Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 110
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Nat Commun ; 15(1): 6445, 2024 Jul 31.
Article de Anglais | MEDLINE | ID: mdl-39085263

RÉSUMÉ

MuB is a non-specific DNA-binding protein and AAA+ ATPase that significantly influences the DNA transposition process of bacteriophage Mu, especially in target DNA selection for transposition. While studies have established the ATP-dependent formation of MuB filament as pivotal to this process, the high-resolution structure of a full-length MuB protomer and the underlying molecular mechanisms governing its oligomerization remain elusive. Here, we use cryo-EM to obtain a 3.4-Å resolution structure of the ATP(+)-DNA(+)-MuB helical filament, which encapsulates the DNA substrate within its axial channel. The structure categorizes MuB within the initiator clade of the AAA+ protein family and precisely locates the ATP and DNA binding sites. Further investigation into the oligomeric states of MuB show the existence of various forms of the filament. These findings lead to a mechanistic model where MuB forms opposite helical filaments along the DNA, exposing potential target sites on the bare DNA and then recruiting MuA, which stimulates MuB's ATPase activity and disrupts the previously formed helical structure. When this happens, MuB generates larger ring structures and dissociates from the DNA.


Sujet(s)
Bactériophage mu , Cryomicroscopie électronique , ADN viral , Protéines de liaison à l'ADN , Protéines virales , Bactériophage mu/génétique , Bactériophage mu/métabolisme , Protéines virales/métabolisme , Protéines virales/génétique , Protéines virales/composition chimique , ADN viral/génétique , ADN viral/métabolisme , Protéines de liaison à l'ADN/métabolisme , Protéines de liaison à l'ADN/génétique , Protéines de liaison à l'ADN/composition chimique , Modèles moléculaires , Adénosine triphosphate/métabolisme , Adenosine triphosphatases/métabolisme , Adenosine triphosphatases/génétique , Adenosine triphosphatases/composition chimique , Sites de fixation , Multimérisation de protéines
2.
Viruses ; 15(3)2023 02 27.
Article de Anglais | MEDLINE | ID: mdl-36992345

RÉSUMÉ

For 20 years, the intricacies in bacteriophage Mu replication and its regulation were elucidated in collaboration between Ariane Toussaint and her co-workers in the Laboratory of Genetics at the Université Libre de Bruxelles, and the groups of Martin Pato and N. Patrick Higgins in the US. Here, to honor Martin Pato's scientific passion and rigor, we tell the history of this long-term sharing of results, ideas and experiments between the three groups, and Martin's final discovery of a very unexpected step in the initiation of Mu replication, the joining of Mu DNA ends separated by 38 kB with the assistance of the host DNA gyrase.


Sujet(s)
Bactériophage mu , Humains , Bactériophage mu/génétique , Bactériophage mu/métabolisme , Réplication virale/génétique , Séquence nucléotidique , DNA gyrase/génétique , DNA gyrase/métabolisme , Sites de fixation/génétique , Réplication de l'ADN , ADN viral/génétique
3.
mBio ; 13(3): e0081322, 2022 06 28.
Article de Anglais | MEDLINE | ID: mdl-35471081

RÉSUMÉ

Bacteriophage Mu is a paradigm coliphage studied mainly because of its use of transposition for genome replication. However, in extensive nonsense mutant screens, only one lysis gene has been identified, the endolysin gp22. This is surprising because in Gram-negative hosts, lysis by Caudovirales phages has been shown to require proteins which disrupt all three layers of the cell envelope. Usually this involves a holin, an endolysin, and a spanin targeting the cytoplasmic membrane, peptidoglycan (PG), and outer membrane (OM), respectively, with the holin determining the timing of lysis initiation. Here, we demonstrate that gp22 is a signal-anchor-release (SAR) endolysin and identify gp23 and gp23.1 as two-component spanin subunits. However, we find that Mu lacks a holin and instead encodes a membrane-tethered cytoplasmic protein, gp25, which is required for the release of the SAR endolysin. Mutational analysis showed that this dependence on gp25 is conferred by lysine residues at positions 6 and 7 of the short cytoplasmic domain of gp22. gp25, which we designate as a releasin, also facilitates the release of SAR endolysins from other phages. Moreover, the entire length of gp25, including its N-terminal transmembrane domain, belongs to a protein family, DUF2730, found in many Mu-like phages, including those with cytoplasmic endolysins. These results are discussed in terms of models for the evolution and mechanism of releasin function and a rationale for Mu lysis without holin control. IMPORTANCE Host cell lysis is the terminal event of the bacteriophage infection cycle. In Gram-negative hosts, lysis requires proteins that disrupt each of the three cell envelope components, only one of which has been identified in Mu: the endolysin gp22. We show that gp22 can be characterized as a SAR endolysin, a muralytic enzyme that activates upon release from the membrane to degrade the cell wall. Furthermore, we identify genes 23 and 23.1 as spanin subunits used for outer membrane disruption. Significantly, we demonstrate that Mu is the first known Caudovirales phage to lack a holin, a protein that disrupts the inner membrane and is traditionally known to release endolysins. In its stead, we report the discovery of a lysis protein, termed the releasin, which Mu uses for SAR endolysin release. This is an example of a system where the dynamic membrane localization of one protein is controlled by a secondary protein.


Sujet(s)
Bactériophage mu , Bactériophages , Bactériophage mu/métabolisme , Bactériophages/physiologie , Endopeptidases/génétique , Endopeptidases/métabolisme , Protéines membranaires , Protéines virales/génétique , Protéines virales/métabolisme
4.
Proc Natl Acad Sci U S A ; 115(50): E11614-E11622, 2018 12 11.
Article de Anglais | MEDLINE | ID: mdl-30487222

RÉSUMÉ

The Gam protein of transposable phage Mu is an ortholog of eukaryotic and bacterial Ku proteins, which carry out nonhomologous DNA end joining (NHEJ) with the help of dedicated ATP-dependent ligases. Many bacteria carry Gam homologs associated with either complete or defective Mu-like prophages, but the role of Gam in the life cycle of Mu or in bacteria is unknown. Here, we show that MuGam is part of a two-component bacterial NHEJ DNA repair system. Ensemble and single-molecule experiments reveal that MuGam binds to DNA ends, slows the progress of RecBCD exonuclease, promotes binding of NAD+-dependent Escherichia coli ligase A, and stimulates ligation. In vivo, Gam equally promotes both precise and imprecise joining of restriction enzyme-digested linear plasmid DNA, as well as of a double-strand break (DSB) at an engineered I-SceI site in the chromosome. Cell survival after the induced DSB is specific to the stationary phase. In long-term growth competition experiments, particularly upon treatment with a clastogen, the presence of gam in a Mu lysogen confers a distinct fitness advantage. We also show that the role of Gam in the life of phage Mu is related not to transposition but to protection of genomic Mu copies from RecBCD when viral DNA packaging begins. Taken together, our data show that MuGam provides bacteria with an NHEJ system and suggest that the resulting fitness advantage is a reason that bacteria continue to retain the gam gene in the absence of an intact prophage.


Sujet(s)
Bactériophage mu/métabolisme , Réparation de l'ADN par jonction d'extrémités/physiologie , DNA ligases/métabolisme , Protéines de liaison à l'ADN/métabolisme , Protéines Escherichia coli/métabolisme , Escherichia coli/métabolisme , Protéines virales/métabolisme , Bactériophage mu/génétique , Bactériophage mu/croissance et développement , DNA ligases/composition chimique , Empaquetage de l'ADN/physiologie , ADN bactérien/composition chimique , ADN bactérien/génétique , ADN bactérien/métabolisme , Protéines de liaison à l'ADN/composition chimique , Escherichia coli/génétique , Protéines Escherichia coli/composition chimique , Exodeoxyribonuclease V/métabolisme , Cinétique , Modèles biologiques , Modèles moléculaires , Structure quaternaire des protéines , Similitude structurale de protéines , Protéines virales/composition chimique
5.
DNA Repair (Amst) ; 72: 86-92, 2018 12.
Article de Anglais | MEDLINE | ID: mdl-30268364

RÉSUMÉ

The N protein of phage Mu was indicated from studies in Escherichia coli to hold linear Mu chromosomes in a circular conformation by non-covalent association, and thus suggested potentially to bind DNA double-stranded ends. Because of its role in association with linear Mu DNA, we tested whether fluorescent-protein fusions to N might provide a useful tool for labeling DNA damage including double-strand break (DSB) ends in single cells. We compared N-GFP with a biochemically well documented DSB-end binding protein, the Gam protein of phage Mu, also fused to GFP. We find that N-GFP produced in live E. coli forms foci in response to DNA damage induced by radiomimetic drug phleomycin, indicating that it labels damaged DNA. N-GFP also labels specific DSBs created enzymatically by I-SceI double-strand endonuclease, and by X-rays, with the numbers of foci corresponding with the numbers of DSBs generated, indicating DSB labeling. However, whereas N-GFP forms about half as many foci as GamGFP with phleomycin, its labeling of I-SceI- and X-ray-induced DSBs is far less efficient than that of GamGFP. The data imply that N-GFP binds and labels DNA damage including DSBs, but may additionally label phleomycin-induced non-DSB damage, with which DSB-specific GamGFP does not interact. The data indicate that N-GFP labels DNA damage, and may be useful for general, not DSB-specific, DNA-damage detection.


Sujet(s)
Bactériophage mu/génétique , Bactériophage mu/métabolisme , Altération de l'ADN , Colorants fluorescents/métabolisme , Protéines virales régulatrices ou accessoires/métabolisme , Cassures double-brin de l'ADN , Escherichia coli/cytologie , Exonucleases/métabolisme , Phléomycines/métabolisme
6.
Proc Natl Acad Sci U S A ; 113(36): 10174-9, 2016 09 06.
Article de Anglais | MEDLINE | ID: mdl-27555589

RÉSUMÉ

Contractile phage tails are powerful cell puncturing nanomachines that have been co-opted by bacteria for self-defense against both bacteria and eukaryotic cells. The tail of phage T4 has long served as the paradigm for understanding contractile tail-like systems despite its greater complexity compared with other contractile-tailed phages. Here, we present a detailed investigation of the assembly of a "simple" contractile-tailed phage baseplate, that of Escherichia coli phage Mu. By coexpressing various combinations of putative Mu baseplate proteins, we defined the required components of this baseplate and delineated its assembly pathway. We show that the Mu baseplate is constructed through the independent assembly of wedges that are organized around a central hub complex. The Mu wedges are comprised of only three protein subunits rather than the seven found in the equivalent structure in T4. Through extensive bioinformatic analyses, we found that homologs of the essential components of the Mu baseplate can be identified in the majority of contractile-tailed phages and prophages. No T4-like prophages were identified. The conserved simple baseplate components were also found in contractile tail-derived bacterial apparatuses, such as type VI secretion systems, Photorhabdus virulence cassettes, and R-type tailocins. Our work highlights the evolutionary connections and similarities in the biochemical behavior of phage Mu wedge components and the TssF and TssG proteins of the type VI secretion system. In addition, we demonstrate the importance of the Mu baseplate as a model system for understanding bacterial phage tail-derived systems.


Sujet(s)
Bactériophage mu/génétique , Systèmes de sécrétion de type VI/génétique , Protéines virales queue/génétique , Virion/génétique , Assemblage viral/génétique , Bacillus subtilis/virologie , Bactériophage P2/génétique , Bactériophage P2/métabolisme , Bactériophage P2/ultrastructure , Bactériophage T4/génétique , Bactériophage T4/métabolisme , Bactériophage T4/ultrastructure , Bactériophage mu/métabolisme , Bactériophage mu/ultrastructure , Biologie informatique , Escherichia coli/virologie , Expression des gènes , Synténie , Systèmes de sécrétion de type VI/métabolisme , Protéines virales queue/métabolisme , Virion/métabolisme , Virion/ultrastructure
7.
PLoS One ; 10(4): e0124053, 2015.
Article de Anglais | MEDLINE | ID: mdl-25902138

RÉSUMÉ

S. flexneri is the leading cause of bacillary dysentery in the developing countries. Several temperate phages originating from this host have been characterised. However, all S. flexneri phages known to date are lambdoid phages, which have the ability to confer the O-antigen modification of their host. In this study, we report the isolation and characterisation of a novel Mu-like phage from a serotype 4a strain of S. flexneri. The genome of phage SfMu is composed of 37,146 bp and is predicted to contain 55 open reading frames (orfs). Comparative genome analysis of phage SfMu with Mu and other Mu-like phages revealed that SfMu is closely related to phage Mu, sharing >90% identity with majority of its proteins. Moreover, investigation of phage SfMu receptor on the surface of the host cell revealed that the O-antigen of the host serves as the receptor for the adsorption of phage SfMu. This study also demonstrates pervasiveness of SfMu phage in S. flexneri, by identifying complete SfMu prophage strains of serotype X and Y, and remnants of SfMu in strains belonging to 4 other serotypes, thereby indicating that transposable phages in S. flexneri are not uncommon. The findings of this study contribute an advance in our current knowledge of S. flexneri phages and will also play a key role in understanding the evolution of S. flexneri.


Sujet(s)
Bactériophage mu/génétique , ADN viral/génétique , Génome viral , Shigella flexneri/virologie , Protéines virales/génétique , Bactériophage mu/métabolisme , Cartographie chromosomique , ADN viral/métabolisme , Taille du génome , Antigènes O/composition chimique , Antigènes O/métabolisme , Cadres ouverts de lecture , Récepteurs viraux/composition chimique , Récepteurs viraux/métabolisme , Analyse de séquence d'ADN , Sérotypie , Shigella flexneri/métabolisme , Protéines virales/métabolisme
8.
Proc Natl Acad Sci U S A ; 111(39): 14112-7, 2014 Sep 30.
Article de Anglais | MEDLINE | ID: mdl-25197059

RÉSUMÉ

The genome of transposable phage Mu is packaged as a linear segment, flanked by several hundred base pairs of non-Mu DNA. The linear ends are held together and protected from nucleases by the phage N protein. After transposition into the Escherichia coli chromosome, the flanking DNA (FD) is degraded, and the 5-bp gaps left in the target are repaired to generate a simple Mu insertion. Our study provides insights into this repair pathway. The data suggest that the first event in repair is removal of the FD by the RecBCD exonuclease, whose entry past the N-protein block is licensed by the transpososome. In vitro experiments reveal that, when RecBCD is allowed entry into the FD, it degrades this DNA until it arrives at the transpososome, which presents a barrier for further RecBCD movement. RecBCD action is required for stimulating endonucleolytic cleavage within the transpososome-protected DNA, leaving 4-nt flanks outside both Mu ends. This end product of collaboration between the transpososome and RecBCD resembles the intermediate products of Tn7 and retroviral and retrotransposon transposition, and may hint at a common gap-repair mechanism in these diverse transposons.


Sujet(s)
Bactériophage mu/génétique , Bactériophage mu/métabolisme , Éléments transposables d'ADN/génétique , Exodeoxyribonuclease V/métabolisme , Substitution d'acide aminé , Réparation de l'ADN , ADN viral/génétique , ADN viral/métabolisme , Escherichia coli K12/génétique , Escherichia coli K12/métabolisme , Escherichia coli K12/virologie , Cellules HEK293 , Humains , Modèles biologiques , Mutagenèse dirigée , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , Spécificité d'espèce , Transposases/composition chimique , Transposases/génétique , Transposases/métabolisme , Protéines virales/composition chimique , Protéines virales/génétique , Protéines virales/métabolisme
9.
Biochem Soc Trans ; 41(2): 601-5, 2013 Apr.
Article de Anglais | MEDLINE | ID: mdl-23514161

RÉSUMÉ

Difference topology is an experimental technique that can be used to unveil the topological structure adopted by two or more DNA segments in a stable protein-DNA complex. Difference topology has also been used to detect intermediates in a reaction pathway and to investigate the role of DNA supercoiling. In the present article, we review difference topology as applied to the Mu transpososome. The tools discussed can be applied to any stable nucleoprotein complex.


Sujet(s)
Bactériophage mu/métabolisme , Protéines de liaison à l'ADN/composition chimique , Protéines de liaison à l'ADN/métabolisme , ADN/composition chimique , ADN/métabolisme , Conformation d'acide nucléique , Stabilité protéique , Transposases/composition chimique , Transposases/métabolisme
10.
Biochim Biophys Acta ; 1834(1): 284-91, 2013 Jan.
Article de Anglais | MEDLINE | ID: mdl-22922659

RÉSUMÉ

Bacteriophage Mu, which has a contractile tail, is one of the most famous genus of Myoviridae. It has a wide host range and is thought to contribute to horizontal gene transfer. The Myoviridae infection process is initiated by adhesion to the host surface. The phage then penetrates the host cell membrane using its tail to inject its genetic material into the host. In this penetration process, Myoviridae phages are proposed to puncture the membrane of the host cell using a central spike located beneath its baseplate. The central spike of the Mu phage is thought to be composed of gene 45 product (gp45), which has a significant sequence homology with the central spike of P2 phage (gpV). We determined the crystal structure of shortened Mu gp45Δ1-91 (Arg92-Gln197) at 1.5Å resolution and showed that Mu gp45 is a needlelike structure that punctures the membrane. The apex of Mu gp45 and that of P2 gpV contained iron, chloride, and calcium ions. Although the C-terminal domain of Mu gp45 was sufficient for binding to the E. coli membrane, a mutant D188A, in which the Asp amino acid residue that coordinates the calcium ion was replaced by Ala, did not exhibit a propensity to bind to the membrane. Therefore, we concluded that calcium ion played an important role in interaction with the host cell membrane.


Sujet(s)
Bactériophage mu/composition chimique , Protéines de l'enveloppe virale/composition chimique , Bactériophage mu/métabolisme , Calcium/composition chimique , Calcium/métabolisme , Membrane cellulaire/composition chimique , Membrane cellulaire/métabolisme , Membrane cellulaire/virologie , Cristallographie aux rayons X , Escherichia coli/composition chimique , Escherichia coli/métabolisme , Escherichia coli/virologie , Structure tertiaire des protéines , Protéines de l'enveloppe virale/métabolisme , Pénétration virale
11.
J Biol Chem ; 286(41): 35852-35862, 2011 Oct 14.
Article de Anglais | MEDLINE | ID: mdl-21859715

RÉSUMÉ

Gene expression during lytic development of bacteriophage Mu occurs in three phases: early, middle, and late. Transcription from the middle promoter, P(m), requires the phage-encoded activator protein Mor and the bacterial RNA polymerase. The middle promoter has a -10 hexamer, but no -35 hexamer. Instead P(m) has a hyphenated inverted repeat that serves as the Mor binding site overlapping the position of the missing -35 element. Mor binds to this site as a dimer and activates transcription by recruiting RNA polymerase. The crystal structure of the His-Mor dimer revealed three structural elements: an N-terminal dimerization domain, a C-terminal helix-turn-helix DNA-binding domain, and a ß-strand linker between the two domains. We predicted that the highly conserved residues in and flanking the ß-strand would be essential for the conformational flexibility and DNA minor groove binding by Mor. To test this hypothesis, we carried out single codon-specific mutagenesis with degenerate oligonucleotides. The amino acid substitutions were identified by DNA sequencing. The mutant proteins were characterized for their overexpression, solubility, DNA binding, and transcription activation. This analysis revealed that the Gly-Gly motif formed by Gly-65 and Gly-66 and the ß-strand side chain of Tyr-70 are crucial for DNA binding by His-tagged Mor. Mutant proteins with substitutions at Gly-74 retained partial activity. Treatment with the minor groove- and GC-specific chemical chromomycin A(3) demonstrated that chromomycin prevented His-Mor binding but could not disrupt a pre-formed His-Mor·DNA complex, consistent with the prediction that Mor interacts with the minor groove of the GC-rich spacer in the Mor binding site.


Sujet(s)
Bactériophage mu/composition chimique , Protéines du cycle cellulaire/composition chimique , ADN viral/composition chimique , Protéines de Drosophila/composition chimique , Éléments de réponse , Substitution d'acide aminé , Bactériophage mu/génétique , Bactériophage mu/métabolisme , Protéines du cycle cellulaire/génétique , Protéines du cycle cellulaire/métabolisme , Chromomycine A3/composition chimique , Cristallographie aux rayons X , ADN viral/génétique , ADN viral/métabolisme , Protéines de Drosophila/génétique , Protéines de Drosophila/métabolisme , Escherichia coli K12/composition chimique , Escherichia coli K12/génétique , Escherichia coli K12/métabolisme , Escherichia coli K12/virologie , Motifs à hélice-tour-hélice , Mutation faux-sens , Liaison aux protéines , Structure tertiaire des protéines
12.
J Biosci ; 36(4): 587-601, 2011 Sep.
Article de Anglais | MEDLINE | ID: mdl-21857106

RÉSUMÉ

Of all known transposable elements, phage Mu exhibits the highest transposition efficiency and the lowest target specificity. In vitro, MuB protein is responsible for target choice. In this work, we provide a comprehensive assessment of the genome-wide distribution of MuB and its relationship to Mu target selection using high-resolution Escherichia coli tiling DNA arrays. We have also assessed how MuB binding and Mu transposition are influenced by chromosome-organizing elements such as AT-rich DNA signatures, or the binding of the nucleoid-associated protein Fis, or processes such as transcription. The results confirm and extend previous biochemical and lower resolution in vivo data. Despite the generally random nature of Mu transposition and MuB binding, there were hot and cold insertion sites and MuB binding sites in the genome, and differences between the hottest and coldest sites were large. The new data also suggest that MuB distribution and subsequent Mu integration is responsive to DNA sequences that contribute to the structural organization of the chromosome.


Sujet(s)
Bactériophage mu/génétique , Chromosomes/génétique , Éléments transposables d'ADN/génétique , Escherichia coli/génétique , Bactériophage mu/métabolisme , Sites de fixation/génétique , Immunoprécipitation de la chromatine , Cartographie chromosomique , Chromosomes/composition chimique , ADN/composition chimique , ADN/génétique , Escherichia coli/métabolisme , Protéines Escherichia coli/génétique , Facteur de stimulation d'inversion/déficit , Facteur de stimulation d'inversion/génétique , Laboratoires sur puces , Mutagenèse par insertion , Techniques d'amplification d'acides nucléiques , Séquençage par oligonucléotides en batterie , Plasmides , Liaison aux protéines/génétique , Délétion de séquence
13.
Mol Microbiol ; 80(5): 1169-85, 2011 Jun.
Article de Anglais | MEDLINE | ID: mdl-21435034

RÉSUMÉ

Transcription activator C employs a unique mechanism to activate mom gene of bacteriophage Mu. The activation process involves, facilitating the recruitment of RNA polymerase (RNAP) by altering the topology of the promoter and enhancing the promoter clearance by reducing the abortive transcription. To understand the basis of this multi-step activation mechanism, we investigated the nature of the physical interaction between C and RNAP during the process. A variety of assays revealed that only DNA-bound C contacts the ß' subunit of RNAP. Consistent to these results, we have also isolated RNAP mutants having mutations in the ß' subunit which were compromised in C-mediated activation. Mutant RNAPs show reduced productive transcription and increased abortive initiation specifically at the C-dependent mom promoter. Positive control (pc) mutants of C, defective in interaction with RNAP, retained the property of recruiting RNAP to the promoter but were unable to enhance promoter clearance. These results strongly suggest that the recruitment of RNAP to the mom promoter does not require physical interaction with C, whereas a contact between the ß' subunit and the activator, and the subsequent allosteric changes in the active site of the enzyme are essential for the enhancement of promoter clearance.


Sujet(s)
Bactériophage mu/génétique , Facteurs de transcription à motifs basiques hélice-boucle-hélice et à glissière à leucines/métabolisme , DNA-directed RNA polymerases/génétique , DNA-directed RNA polymerases/métabolisme , Escherichia coli/enzymologie , Régions promotrices (génétique) , Activation de la transcription , Protéines virales/métabolisme , Motifs d'acides aminés , Bactériophage mu/métabolisme , Facteurs de transcription à motifs basiques hélice-boucle-hélice et à glissière à leucines/génétique , Sites de fixation , DNA-directed RNA polymerases/composition chimique , Escherichia coli/composition chimique , Escherichia coli/génétique , Escherichia coli/virologie , Régulation de l'expression des gènes viraux , Mutation , Liaison aux protéines , Transactivateurs/génétique , Transactivateurs/métabolisme , Transcription génétique , Protéines virales/génétique
14.
Proc Natl Acad Sci U S A ; 108(2): 498-503, 2011 Jan 11.
Article de Anglais | MEDLINE | ID: mdl-21187418

RÉSUMÉ

Routine manipulation of cellular genomes is contingent upon the development of proteins and enzymes with programmable DNA sequence specificity. Here we describe the structure-guided reprogramming of the DNA sequence specificity of the invertase Gin from bacteriophage Mu and Tn3 resolvase from Escherichia coli. Structure-guided and comparative sequence analyses were used to predict a network of amino acid residues that mediate resolvase and invertase DNA sequence specificity. Using saturation mutagenesis and iterative rounds of positive antibiotic selection, we identified extensively redesigned and highly convergent resolvase and invertase populations in the context of engineered zinc-finger recombinase (ZFR) fusion proteins. Reprogrammed variants selectively catalyzed recombination of nonnative DNA sequences > 10,000-fold more effectively than their parental enzymes. Alanine-scanning mutagenesis revealed the molecular basis of resolvase and invertase DNA sequence specificity. When used as rationally designed ZFR heterodimers, the reprogrammed enzyme variants site-specifically modified unnatural and asymmetric DNA sequences. Early studies on the directed evolution of serine recombinase DNA sequence specificity produced enzymes with relaxed substrate specificity as a result of randomly incorporated mutations. In the current study, we focused our mutagenesis exclusively on DNA determinants, leading to redesigned enzymes that remained highly specific and directed transgene integration into the human genome with > 80% accuracy. These results demonstrate that unique resolvase and invertase derivatives can be developed to site-specifically modify the human genome in the context of zinc-finger recombinase fusion proteins.


Sujet(s)
DNA nucleotidyltransferases/génétique , Recombinases/génétique , Sérine/composition chimique , Transposon resolvases/génétique , Séquence d'acides aminés , Bactériophage mu/métabolisme , Dimérisation , Escherichia coli/enzymologie , Ciblage de gène , Génome humain , Humains , Modèles moléculaires , Données de séquences moléculaires , Mutagenèse , Conformation des protéines , Ingénierie des protéines/méthodes , Structure secondaire des protéines , Analyse de séquence d'ADN , Similitude de séquences d'acides aminés , Transgènes
15.
J Bacteriol ; 192(24): 6418-27, 2010 Dec.
Article de Anglais | MEDLINE | ID: mdl-20935093

RÉSUMÉ

Random transposon mutagenesis is the strategy of choice for associating a phenotype with its unknown genetic determinants. It is generally performed by mobilization of a conditionally replicating vector delivering transposons to recipient cells using broad-host-range RP4 conjugative machinery carried by the donor strain. In the present study, we demonstrate that bacteriophage Mu, which was deliberately introduced during the original construction of the widely used donor strains SM10 λpir and S17-1 λpir, is silently transferred to Escherichia coli recipient cells at high frequency, both by hfr and by release of Mu particles by the donor strain. Our findings suggest that bacteriophage Mu could have contaminated many random-mutagenesis experiments performed on Mu-sensitive species with these popular donor strains, leading to potential misinterpretation of the transposon mutant phenotype and therefore perturbing analysis of mutant screens. To circumvent this problem, we precisely mapped Mu insertions in SM10 λpir and S17-1 λpir and constructed a new Mu-free donor strain, MFDpir, harboring stable hfr-deficient RP4 conjugative functions and sustaining replication of Π-dependent suicide vectors. This strain can therefore be used with most of the available transposon-delivering plasmids and should enable more efficient and easy-to-analyze mutant hunts in E. coli and other Mu-sensitive RP4 host bacteria.


Sujet(s)
Bactériophage mu/génétique , Éléments transposables d'ADN/génétique , Escherichia coli/génétique , Mutagenèse par insertion/méthodes , Plasmides/génétique , Bactériophage mu/métabolisme , Cartographie chromosomique , Chromosomes de bactérie , Conjugaison génétique , ADN bactérien/génétique , Escherichia coli/métabolisme
16.
Mol Cell ; 39(1): 48-58, 2010 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-20603074

RÉSUMÉ

DNA transposons integrate into host chromosomes with limited target sequence specificity. Without mechanisms to avoid insertion into themselves, transposons risk self-destruction. Phage Mu avoids this problem by transposition immunity, involving MuA-transposase and MuB ATP-dependent DNA-binding protein. MuB-bound DNA acts as an efficient transposition target, but MuA clusters bound to Mu DNA ends activate the MuB-ATPase and dissociate MuB from their neighborhood before target site commitment, making the regions near Mu ends a poor target. This MuA-cluster-MuB interaction requires formation of DNA loops between the MuA- and the MuB-bound DNA sites. At early times, MuB clusters are disassembled via loops with smaller average size, and at later times, MuA clusters find distantly located MuB clusters by forming loops with larger average sizes. We demonstrate that iterative loop formation/disruption cycles with intervening diffusional steps result in larger DNA loops, leading to preferential insertion of the transposon at sites distant from the transposon ends.


Sujet(s)
Bactériophage mu/métabolisme , Éléments transposables d'ADN/génétique , ADN viral/métabolisme , Modèles biologiques , Déplacement , Protéines virales/métabolisme , Bactériophage mu/enzymologie , ADN viral/composition chimique , Diffusion , Colorants fluorescents/métabolisme , Protéines à fluorescence verte/métabolisme , Cinétique , Conformation d'acide nucléique , Liaison aux protéines , Transposases/métabolisme
17.
Biochim Biophys Acta ; 1804(9): 1738-42, 2010 Sep.
Article de Anglais | MEDLINE | ID: mdl-20478417

RÉSUMÉ

The Mu phage virion contains tail-spike proteins beneath the baseplate, which it uses to adsorb to the outer membrane of Escherichia coli during the infection process. The tail spikes are composed of gene product 45 (gp45), which contains 197 amino acid residues. In this study, we purified and characterized both the full-length and the C-terminal domains of recombinant gp45 to identify the functional and structural domains. Limited proteolysis resulted in a Ser64-Gln197 sequence, which was composed of a stable C-terminal domain. Analytical ultracentrifugation of the recombinant C-terminal domain (gp45-C) indicated that the molecular weight of gp45-C was about 58 kDa and formed a trimeric protomer in solution. Coprecipitation experiments and a quartz crystal microbalance (QCM) demonstrated that gp45-C irreversibly binds to the E. coli membrane. These results indicate that gp45 shows behaviors similar to tail-spike proteins of other phages; however, gp45 did not show significant sequence homology with the other phage tail-spike structures that have been identified.


Sujet(s)
Bactériophage mu/métabolisme , Escherichia coli/métabolisme , Protéines recombinantes/métabolisme , Protéines virales queue/métabolisme , Bactériophage mu/croissance et développement , Escherichia coli/génétique , Glycosidases , Structure tertiaire des protéines , Protéines recombinantes/génétique , Protéines recombinantes/isolement et purification , Protéines virales queue/génétique , Protéines virales queue/isolement et purification
18.
Proc Natl Acad Sci U S A ; 107(22): 10014-9, 2010 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-20167799

RÉSUMÉ

Phage Mu transposes by two distinct pathways depending on the specific stage of its life cycle. A common strand transfer intermediate is resolved differentially in the two pathways. During lytic growth, the intermediate is resolved by replication of Mu initiated within the flanking target DNA; during integration of infecting Mu, it is resolved without replication, by removal and repair of DNA from a previous host that is still attached to the ends of the incoming Mu genome. We have discovered that the cryptic endonuclease activity reported for the isolated C-terminal domain of the transposase MuA [Wu Z, Chaconas G (1995) A novel DNA binding and nuclease activity in domain III of Mu transposase: Evidence for a catalytic region involved in donor cleavage. EMBO J 14:3835-3843], which is not observed in the full-length protein or in the assembled transpososome in vitro, is required in vivo for removal of the attached host DNA or "5'flap" after the infecting Mu genome has integrated into the E. coli chromosome. Efficient flap removal also requires the host protein ClpX, which is known to interact with the C-terminus of MuA to remodel the transpososome for replication. We hypothesize that ClpX constitutes part of a highly regulated mechanism that unmasks the cryptic nuclease activity of MuA specifically in the repair pathway.


Sujet(s)
Bactériophage mu/métabolisme , Réparation de l'ADN/physiologie , Endonucleases/métabolisme , Transposases/métabolisme , ATPases associated with diverse cellular activities , Adenosine triphosphatases/métabolisme , Séquence d'acides aminés , Substitution d'acide aminé , Bactériophage mu/génétique , Bactériophage mu/physiologie , Réplication de l'ADN/physiologie , Endonucleases/composition chimique , Endonucleases/génétique , Endopeptidase Clp/métabolisme , Escherichia coli K12/génétique , Escherichia coli K12/physiologie , Escherichia coli K12/virologie , Protéines Escherichia coli/métabolisme , Lysogénie , Modèles biologiques , Chaperons moléculaires/métabolisme , Mutagenèse dirigée , Structure tertiaire des protéines , Protéines recombinantes/composition chimique , Protéines recombinantes/génétique , Protéines recombinantes/métabolisme , Transposases/composition chimique , Transposases/génétique , Intégration virale/physiologie , Réplication virale/physiologie
19.
DNA Repair (Amst) ; 9(3): 202-9, 2010 Mar 02.
Article de Anglais | MEDLINE | ID: mdl-20097140

RÉSUMÉ

PriA, a 3'-->5' superfamily 2 DNA helicase, acts to remodel stalled replication forks and as a specificity factor for origin-independent assembly of a new replisome at the stalled fork. The ability of PriA to initiate replication at stalled forked structures ensures complete genome replication and helps to protect the cell from illegitimate recombination events. This review focuses on the activities of PriA and its role in replication fork assembly and maintaining genomic integrity.


Sujet(s)
Helicase/métabolisme , Réplication de l'ADN , DNA-directed DNA polymerase/métabolisme , ADN/métabolisme , Complexes multienzymatiques/métabolisme , Bactériophage mu/métabolisme , Instabilité du génome , Humains
20.
Biochemistry ; 48(11): 2347-54, 2009 Mar 24.
Article de Anglais | MEDLINE | ID: mdl-19170593

RÉSUMÉ

Transactivator protein C of bacteriophage mu is essential for the transition from middle to late gene expression during the phage life cycle. The unusual, multistep activation of mom promoter (P(mom)) by C protein involves activator-mediated promoter unwinding to recruit RNA polymerase and subsequent enhanced promoter clearance of the enzyme. To achieve this, C binds its site overlapping the -35 region of the mom promoter with a very high affinity, in Mg(2+)-dependent fashion. Mg(2+)-mediated conformational transition in C is necessary for its DNA binding and transactivation. We have determined the residues in C which coordinate Mg(2+), to induce allosteric transition in the protein, required for the specific interaction with DNA. Residues E26 and D40 in the putative metal binding motif (E(26)X(10)D(37)X(2)D(40)) present toward the N-terminus of the protein are found to be important for Mg(2+) ion binding. Mutations in these residues lead to altered Mg(2+)-induced conformation, compromised DNA binding, and reduced levels of transcription activation. Although Mg(2+) is widely used in various DNA transaction reactions, this report provides the first insights on the importance of the metal ion-induced allosteric transitions in regulating transcription factor function.


Sujet(s)
Bactériophage mu/composition chimique , Facteurs de transcription à motifs basiques hélice-boucle-hélice et à glissière à leucines/composition chimique , Facteurs de transcription à motifs basiques hélice-boucle-hélice et à glissière à leucines/métabolisme , Magnésium/composition chimique , Transactivateurs/composition chimique , Transactivateurs/métabolisme , Protéines virales/composition chimique , Protéines virales/métabolisme , Séquence d'acides aminés , Bactériophage mu/génétique , Bactériophage mu/métabolisme , ADN/génétique , ADN/métabolisme , Données de séquences moléculaires , Liaison aux protéines , Conformation des protéines , Activation de la transcription
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE