL/métabolisme , Récepteurs aux lipoprotéines LDL/génétique , Infections à virus respiratoire syncytial/métabolisme , Infections à virus respiratoire syncytial/virologie , Protéines du transport vésiculaire/métabolisme , Protéines du transport vésiculaire/génétique , Protéines G rab/métabolisme , Protéines G rab/génétique , Souris , Complexe dynactine/métabolisme , Réticulum endoplasmique/métabolisme , Dynéines/métabolisme , Protéines adaptatrices de la transduction du signal/métabolisme , Protéines adaptatrices de la transduction du signal/génétique , Virus respiratoire syncytial humain/physiologie , Autophagosomes/métabolisme , Protéines de fusion virale/métabolisme , Protéines de fusion virale/génétique , Cellules HeLa , Cellules A549
3.
Cell Mol Life Sci ; 81(1): 322, 2024 Jul 30.
Article de Anglais | MEDLINE | ID: mdl-39078420

RÉSUMÉ

Transmembrane protein 9 (TMEM9) is a transmembrane protein that regulates lysosomal acidification by interacting with the v-type ATPase complex. However, the role of TMEM9 in the lysosome-dependent autophagy machinery has yet to be identified. In this study, we demonstrate that the lysosomal protein TMEM9, which is involved in vesicle acidification, regulates Rab9-dependent alternative autophagy through its interaction with Beclin1. The cytosolic domain of TMEM9 interacts with Beclin1 via its Bcl-2-binding domain. This interaction between TMEM9 and Beclin1 dissociates Bcl-2, an autophagy-inhibiting partner, from Beclin1, thereby activating LC3-independent and Rab9-dependent alternative autophagy. Late endosomal and lysosomal TMEM9 apparently colocalizes with Rab9 but not with LC3. Furthermore, we show that multiple glycosylation of TMEM9, essential for lysosomal localization, is essential for its interaction with Beclin1 and the activation of Rab9-dependent alternative autophagy. These findings reveal that TMEM9 recruits and activates the Beclin1 complex at the site of Rab9-dependent autophagosome to induce alternative autophagy.


Sujet(s)
Autophagie , Bécline-1 , Lysosomes , Protéines membranaires , Protéines G rab , Bécline-1/métabolisme , Humains , Protéines membranaires/métabolisme , Protéines membranaires/génétique , Protéines G rab/métabolisme , Lysosomes/métabolisme , Cellules HEK293 , Liaison aux protéines , Cellules HeLa , Protéines proto-oncogènes c-bcl-2/métabolisme , Protéines associées aux microtubules/métabolisme , Animaux , Autophagosomes/métabolisme
4.
Proc Natl Acad Sci U S A ; 121(32): e2322500121, 2024 Aug 06.
Article de Anglais | MEDLINE | ID: mdl-39074281

RÉSUMÉ

Macroautophagy is a conserved cellular degradation pathway that, upon upregulation, confers resilience toward various stress conditions, including protection against proteotoxicity associated with neurodegenerative diseases, leading to cell survival. Monitoring autophagy regulation in living cells is important to understand its role in physiology and pathology, which remains challenging. Here, we report that when HaloTag is expressed within a cell of interest and reacts with tetramethylrhodamine (TMR; its ligand attached to a fluorophore), the rate of fluorescent TMR-HaloTag conjugate accumulation in autophagosomes and lysosomes, observed by fluorescence microscopy, reflects the rate of autophagy. Notably, we found that TMR-HaloTag conjugates were mainly degraded by the proteasome (~95%) under basal conditions, while lysosomal degradation (~10% upon pharmacological autophagy activation) was slow and incomplete, forming a degraded product that remained fluorescent within a SDS-PAGE gel, in agreement with previous reports that HaloTag is resistant to lysosomal degradation when fused to proteins of interest. Autophagy activation is distinguished from autophagy inhibition by the increased production of the degraded TMR-HaloTag band relative to the full-length TMR-HaloTag band as assessed by SDS-PAGE and by a faster rate of TMR-HaloTag conjugate lysosomal puncta accumulation as observed by fluorescence microscopy. Pharmacological proteasome inhibition leads to accumulation of TMR-HaloTag in lysosomes, indicating possible cross talk between autophagy and proteasomal degradation.


Sujet(s)
Lysosomes , Macroautophagie , Humains , Lysosomes/métabolisme , Autophagie/physiologie , Proteasome endopeptidase complex/métabolisme , Rhodamines/composition chimique , Microscopie de fluorescence/méthodes , Autophagosomes/métabolisme , Cellules HeLa , Protéolyse
5.
Nat Commun ; 15(1): 5188, 2024 Jun 19.
Article de Anglais | MEDLINE | ID: mdl-38898014

RÉSUMÉ

Autophagy is relevant for diverse processes in eukaryotic cells, making its regulation of fundamental importance. The formation and maturation of autophagosomes require a complex choreography of numerous factors. The endosomal sorting complex required for transport (ESCRT) is implicated in the final step of autophagosomal maturation by sealing of the phagophore membrane. ESCRT-III components were shown to mediate membrane scission by forming filaments that interact with cellular membranes. However, the molecular mechanisms underlying the recruitment of ESCRTs to non-endosomal membranes remain largely unknown. Here we focus on the ESCRT-associated protein ALG2-interacting protein X (ALIX) and identify Ca2+-dependent lipid binding protein 1 (CaLB1) as its interactor. Our findings demonstrate that CaLB1 interacts with AUTOPHAGY8 (ATG8) and PI(3)P, a phospholipid found in autophagosomal membranes. Moreover, CaLB1 and ALIX localize with ATG8 on autophagosomes upon salt treatment and assemble together into condensates. The depletion of CaLB1 impacts the maturation of salt-induced autophagosomes and leads to reduced delivery of autophagosomes to the vacuole. Here, we propose a crucial role of CaLB1 in augmenting phase separation of ALIX, facilitating the recruitment of ESCRT-III to the site of phagophore closure thereby ensuring efficient maturation of autophagosomes.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Autophagosomes , Autophagie , Protéines de liaison au calcium , Complexes de tri endosomique requis pour le transport , Arabidopsis/métabolisme , Arabidopsis/génétique , Autophagosomes/métabolisme , Complexes de tri endosomique requis pour le transport/métabolisme , Protéines d'Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , Protéines de liaison au calcium/métabolisme , Protéines de liaison au calcium/génétique , Phosphates phosphatidylinositol/métabolisme , Famille de la protéine-8 associée à l'autophagie/métabolisme , Famille de la protéine-8 associée à l'autophagie/génétique , Vacuoles/métabolisme ,
6.
Int J Biol Sci ; 20(8): 2904-2921, 2024.
Article de Anglais | MEDLINE | ID: mdl-38904023

RÉSUMÉ

Abnormal proliferation of pulmonary artery smooth muscle cells (PASMCs) is one of the critical pathological mechanisms of pulmonary hypertension (PH), and therefore is gradually being adopted as an important direction for the treatment of PH. Metallothioneins (MTs) have been reported to be associated with PH, but the underlying mechanisms are not fully understood. Here, we demonstrated that the expression level of metallothionein 3 (MT3) was significantly increased in pulmonary arterioles from PH patients and chronic hypoxia-induced rat and mouse PH models, as well as in hypoxia-treated human PASMCs. Knockdown of MT3 significantly inhibited the proliferation of human PASMCs by arresting the cell cycle in the G1 phase, while overexpression of MT3 had the opposite effect. Mechanistically, we found that MT3 increased the intracellular zinc (Zn2+) concentration to enhance the transcriptional activity of metal-regulated transcription factor 1 (MTF1), which promoted the expression of autophagy-related gene 5 (ATG5), facilitating autophagosome formation. More importantly, MT3-induced autophagy and proliferation of human PASMCs were largely prevented by knockdown of MTF1 and ATG5. Therefore, in this study, we identified MT3-Zinc-MTF1-ATG5 as a novel pathway that affects PASMC proliferation by regulating autophagosome formation, suggesting that MT3 may be a novel target for the treatment of PH.


Sujet(s)
Prolifération cellulaire , Métallothionéine-3 , Myocytes du muscle lisse , Artère pulmonaire , Zinc , Artère pulmonaire/cytologie , Artère pulmonaire/métabolisme , Animaux , Humains , Zinc/métabolisme , Souris , Rats , Myocytes du muscle lisse/métabolisme , Mâle , Autophagosomes/métabolisme , Protéine-5 associée à l'autophagie/métabolisme , Protéine-5 associée à l'autophagie/génétique , Rat Sprague-Dawley , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique , Autophagie , Hypertension pulmonaire/métabolisme , Souris de lignée C57BL , Protéines de liaison à l'ADN/métabolisme , Protéines de liaison à l'ADN/génétique , , Métallothionéine/métabolisme , Métallothionéine/génétique
7.
Elife ; 132024 Jun 04.
Article de Anglais | MEDLINE | ID: mdl-38831693

RÉSUMÉ

A change in the electric charge of autophagosome membranes controls the recruitment of SNARE proteins to ensure that membrane fusion occurs at the right time during autophagy.


Sujet(s)
Autophagosomes , Autophagie , Fusion membranaire , Protéines SNARE , Autophagie/physiologie , Autophagosomes/métabolisme , Protéines SNARE/métabolisme , Humains , Animaux
8.
Elife ; 122024 Jun 04.
Article de Anglais | MEDLINE | ID: mdl-38831696

RÉSUMÉ

During macroautophagy, cytoplasmic constituents are engulfed by autophagosomes. Lysosomes fuse with closed autophagosomes but not with unclosed intermediate structures. This is achieved in part by the late recruitment of the autophagosomal SNARE syntaxin 17 (STX17) to mature autophagosomes. However, how STX17 recognizes autophagosome maturation is not known. Here, we show that this temporally regulated recruitment of STX17 depends on the positively charged C-terminal region of STX17. Consistent with this finding, mature autophagosomes are more negatively charged compared with unclosed intermediate structures. This electrostatic maturation of autophagosomes is likely driven by the accumulation of phosphatidylinositol 4-phosphate (PI4P) in the autophagosomal membrane. Accordingly, dephosphorylation of autophagosomal PI4P prevents the association of STX17 to autophagosomes. Furthermore, molecular dynamics simulations support PI4P-dependent membrane insertion of the transmembrane helices of STX17. Based on these findings, we propose a model in which STX17 recruitment to mature autophagosomes is temporally regulated by a PI4P-driven change in the surface charge of autophagosomes.


Sujet(s)
Autophagosomes , Phosphates phosphatidylinositol , Protéines Qa-SNARE , Protéines Qa-SNARE/métabolisme , Protéines Qa-SNARE/génétique , Autophagosomes/métabolisme , Phosphates phosphatidylinositol/métabolisme , Humains , Simulation de dynamique moléculaire , Autophagie/physiologie
9.
Exp Cell Res ; 440(1): 114118, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38852763

RÉSUMÉ

Autophagy phenomenon in the cell maintains proteostasis balance by eliminating damaged organelles and protein aggregates. Imbalance in autophagic flux may cause accumulation of protein aggregates in various neurodegenerative disorders. Regulation of autophagy by either calcium or chaperone play a key role in the removal of protein aggregates from the cell. The neuromuscular rare genetic disorder, GNE Myopathy, is characterized by accumulation of rimmed vacuoles having protein aggregates of ß-amyloid and tau that may result from altered autophagic flux. In the present study, the autophagic flux was deciphered in HEK cell-based model for GNE Myopathy harbouring GNE mutations of Indian origin. The refolding activity of HSP70 chaperone was found to be reduced in GNE mutant cells compared to wild type controls. The autophagic markers LC3II/I ratio was altered with increased number of autophagosome formation in GNE mutant cells compared to wild type cells. The cytosolic calcium levels were also increased in GNE mutant cells of Indian origin. Interestingly, treatment of GNE mutant cells with HSP70 activator, BGP-15, restored the expression and refolding activity of HSP70 along with autophagosome formation. Treatment with calcium chelator, BAPTA-AM restored the cytoplasmic calcium levels and autophagosome formation but not LC3II/I ratio significantly. Our study provides insights towards GNE mutation specific response for autophagy regulation and opens up a therapeutic advancement area in calcium signalling and HSP70 function for GNE related Myopathy.


Sujet(s)
Autophagie , Calcium , Myopathies distales , Protéines du choc thermique HSP70 , Complexes multienzymatiques , Mutation , Humains , Autophagie/génétique , Autophagie/effets des médicaments et des substances chimiques , Mutation/génétique , Calcium/métabolisme , Myopathies distales/génétique , Myopathies distales/métabolisme , Myopathies distales/anatomopathologie , Protéines du choc thermique HSP70/génétique , Protéines du choc thermique HSP70/métabolisme , Complexes multienzymatiques/génétique , Complexes multienzymatiques/métabolisme , Cellules HEK293 , Autophagosomes/métabolisme , Autophagosomes/effets des médicaments et des substances chimiques , Inde
10.
J Immunother Cancer ; 12(6)2024 Jun 26.
Article de Anglais | MEDLINE | ID: mdl-38926151

RÉSUMÉ

BACKGROUND: Lung metastasis is the primary cause of breast cancer-related mortality. Neutrophil extracellular traps (NETs) are involved in the progression of breast cancer. However, the mechanism of NET formation is not fully understood. This study posits that tumor cell-released autophagosomes (TRAPs) play a crucial role in this process. METHODS: TRAPs were isolated from breast cancer cell lines to analyze their impact on NET formation in both human and mouse neutrophils. The study used both in vitro and in vivo models, including Toll-like receptor 4 (TLR4-/-) mice and engineered breast cancer cell lines. Immunofluorescence, ELISA, Western blotting, RNA sequencing, and flow cytometry were employed to dissect the signaling pathways leading to NET production and to explore their immunosuppressive effects, particularly focusing on the impact of NETs on T-cell function. The therapeutic potential of targeting TRAP-induced NETs and their immunosuppressive functions was evaluated using DNase I and αPD-L1 antibodies. Clinical relevance was assessed by correlating circulating levels of TRAPs and NETs with lung metastasis in patients with breast cancer. RESULTS: This study showed that TRAPs induced the formation of NETs in both human and mouse neutrophils by using the high mobility group box 1 and activating the TLR4-Myd88-ERK/p38 signaling axis. More importantly, PD-L1 carried by TRAP-induced NETs inhibited T-cell function in vitro and in vivo, thereby contributing to the formation of lung premetastatic niche (PMN) immunosuppression. In contrast, Becn1 KD-4T1 breast tumors with decreased circulating TRAPs in vivo reduced the formation of NETs, which in turn attenuated the immunosuppressive effects in PMN and resulted in a reduction of breast cancer pulmonary metastasis in murine models. Moreover, treatment with αPD-L1 in combination with DNase I that degraded NETs restored T-cell function and significantly reduced tumor metastasis. TRAP levels in the peripheral blood positively correlated with NET levels and lung metastasis in patients with breast cancer. CONCLUSIONS: Our results demonstrate a novel role of TRAPs in the formation of PD-L1-decorated NETs, which may provide a new strategy for early detection and treatment of pulmonary metastasis in patients with breast cancer.


Sujet(s)
Autophagosomes , Antigène CD274 , Tumeurs du sein , Pièges extracellulaires , Tumeurs du poumon , Animaux , Humains , Souris , Femelle , Tumeurs du sein/anatomopathologie , Tumeurs du sein/immunologie , Tumeurs du sein/métabolisme , Tumeurs du poumon/secondaire , Pièges extracellulaires/métabolisme , Antigène CD274/métabolisme , Autophagosomes/métabolisme , Lymphocytes T/immunologie , Lymphocytes T/métabolisme , Lignée cellulaire tumorale
11.
Elife ; 132024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38899618

RÉSUMÉ

The autophagy-lysosome pathway plays an indispensable role in the protein quality control by degrading abnormal organelles and proteins including α-synuclein (αSyn) associated with the pathogenesis of Parkinson's disease (PD). However, the activation of this pathway is mainly by targeting lysosomal enzymic activity. Here, we focused on the autophagosome-lysosome fusion process around the microtubule-organizing center (MTOC) regulated by lysosomal positioning. Through high-throughput chemical screening, we identified 6 out of 1200 clinically approved drugs enabling the lysosomes to accumulate around the MTOC with autophagy flux enhancement. We further demonstrated that these compounds induce the lysosomal clustering through a JIP4-TRPML1-dependent mechanism. Among them, the lysosomal-clustering compound albendazole promoted the autophagy-dependent degradation of Triton-X-insoluble, proteasome inhibitor-induced aggregates. In a cellular PD model, albendazole boosted insoluble αSyn degradation. Our results revealed that lysosomal clustering can facilitate the breakdown of protein aggregates, suggesting that lysosome-clustering compounds may offer a promising therapeutic strategy against neurodegenerative diseases characterized by the presence of aggregate-prone proteins.


Sujet(s)
Autophagie , Lysosomes , Maladie de Parkinson , Lysosomes/effets des médicaments et des substances chimiques , Lysosomes/métabolisme , Maladie de Parkinson/métabolisme , Maladie de Parkinson/traitement médicamenteux , Maladie de Parkinson/anatomopathologie , Autophagie/effets des médicaments et des substances chimiques , Humains , alpha-Synucléine/métabolisme , Albendazole/pharmacologie , Centre organisateur de microtubules/métabolisme , Autophagosomes/métabolisme , Autophagosomes/effets des médicaments et des substances chimiques
12.
Int J Mol Sci ; 25(12)2024 Jun 10.
Article de Anglais | MEDLINE | ID: mdl-38928101

RÉSUMÉ

In our prior investigations, we elucidated the role of the tryptophan-to-tyrosine substitution at the 61st position in the nonstructural protein NSsW61Y in diminishing the interaction between nonstructural proteins (NSs) and nucleoprotein (NP), impeding viral replication. In this study, we focused on the involvement of NSs in replication via the modulation of autophagosomes. Initially, we examined the impact of NP expression levels, a marker for replication, upon the infection of HeLa cells with severe fever thrombocytopenia syndrome virus (SFTSV), with or without the inhibition of NP binding. Western blot analysis revealed a reduction in NP levels in NSsW61Y-expressing conditions. Furthermore, the expression levels of the canonical autophagosome markers p62 and LC3 decreased in HeLa cells expressing NSsW61Y, revealing the involvement of individual viral proteins on autophagy. Subsequent experiments confirmed that NSsW61Y perturbs autophagy flux, as evidenced by reduced levels of LC3B and p62 upon treatment with chloroquine, an inhibitor of autophagosome-lysosome fusion. LysoTracker staining demonstrated a decrease in lysosomes in cells expressing the NS mutant compared to those expressing wild-type NS. We further explored the mTOR-associated regulatory pathway, a key regulator affected by NS mutant expression. The observed inhibition of replication could be linked to conformational changes in the NSs, impairing their binding to NP and altering mTOR regulation, a crucial upstream signaling component in autophagy. These findings illuminate the intricate interplay between NSsW61Y and the suppression of host autophagy machinery, which is crucial for the generation of autophagosomes to facilitate viral replication.


Sujet(s)
Autophagosomes , Autophagie , Phlebovirus , Tryptophane , Tyrosine , Protéines virales non structurales , Réplication virale , Humains , Protéines virales non structurales/métabolisme , Protéines virales non structurales/génétique , Réplication virale/génétique , Autophagosomes/métabolisme , Cellules HeLa , Phlebovirus/génétique , Phlebovirus/physiologie , Phlebovirus/métabolisme , Autophagie/génétique , Tyrosine/métabolisme , Tryptophane/métabolisme , Sérine-thréonine kinases TOR/métabolisme , Mutation , Substitution d'acide aminé , Syndrome de fièvre sévère avec thrombocytopénie/métabolisme , Syndrome de fièvre sévère avec thrombocytopénie/virologie , Syndrome de fièvre sévère avec thrombocytopénie/génétique , Lysosomes/métabolisme , Nucléoprotéines/métabolisme , Nucléoprotéines/génétique
13.
Biochem Biophys Res Commun ; 724: 150198, 2024 Sep 10.
Article de Anglais | MEDLINE | ID: mdl-38852504

RÉSUMÉ

Autophagy is a critical catabolic pathway that enables cells to survive and adapt to stressful conditions, especially nutrient deprivation. The fusion of autophagic vacuoles with lysosomes is the final step of autophagy, which degrades the engulfed contents into metabolic precursors for re-use by the cell. O-GlcNAc transferase (OGT) plays a crucial role in regulating autophagy flux in response to nutrient stress, particularly by targeting key proteins involved in autophagosome-lysosome fusion. However, the role of OGT in basal autophagy, which occurs at a low and constitutive levels under growth conditions, remains poorly understood. Silencing or inhibition of OGT was used to compare the effect of OGT downregulation on autophagy flux in the non-cancerous CCD841CoN and cancerous HCT116 human colon cell lines under nutrient-rich conditions. We provide evidence that the reduction of OGT activity impairs the maturation of autophagosomes, thereby blocking the completion of basal autophagy in both cell lines. Additionally, OGT inhibition results in the accumulation of lysosomes and enlarged late endosomes in the perinuclear region, as demonstrated by confocal imaging. This is associated with a defect in the localization of the small GTPase Rab7 to these organelles. The regulation of transport and fusion events between the endosomal and lysosomal compartments is crucial for maintaining the autophagic flux. These findings suggest an interplay between OGT and the homeostasis of the endolysosomal network in human cells.


Sujet(s)
Autophagie , Régulation négative , Endosomes , Lysosomes , N-acetylglucosaminyltransferase , Nutriments , Protéines Rab7 liant le GTP , Humains , N-acetylglucosaminyltransferase/métabolisme , N-acetylglucosaminyltransferase/génétique , Endosomes/métabolisme , Lysosomes/métabolisme , Nutriments/métabolisme , Protéines G rab/métabolisme , Protéines G rab/génétique , Côlon/métabolisme , Côlon/anatomopathologie , Cellules HCT116 , Autophagosomes/métabolisme
14.
Front Immunol ; 15: 1260439, 2024.
Article de Anglais | MEDLINE | ID: mdl-38863700

RÉSUMÉ

Dengue virus (DENV), transmitted by infected mosquitoes, is a major public health concern, with approximately half the world's population at risk for infection. Recent decades have increasing incidence of dengue-associated disease alongside growing frequency of outbreaks. Although promising progress has been made in anti-DENV immunizations, post-infection treatment remains limited to non-specific supportive treatments. Development of antiviral therapeutics is thus required to limit DENV dissemination in humans and to help control the severity of outbreaks. Dendritic cells (DCs) are amongst the first cells to encounter DENV upon injection into the human skin mucosa, and thereafter promote systemic viral dissemination to additional human target cells. Autophagy is a vesicle trafficking pathway involving the formation of cytosolic autophagosomes, and recent reports have highlighted the extensive manipulation of autophagy by flaviviruses, including DENV, for viral replication. However, the temporal profiling and function of autophagy activity in DENV infection and transmission by human primary DCs remains poorly understood. Herein, we demonstrate that mechanisms of autophagosome formation and extracellular vesicle (EV) release have a pro-viral role in DC-mediated DENV transmission. We show that DENV exploits early-stage canonical autophagy to establish infection in primary human DCs. DENV replication enhanced autophagosome formation in primary human DCs, and intrinsically-heightened autophagosome biogenesis correlated with relatively higher rates of DC susceptibility to DENV. Furthermore, our data suggest that viral replication intermediates co-localize with autophagosomes, while productive DENV infection introduces a block at the late degradative stages of autophagy in infected DCs but not in uninfected bystander cells. Notably, we identify for the first time that approximately one-fourth of DC-derived CD9/CD81/CD63+ EVs co-express canonical autophagy marker LC3, and demonstrate that DC-derived EV populations are an alternative, cell-free mechanism by which DCs promote DENV transmission to additional target sites. Taken together, our study highlights intersections between autophagy and secretory pathways during viral infection, and puts forward autophagosome accumulation and viral RNA-laden EVs as host determinants of DC-mediated DENV infection in humans. Host-directed therapeutics targeting autophagy and exocytosis pathways thus have potential to enhance DC-driven resistance to DENV acquisition and thereby limit viral dissemination by initial human target cells following mosquito-to-human transmission of DENV.


Sujet(s)
Autophagosomes , Autophagie , Cellules dendritiques , Virus de la dengue , Dengue , Voie de sécrétion , Réplication virale , Humains , Virus de la dengue/physiologie , Cellules dendritiques/immunologie , Cellules dendritiques/virologie , Cellules dendritiques/métabolisme , Dengue/transmission , Dengue/virologie , Dengue/immunologie , Autophagosomes/métabolisme , Vésicules extracellulaires/métabolisme , Vésicules extracellulaires/virologie , Cellules cultivées
15.
Sci Rep ; 14(1): 13258, 2024 06 10.
Article de Anglais | MEDLINE | ID: mdl-38858422

RÉSUMÉ

Lung cancer is the most common oncological disease worldwide, with non-small cell lung cancer accounting for approximately 85% of lung cancer cases. α-Hederin is a monodesmosidic triterpenoid saponin isolated from the leaves of Hedera helix L. or Nigella sativa and has been extensively studied for its antitumor activity against a variety of tumor cells. It has been suggested that α-Hederin is a potential regulator of autophagy and has high promise for application. However, the specific mechanism and characteristics of α-Hederin in regulating autophagy are not well understood. In this study, we confirmed the potential of α-Hederin application in lung cancer treatment and comprehensively explored the mechanism and characteristics of α-Hederin in regulating autophagy in lung cancer cells. Our results suggest that α-Hederin is an incomplete autophagy inducer that targets mTOR to activate the classical autophagic pathway, inhibits lysosomal acidification without significantly affecting the processes of autophagosome transport, lysosome biogenesis, autophagosome and lysosome fusion, and finally leads to impaired autophagic flux and triggers autophagic damage in NSCLC.


Sujet(s)
Autophagie , Carcinome pulmonaire non à petites cellules , Tumeurs du poumon , Lysosomes , Acide oléanolique , Saponines , Humains , Carcinome pulmonaire non à petites cellules/métabolisme , Carcinome pulmonaire non à petites cellules/anatomopathologie , Carcinome pulmonaire non à petites cellules/traitement médicamenteux , Lysosomes/métabolisme , Lysosomes/effets des médicaments et des substances chimiques , Autophagie/effets des médicaments et des substances chimiques , Tumeurs du poumon/métabolisme , Tumeurs du poumon/anatomopathologie , Tumeurs du poumon/traitement médicamenteux , Acide oléanolique/analogues et dérivés , Acide oléanolique/pharmacologie , Saponines/pharmacologie , Lignée cellulaire tumorale , Sérine-thréonine kinases TOR/métabolisme , Autophagosomes/métabolisme , Autophagosomes/effets des médicaments et des substances chimiques , Cellules A549
16.
J Mol Biol ; 436(15): 168691, 2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-38944336

RÉSUMÉ

Autophagy is a cellular degradation pathway where double-membrane autophagosomes form de novo to engulf cytoplasmic material destined for lysosomal degradation. This process requires regulated membrane remodeling, beginning with the initial autophagosomal precursor and progressing to its elongation and maturation into a fully enclosed, fusion-capable vesicle. While the core protein machinery involved in autophagosome formation has been extensively studied over the past two decades, the role of phospholipids in this process has only recently been studied. This review focuses on the phospholipid composition of the phagophore membrane and the mechanisms that supply lipids to expand this unique organelle.


Sujet(s)
Autophagosomes , Autophagie , Phospholipides , Autophagosomes/métabolisme , Phospholipides/métabolisme , Humains , Animaux , Lysosomes/métabolisme
17.
Nature ; 629(8012): 660-668, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38693258

RÉSUMÉ

Ischaemic diseases such as critical limb ischaemia and myocardial infarction affect millions of people worldwide1. Transplanting endothelial cells (ECs) is a promising therapy in vascular medicine, but engrafting ECs typically necessitates co-transplanting perivascular supporting cells such as mesenchymal stromal cells (MSCs), which makes clinical implementation complicated2,3. The mechanisms that enable MSCs to facilitate EC engraftment remain elusive. Here we show that, under cellular stress, MSCs transfer mitochondria to ECs through tunnelling nanotubes, and that blocking this transfer impairs EC engraftment. We devised a strategy to artificially transplant mitochondria, transiently enhancing EC bioenergetics and enabling them to form functional vessels in ischaemic tissues without the support of MSCs. Notably, exogenous mitochondria did not integrate into the endogenous EC mitochondrial pool, but triggered mitophagy after internalization. Transplanted mitochondria co-localized with autophagosomes, and ablation of the PINK1-Parkin pathway negated the enhanced engraftment ability of ECs. Our findings reveal a mechanism that underlies the effects of mitochondrial transfer between mesenchymal and endothelial cells, and offer potential for a new approach for vascular cell therapy.


Sujet(s)
Thérapie cellulaire et tissulaire , Cellules endothéliales , Ischémie , Mitochondries , Mitophagie , Animaux , Humains , Mâle , Souris , Autophagosomes/métabolisme , Cellules endothéliales/cytologie , Cellules endothéliales/métabolisme , Cellules endothéliales/transplantation , Métabolisme énergétique , Cellules endothéliales de la veine ombilicale humaine/métabolisme , Ischémie/métabolisme , Ischémie/thérapie , Cellules souches mésenchymateuses/cytologie , Cellules souches mésenchymateuses/métabolisme , Souris nude , Mitochondries/métabolisme , Mitochondries/transplantation , Protein kinases/déficit , Protein kinases/métabolisme , Ubiquitin-protein ligases/déficit , Ubiquitin-protein ligases/métabolisme , Thérapie cellulaire et tissulaire/méthodes
18.
Front Cell Infect Microbiol ; 14: 1334211, 2024.
Article de Anglais | MEDLINE | ID: mdl-38817444

RÉSUMÉ

Parasites possess remarkable abilities to evade and manipulate the immune response of their hosts. Echinococcus granulosus is a parasitic tapeworm that causes cystic echinococcosis in animals and humans. The hydatid fluid released by the parasite is known to contain various immunomodulatory components that manipulate host´s defense mechanism. In this study, we focused on understanding the effect of hydatid fluid on dendritic cells and its impact on autophagy induction and subsequent T cell responses. Initially, we observed a marked downregulation of two C-type lectin receptors in the cell membrane, CLEC9A and CD205 and an increase in lysosomal activity, suggesting an active cellular response to hydatid fluid. Subsequently, we visualized ultrastructural changes in stimulated dendritic cells, revealing the presence of macroautophagy, characterized by the formation of autophagosomes, phagophores, and phagolysosomes in the cell cytoplasm. To further elucidate the underlying molecular mechanisms involved in hydatid fluid-induced autophagy, we analyzed the expression of autophagy-related genes in stimulated dendritic cells. Our results demonstrated a significant upregulation of beclin-1, atg16l1 and atg12, indicating the induction of autophagy machinery in response to hydatid fluid exposure. Additionally, using confocal microscopy, we observed an accumulation of LC3 in dendritic cell autophagosomes, confirming the activation of this catabolic pathway associated with antigen presentation. Finally, to evaluate the functional consequences of hydatid fluid-induced autophagy in DCs, we evaluated cytokine transcription in the splenocytes. Remarkably, a robust polyfunctional T cell response, with inhibition of Th2 profile, is characterized by an increase in the expression of il-6, il-10, il-12, tnf-α, ifn-γ and tgf-ß genes. These findings suggest that hydatid fluid-induced autophagy in dendritic cells plays a crucial role in shaping the subsequent T cell responses, which is important for a better understanding of host-parasite interactions in cystic echinococcosis.


Sujet(s)
Autophagie , Cellules dendritiques , Échinococcose , Echinococcus granulosus , Cellules dendritiques/immunologie , Cellules dendritiques/métabolisme , Animaux , Echinococcus granulosus/immunologie , Autophagie/immunologie , Échinococcose/immunologie , Échinococcose/parasitologie , Lymphocytes T/immunologie , Lymphocytes T/métabolisme , Souris , Lectines de type C/métabolisme , Cytokines/métabolisme , Femelle , Autophagosomes/immunologie , Autophagosomes/métabolisme
19.
J Cell Biol ; 223(8)2024 Aug 05.
Article de Anglais | MEDLINE | ID: mdl-38775785

RÉSUMÉ

Autophagy is an important metabolic pathway that can non-selectively recycle cellular material or lead to targeted degradation of protein aggregates or damaged organelles. Autophagosome formation starts with autophagy factors accumulating on lipid vesicles containing ATG9. These phagophores attach to donor membranes, expand via ATG2-mediated lipid transfer, capture cargo, and mature into autophagosomes, ultimately fusing with lysosomes for their degradation. Autophagy can be activated by nutrient stress, for example, by a reduction in the cellular levels of amino acids. In contrast, how autophagy is regulated by low cellular ATP levels via the AMP-activated protein kinase (AMPK), an important therapeutic target, is less clear. Using live-cell imaging and an automated image analysis pipeline, we systematically dissect how nutrient starvation regulates autophagosome biogenesis. We demonstrate that glucose starvation downregulates autophagosome maturation by AMPK-mediated inhibition of phagophore tethering to donor membrane. Our results clarify AMPKs regulatory role in autophagy and highlight its potential as a therapeutic target to reduce autophagy.


Sujet(s)
AMP-Activated Protein Kinases , Autophagosomes , Autophagie , Humains , AMP-Activated Protein Kinases/métabolisme , Autophagosomes/métabolisme , Glucose/métabolisme , Lignée cellulaire
20.
Chin J Nat Med ; 22(5): 387-401, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38796213

RÉSUMÉ

Hernandezine (Her), a bisbenzylisoquinoline alkaloid extracted from Thalictrum flavum, is recognized for its range of biological activities inherent to this herbal medicine. Despite its notable properties, the anti-cancer effects of Her have remained largely unexplored. In this study, we elucidated that Her significantly induced cytotoxicity in cancer cells through the activation of apoptosis and necroptosis mechanisms. Furthermore, Her triggered autophagosome formation by activating the AMPK and ATG5 conjugation systems, leading to LC3 lipidation. Our findings revealed that Her caused damage to the mitochondrial membrane, with the damaged mitochondria undergoing mitophagy, as evidenced by the elevated expression of mitophagy markers. Conversely, Her disrupted autophagic flux, demonstrated by the upregulation of p62 and accumulation of autolysosomes, as observed in the RFP-GFP-LC3 reporter assay. Initially, we determined that Her did not prevent the fusion of autophagosomes and lysosomes. However, it inhibited the maturation of cathepsin D and increased lysosomal pH, indicating an impairment of lysosomal function. The use of the early-stage autophagy inhibitor, 3-methyladenine (3-MA), did not suppress LC3II, suggesting that Her also induces noncanonical autophagy in autophagosome formation. The application of Bafilomycin A1, an inhibitor of noncanonical autophagy, diminished the recruitment of ATG16L1 and the accumulation of LC3II by Her, thereby augmenting Her-induced cell death. These observations imply that while autophagy initially plays a protective role, the disruption of the autophagic process by Her promotes programmed cell death. This study provides the first evidence of Her's dual role in inducing apoptosis and necroptosis while also initiating and subsequently impairing autophagy to promote apoptotic cell death. These insights contribute to a deeper understanding of the mechanisms underlying programmed cell death, offering potential avenues for enhancing cancer prevention and therapeutic strategies.


Sujet(s)
Apoptose , Autophagie , Cathepsine D , Lysosomes , Cathepsine D/métabolisme , Cathepsine D/génétique , Humains , Lysosomes/effets des médicaments et des substances chimiques , Lysosomes/métabolisme , Apoptose/effets des médicaments et des substances chimiques , Autophagie/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Benzylisoquinoléines/pharmacologie , Autophagosomes/effets des médicaments et des substances chimiques , Autophagosomes/métabolisme , Concentration en ions d'hydrogène , Protéine-5 associée à l'autophagie/génétique , Protéine-5 associée à l'autophagie/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE