Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 1.906
Filtrer
1.
ACS Appl Mater Interfaces ; 16(24): 31843-31850, 2024 Jun 19.
Article de Anglais | MEDLINE | ID: mdl-38841859

RÉSUMÉ

Liquid crystal (LC) biosensors have received significant attention for their potential applications for point-of-care devices due to their sensitivity, low cost, and easy read-out. They have been employed to detect a wide range of important biological molecules. However, detecting the function of membrane proteins has been extremely challenging due to the difficulty of integrating membrane proteins, lipid membranes, and LCs into one system. In this study, we addressed this challenge by monitoring the proton-pumping function of bacteriorhodopsin (bR) using a pH-sensitive LC thin film biosensor. To achieve this, we deposited purple membranes (PMs) containing a 2D crystal form of bRs onto an LC-aqueous interface. Under light, the PM patches changed the local pH at the LC-aqueous interface, causing a color change in the LC thin film that is observable through a polarizing microscope with crossed polarizers. These findings open up new opportunities to study the biofunctions of membrane proteins and their induced local environmental changes in a solution using LC biosensors.


Sujet(s)
Bactériorhodopsines , Techniques de biocapteur , Cristaux liquides , Techniques de biocapteur/méthodes , Cristaux liquides/composition chimique , Concentration en ions d'hydrogène , Bactériorhodopsines/composition chimique , Protéines membranaires/composition chimique , Membrane pourpre/composition chimique
2.
Proc Natl Acad Sci U S A ; 121(26): e2319676121, 2024 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-38900801

RÉSUMÉ

The photoinduced all-trans to 13-cis isomerization of the retinal Schiff base represents the ultrafast first step in the reaction cycle of bacteriorhodopsin (BR). Extensive experimental and theoretical work has addressed excited-state dynamics and isomerization via a conical intersection with the ground state. In conflicting molecular pictures, the excited state potential energy surface has been modeled as a pure S[Formula: see text] state that intersects with the ground state, or in a 3-state picture involving the S[Formula: see text] and S[Formula: see text] states. Here, the photoexcited system passes two crossing regions to return to the ground state. The electric dipole moment of the Schiff base in the S[Formula: see text] and S[Formula: see text] state differs strongly and, thus, its measurement allows for assessing the character of the excited-state potential. We apply the method of ultrafast terahertz (THz) Stark spectroscopy to measure electric dipole changes of wild-type BR and a BR D85T mutant upon electronic excitation. A fully reversible transient broadening and spectral shift of electronic absorption is induced by a picosecond THz field of several megavolts/cm and mapped by a 120-fs optical probe pulse. For both BR variants, we derive a moderate electric dipole change of 5 [Formula: see text] 1 Debye, which is markedly smaller than predicted for a neat S[Formula: see text]-character of the excited state. In contrast, S[Formula: see text]-admixture and temporal averaging of excited-state dynamics over the probe pulse duration gives a dipole change in line with experiment. Our results support a picture of electronic and nuclear dynamics governed by the interaction of S[Formula: see text] and S[Formula: see text] states in a 3-state model.


Sujet(s)
Bactériorhodopsines , Rétinal , Bactériorhodopsines/composition chimique , Bactériorhodopsines/métabolisme , Rétinal/composition chimique , Rétinal/métabolisme , Spectroscopie térahertz/méthodes , Bases de Schiff/composition chimique , Halobacterium salinarum/métabolisme , Halobacterium salinarum/composition chimique , Isomérie
3.
J Phys Chem B ; 128(22): 5397-5406, 2024 Jun 06.
Article de Anglais | MEDLINE | ID: mdl-38776161

RÉSUMÉ

The article correlates between symmetry breaking and phase transition. An analogy, extending from physics to biology, is known to exist between these two topics. Bacteriorhodopsin (bR) as a paradigm of membrane proteins has been used as a case study in the present work. The bR, as the sole protein embedded in what is called a purple membrane (PM), has attracted widespread interest in bionanotechnological applications. The lipids of PM have a crucial role in maintaining the crystal lattice of bR inside PM. For this reason, the present work has been concerned with elucidating the thermal phase transition properties of the PM lipids in orthogonal directions. The results indicated that the axial symmetry of bR exhibits considerable changes occurring at the thermal phase transition of lipids. These changes are brought by an anomaly observed in the time course of orthogonal electric responses during the application of thermal fields on PM. The observed anomaly may bear on symmetry breaking in bR occurring at the phase transition of lipids based on such analogy found between symmetry breaking and phase transition. Lipid-protein interactions may underlie the broken axial symmetry of bR at such lipid thermal transition of PM. Accordingly, thermally perturbed axial symmetry of bR may be of biological relevance relying on the essence of the crystal lattice of bR. Most importantly, a question has to be raised in the present study: Can bR, as a helical protein with broken axial symmetry, affect the symmetry breaking of helical light? This may be of potential technical applications based on a recent discovery that bR breaks the symmetry of helical light.


Sujet(s)
Bactériorhodopsines , Transition de phase , Membrane pourpre , Bactériorhodopsines/composition chimique , Membrane pourpre/composition chimique , Membrane pourpre/métabolisme , Température , Halobacterium salinarum/composition chimique , Lipides/composition chimique
4.
Biochim Biophys Acta Biomembr ; 1866(5): 184333, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38740122

RÉSUMÉ

Membrane protein folding is distinct from folding of soluble proteins. Conformational acquisition in major membrane protein subclasses can be delineated into insertion and folding processes. An exception to the "two stage" folding, later developed to "three stage" folding, is observed within the last two helices in bacteriorhodopsin (BR), a system that serves as a model membrane protein. We employ a reductionist approach to understand interplay of molecular factors underlying the apparent defiance. Leveraging available solution NMR structures, we construct, sample in silico, and analyze partially (PIn) and fully inserted (FIn) BR membrane states. The membrane lateral C-terminal helix (CH) in PIn is markedly prone to transient structural distortions over microsecond timescales; a disorder prone region (DPR) is thereby identified. While clear transmembrane propensities are not acquired, the distortions induce alterations in local membrane curvature and area per lipid. Importantly, energetic decompositions reveal that overall, the N-terminal helix (NH) is thermodynamically more stable in the PIn. Higher overall stability of the FIn arises from favorable interactions between the NH and the CH. Our results establish lack of spontaneous transition of the PIn to the FIn, and attributes their partitioning to barriers that exceed those accessible with thermal fluctuations. This work paves the way for further detailed studies aimed at determining the thermo-kinetic roles of the initial five helices, or complementary external factors, in complete helical folding and insertion in BR. We comment that complementing such efforts with the growing field of machine learning assisted energy landscape searches may offer unprecedented insights.


Sujet(s)
Bactériorhodopsines , Pliage des protéines , Bactériorhodopsines/composition chimique , Bactériorhodopsines/métabolisme , Simulation de dynamique moléculaire , Protéines membranaires/composition chimique , Protéines membranaires/métabolisme , Structure secondaire des protéines , Structure en hélice alpha
5.
Biochim Biophys Acta Biomembr ; 1866(5): 184325, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38653423

RÉSUMÉ

Helical membrane proteins generally have a hydrophobic nature, with apolar side chains comprising the majority of the transmembrane (TM) helices. However, whenever polar side chains are present in the TM domain, they often exert a crucial role in structural interactions with other polar residues, such as TM helix associations and oligomerization. Moreover, polar residues in the TM region also often participate in protein functions, such as the Schiff base bonding between Lys residues and retinal in rhodopsin-like membrane proteins. Although many studies have focused on these functional polar residues, our understanding of stand-alone polar residues that are energetically unfavored in TM helixes is limited. Here, we adopted bacteriorhodopsin (bR) as a model system and systematically mutated 17 of its apolar Leu or Phe residues to polar Asn. Stability measurements of the resulting mutants revealed that all of these polar substitutions reduced bR stability to various extents, and the extent of destabilization of each mutant bR is also correlated to different structural factors, such as the relative accessible surface area and membrane depth of the mutation site. Structural analyses of these Asn residues revealed that they form sidechain-to-backbone hydrogen bonds that alleviate the unfavorable energetics in hydrophobic and apolar surroundings. Our results indicate that membrane proteins are able to accommodate certain stand-alone polar residues in the TM region without disrupting overall structures.


Sujet(s)
Bactériorhodopsines , Interactions hydrophobes et hydrophiles , Stabilité protéique , Bactériorhodopsines/composition chimique , Bactériorhodopsines/génétique , Bactériorhodopsines/métabolisme , Protéines membranaires/composition chimique , Protéines membranaires/génétique , Protéines membranaires/métabolisme , Mutation , Structure secondaire des protéines , Halobacterium salinarum/composition chimique , Halobacterium salinarum/génétique , Halobacterium salinarum/métabolisme , Modèles moléculaires
6.
Nat Commun ; 15(1): 2136, 2024 Mar 08.
Article de Anglais | MEDLINE | ID: mdl-38459010

RÉSUMÉ

Discovered over 50 years ago, bacteriorhodopsin is the first recognized and most widely studied microbial retinal protein. Serving as a light-activated proton pump, it represents the archetypal ion-pumping system. Here we compare the photochemical dynamics of bacteriorhodopsin light and dark-adapted forms with that of the first metastable photocycle intermediate known as "K". We observe that following thermal double isomerization of retinal in the dark from bio-active all-trans 15-anti to 13-cis, 15-syn, photochemistry proceeds even faster than the ~0.5 ps decay of the former, exhibiting ballistic wave packet curve crossing to the ground state. In contrast, photoexcitation of K containing a 13-cis, 15-anti chromophore leads to markedly multi-exponential excited state decay including much slower stages. QM/MM calculations, aimed to interpret these results, highlight the crucial role of protonation, showing that the classic quadrupole counterion model poorly reproduces spectral data and dynamics. Single protonation of ASP212 rectifies discrepancies and predicts triple ground state structural heterogeneity aligning with experimental observations. These findings prompt a reevaluation of counter ion protonation in bacteriorhodopsin and contribute to the broader understanding of its photochemical dynamics.


Sujet(s)
Bactériorhodopsines , Bactériorhodopsines/composition chimique , Photochimie , Pompes à protons , Lumière
7.
Biophys Chem ; 308: 107204, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38412762

RÉSUMÉ

Boundary lipids surrounding membrane proteins play an essential role in protein function and structure. These protein-lipid interactions are mainly divided into electrostatic interactions between the polar amino acids of proteins and polar heads of phospholipids, and hydrophobic interactions between protein transmembrane sites and phospholipid acyl chains. Our previous report (Kawatake et al., Biochim. Biophys. Acta 1858 [2016] 2106-2115) covered a method for selectively analyzing boundary lipid interactions and showed differences in membrane protein-peripheral lipid interactions due to differences in their head group. Interactions in the hydrophobic acyl chains of phospholipids are relatively consistent among proteins, but the details of these interactions have not been elucidated. In this study, we reconstituted bacteriorhodopsin as a model protein into phospholipid membranes labeled with 2H and 13C for solid-state NMR measurement to investigate the depth-dependent effect of the head group structure on the lipid bilayer. The results showed that the position of the phospholipid near the carbonyl carbon was affected by the head group in terms of selectivity for protein surfaces, whereas in the deep interior of the bilayer near the leaflet interface, there was little difference between the head groups, indicating that the dependence of their interactions on the head group was much reduced.


Sujet(s)
Bactériorhodopsines , Phospholipides , Phospholipides/composition chimique , Bactériorhodopsines/composition chimique , Double couche lipidique/composition chimique , Lipides membranaires/métabolisme , Spectroscopie par résonance magnétique
8.
J Phys Chem B ; 128(3): 744-754, 2024 Jan 25.
Article de Anglais | MEDLINE | ID: mdl-38204413

RÉSUMÉ

The creation of unidirectional ion transporters across membranes represents one of the greatest challenges in chemistry. Proton-pumping rhodopsins are composed of seven transmembrane helices with a retinal chromophore bound to a lysine side chain via a Schiff base linkage and provide valuable insights for designing such transporters. What makes these transporters particularly intriguing is the discovery of both outward and inward proton-pumping rhodopsins. Surprisingly, despite sharing identical overall structures and membrane topologies, these proteins facilitate proton transport in opposite directions, implying an underlying rational mechanism that can transport protons in different directions within similar protein structures. In this study, we unraveled this mechanism by examining the chromophore structures of deprotonated intermediates in schizorhodopsins, a recently discovered subfamily of inward proton-pumping rhodopsins, using time-resolved resonance Raman spectroscopy. The photocycle of schizorhodopsins revealed the cis-trans thermal isomerization that precedes reprotonation at the Schiff base of the retinal chromophore. Notably, this order has not been observed in other proton-pumping rhodopsins, but here, it was observed in all seven schizorhodopsins studied across the archaeal domain, strongly suggesting that cis-trans thermal isomerization preceding reprotonation is a universal feature of the schizorhodopsin family. Based on these findings, we propose a structural basis for the remarkable order of events crucial for facilitating inward proton transport. The mechanism underlying inward proton transport by schizorhodopsins is straightforward and rational. The insights obtained from this study hold great promise for the design of transmembrane unidirectional ion transporters.


Sujet(s)
Bactériorhodopsines , Pompes à protons , Pompes à protons/composition chimique , Protons , Bactériorhodopsines/composition chimique , Bases de Schiff/composition chimique , Transport des ions , Lumière
9.
J Mater Chem B ; 12(5): 1208-1216, 2024 Jan 31.
Article de Anglais | MEDLINE | ID: mdl-38229580

RÉSUMÉ

Bacteriorhodopsin is a biological material with excellent photosensitivity properties. It can directly convert optical signals into electrical signals and is widely used in various biosensors. Here, we present a bR-based wearable pH biometer that can be used to monitor wound infection. The mechanism of the pH-sensitive effect of the bR electrode is explained, which generates a transient photovoltage under light irradiation and a negative photovoltage when the lamp is turned off. Since the photoelectric signal of bR is affected by different pH values, the photovoltage is changed by adjusting the pH value. The ratio (Vn/Vp) of negative photovoltage (Vn) to positive photovoltage (Vp) has a good linear relationship (R2 = 0.9911) in the pH range of 4.0-10.0. In vitro experiments using rats as a model confirmed that this wearable pH biometer can monitor pH changes that occur in wound infection.


Sujet(s)
Bactériorhodopsines , Dispositifs électroniques portables , Infection de plaie , Animaux , Rats , Photochimie , Concentration en ions d'hydrogène , Bactériorhodopsines/composition chimique , Bactériorhodopsines/effets des radiations
10.
Biochemistry (Mosc) ; 88(10): 1544-1554, 2023 Oct.
Article de Anglais | MEDLINE | ID: mdl-38105023

RÉSUMÉ

Retinal-containing light-sensitive proteins - rhodopsins - are found in many microorganisms. Interest in them is largely explained by their role in light energy storage and photoregulation in microorganisms, as well as the prospects for their use in optogenetics to control neuronal activity, including treatment of various diseases. One of the representatives of microbial rhodopsins is ESR, the retinal protein of Exiguobacterium sibiricum. What distinguishes ESR from homologous proteins is the presence of a lysine residue (Lys96) as a proton donor for the Schiff base. This feature, along with the hydrogen bond of the proton acceptor Asp85 with the His57 residue, determines functional characteristics of ESR as a proton pump. This review examines the results of ESR studies conducted using various methods, including direct electrometry. Comparison of the obtained data with the results of structural studies and with other retinal proteins allows us to draw conclusions about the mechanisms of transport of hydrogen ions in ESR and similar retinal proteins.


Sujet(s)
Bactériorhodopsines , Protons , Transport des ions , Pompes à protons/composition chimique , Pompes à protons/métabolisme , Rhodopsines microbiennes/métabolisme , Bactériorhodopsines/composition chimique
11.
Biochemistry (Mosc) ; 88(10): 1528-1543, 2023 Oct.
Article de Anglais | MEDLINE | ID: mdl-38105022

RÉSUMÉ

The diversity of the retinal-containing proteins (rhodopsins) in nature is extremely large. Fundamental similarity of the structure and photochemical properties unites them into one family. However, there is still a debate about the origin of retinal-containing proteins: divergent or convergent evolution? In this review, based on the results of our own and literature data, a comparative analysis of the similarities and differences in the photoconversion of the rhodopsin of types I and II is carried out. The results of experimental studies of the forward and reverse photoreactions of the bacteriorhodopsin (type I) and visual rhodopsin (type II) rhodopsins in the femto- and picosecond time scale, photo-reversible reaction of the octopus rhodopsin (type II), photovoltaic reactions, as well as quantum chemical calculations of the forward photoreactions of bacteriorhodopsin and visual rhodopsin are presented. The issue of probable convergent evolution of type I and type II rhodopsins is discussed.


Sujet(s)
Bactériorhodopsines , Rhodopsine , Rhodopsine/composition chimique , Bactériorhodopsines/composition chimique , Photochimie
12.
J Am Soc Mass Spectrom ; 34(12): 2620-2624, 2023 Dec 06.
Article de Anglais | MEDLINE | ID: mdl-37975648

RÉSUMÉ

Native mass spectrometry (MS) was used to detect the membrane protein, bacteriorhodopsin (bR), in its 27 kDa monomeric form and trimeric assemblies directly from lipid-containing purple membranes (PMs) from the halophilic archaeon, Halobacterium salinarum. Trimer bR ion populations bound to lipid molecules were detected with n-octyl ß-d-glucopyranoside as the solubilizing detergent; the use of octyl tetraethylene glycol monooctyl ether or n-dodecyl-ß-d-maltopyranoside resulted in only detection of monomeric bR. The archaeal lipids phosphotidylglycerolphosphate methyl ester and 3-HSO3-Galp-ß1,6-Manp-α1,2-Glcp-α1,1-sn-2,3-diphytanylglycerol were the only lipids in the PMs found to bind to bR, consistent with previous high-resolution structural studies. Removal of the lipids from the sample resulted in the detection of only the bR monomer, highlighting the importance of specific lipids for stabilizing the bR trimer. To the best of our knowledge, this is the first report of the detection of the bR trimer with resolved lipid-bound species by MS.


Sujet(s)
Bactériorhodopsines , Membrane pourpre , Membrane pourpre/composition chimique , Membrane pourpre/métabolisme , Bactériorhodopsines/composition chimique , Halobacterium salinarum/composition chimique , Halobacterium salinarum/métabolisme , Spectrométrie de masse , Lipides/analyse
13.
J Phys Chem B ; 127(41): 8833-8841, 2023 10 19.
Article de Anglais | MEDLINE | ID: mdl-37812499

RÉSUMÉ

Bacteriorhodopsin (bR) is a transmembrane protein that functions as a light-driven proton pump in halophilic archaea. The bR photocycle has been well-characterized; however, these measurements almost exclusively measured purified bR, outside of its native membrane. To investigate what effect the cellular environment has on the bR photocycle, we have developed a Raman-based assay that can monitor the activity of the bR in a variety of conditions, including in its native membrane. The assay uses two continuous-wave lasers, one to initiate photochemistry and one to monitor bR activity. The excitation leads to the steady-state depletion of ground-state bR, which directly relates to the population of photocycle intermediate states. We have used this assay to monitor bR activity both in vitro and in vivo. Our in vitro measurements confirm that our assay is sensitive to bulk environmental changes reported in the literature. Our in vivo measurements show a decrease in bR activity with increasing extracellular pH for bR in its native membrane. The difference in activity with increasing pH indicates that the native membrane environment affects the function of bR. This assay opens the door to future measurements into understanding how the local environment of this transmembrane protein affects function.


Sujet(s)
Bactériorhodopsines , Bactériorhodopsines/composition chimique , Pompes à protons/composition chimique , Photochimie , Cinétique
14.
Biophys Chem ; 300: 107074, 2023 09.
Article de Anglais | MEDLINE | ID: mdl-37421867

RÉSUMÉ

Bacteriorhodopsin (bR) of purple membrane (PM) is a retinal protein that forms aggregates in the form of trimers constituting, together with archaeal lipids, the crystalline structure of PM. The rotary motion of bR inside PM may be pertinent in understanding the essence of the crystalline lattice. An attempt has been made to determine the rotation of bR trimers which has been found to be detected solely at thermal phase transitions of PM, namely lipid, crystalline lattice and protein melting phase transitions. The temperature dependences of dielectric versus electronic absorption spectra of bR have been determined. The results suggest that the rotation of bR trimers, together with concomitant bending of PM, are most likely brought by structural changes in bR which might be driven by retinal isomerization and mediated by lipid. The rupturing of the lipid-protein contact might consequently lead to rotation of trimers associated with bending, curling or vesicle formation of PM. So the retinal reorientation may underlie the concomitant rotation of trimers. Most importantly, rotation of trimers might play a role, in terms of the essence of the crystalline lattice, in the functional activity of bR and may serve physiological relevance.


Sujet(s)
Bactériorhodopsines , Membrane pourpre , Membrane pourpre/composition chimique , Membrane pourpre/métabolisme , Bactériorhodopsines/analyse , Bactériorhodopsines/composition chimique , Bactériorhodopsines/métabolisme , Rotation , Isomérie , Conformation des protéines , Lipides/composition chimique
15.
J Chem Phys ; 158(15)2023 Apr 21.
Article de Anglais | MEDLINE | ID: mdl-37094011

RÉSUMÉ

Membranes are crucial for the functionality of membrane proteins in several cellular processes. Time-resolved infrared (IR) spectroscopy enables the investigation of interaction-induced dynamics of the protein and the lipid membrane. The photoreceptor and proton pump bacteriorhodopsin (BR) was reconstituted into liposomes, mimicking the native purple membrane. By utilization of deuterated lipid alkyl chains, corresponding vibrational modes are frequency-shifted into a spectrally silent window that allows us to monitor lipid dynamics during the photoreaction of BR. Our home-built quantum cascade laser (QCL)-based IR spectrometer covers all relevant spectral regions to detect both lipid and protein vibrational modes. QCL-probed transients at single wavenumbers are compared with the previously performed step-scan Fourier-transform IR measurements. The absorbance changes of the lipids could be resolved by QCL-measurements with a much better signal-to-noise ratio and with nanosecond time resolution. We found a correlation of the lipid dynamics with the protonation dynamics in the M intermediate. QCL spectroscopy extends the study of the protein's photocycle toward dynamics of the interacting membrane.


Sujet(s)
Bactériorhodopsines , Bactériorhodopsines/composition chimique , Lasers à semiconducteur , Spectrophotométrie IR , Protéines/composition chimique , Lipides , Spectroscopie infrarouge à transformée de Fourier/méthodes
16.
Commun Biol ; 6(1): 190, 2023 02 17.
Article de Anglais | MEDLINE | ID: mdl-36808185

RÉSUMÉ

The K intermediate of proton pumping bacteriorhodopsin is the first intermediate generated after isomerization of retinal to the 13-cis form. Although various structures have been reported for the K intermediate until now, these differ from each other, especially in terms of the conformation of the retinal chromophore and its interaction with surrounding residues. We report here an accurate X-ray crystallographic analysis of the K structure. The polyene chain of 13-cis retinal is observed to be S-shaped. The side chain of Lys216, which is covalently bound to retinal via the Schiff-base linkage, interacts with residues, Asp85 and Thr89. In addition, the Nζ-H of the protonated Schiff-base linkage interacts with a residue, Asp212 and a water molecule, W402. Based on quantum chemical calculations for this K structure, we examine the stabilizing factors of distorted conformation of retinal and propose a relaxation manner to the next L intermediate.


Sujet(s)
Bactériorhodopsines , Bactériorhodopsines/composition chimique , Modèles moléculaires , Pompes à protons/composition chimique , Conformation moléculaire , Transport des ions
17.
Int J Mol Sci ; 24(3)2023 Jan 31.
Article de Anglais | MEDLINE | ID: mdl-36768981

RÉSUMÉ

Single-molecule force spectroscopy methods, such as AFM and magnetic tweezers, have proved extremely beneficial in elucidating folding pathways for soluble and membrane proteins. To identify factors that determine the force rupture levels in force-induced membrane protein unfolding, we applied our near-atomic-level Upside molecular dynamics package to study the vertical and lateral pulling of bacteriorhodopsin (bR) and GlpG, respectively. With our algorithm, we were able to selectively alter the magnitudes of individual interaction terms and identify that, for vertical pulling, hydrogen bond strength had the strongest effect, whereas other non-bonded protein and membrane-protein interactions had only moderate influences, except for the extraction of the last helix where the membrane-protein interactions had a stronger influence. The up-down topology of the transmembrane helices caused helices to be pulled out as pairs. The rate-limiting rupture event often was the loss of H-bonds and the ejection of the first helix, which then propagated tension to the second helix, which rapidly exited the bilayer. The pulling of the charged linkers across the membrane had minimal influence, as did changing the bilayer thickness. For the lateral pulling of GlpG, the rate-limiting rupture corresponded to the separation of the helices within the membrane, with the H-bonds generally being broken only afterward. Beyond providing a detailed picture of the rupture events, our study emphasizes that the pulling mode greatly affects the factors that determine the forces needed to unfold a membrane protein.


Sujet(s)
Bactériorhodopsines , Bactériorhodopsines/composition chimique , Simulation de dynamique moléculaire , Dépliement des protéines , Microscopie à force atomique , Dénaturation des protéines , Pliage des protéines
18.
Biophys Chem ; 294: 106959, 2023 03.
Article de Anglais | MEDLINE | ID: mdl-36709544

RÉSUMÉ

Bacteriorhodopsin (bR), a transmembrane protein with seven α-helices, is highly expressed in the purple membrane (PM) of archaea such as Halobacterium salinarum. It is well known that bR forms two-dimensional crystals with acidic lipids such as phosphatidylglycerol phosphate methyl ester (PGP-Me)-a major component of PM lipids bearing unique chemical structures-methyl-branched alkyl chains, ether linkages, and divalent anionic head groups with two phosphodiester groups. Therefore, we aimed to determine which functional groups of PGP-Me are essential for the boundary lipids of bR and how these functionalities interact with bR. To this end, we compared various well-known phospholipids (PLs) that carry one of the structural features of PGP-Me, and evaluated the affinity of PLs to bR using the centerband-only analysis of rotor-unsynchronized spin echo (COARSE) method in solid-state NMR measurements and thermal shift assays. The results clearly showed that the branched methyl groups of alkyl chains and double negative charges in the head groups are important for PL interactions with bR. We then examined the effect of phospholipids on the monomer-trimer exchange of bR using circular dichroism (CD) spectra. The results indicated that the divalent negative charge in a head group stabilizes the trimer structure, while the branched methyl chains significantly enhance the PLs' affinity for bR, thus dispersing bR trimers in the PM even at high concentrations. Finally, we investigated the effects of PL on the proton-pumping activity of bR based on the decay rate constant of the M intermediate of a bR photocycle. The findings showed that bR activities decreased to 20% in 1,2-dimyristoyl-sn-glycero-3-phosphate (DMPA), and in 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) bilayers as compared to that in PM. Meanwhile, 1,2-Diphytanoyl-sn-glycero-3-phosphate (DPhPA) bilayers bearing both negative charges and branched methyl groups preserved over 80% of the activity. These results strongly suggest that the head groups and alkyl chains of phospholipids are essential for boundary lipids and greatly influence the biological function of bR.


Sujet(s)
Bactériorhodopsines , Bactériorhodopsines/composition chimique , Bactériorhodopsines/métabolisme , Phospholipides/composition chimique , Lipides membranaires/composition chimique , Halobacterium salinarum/composition chimique , Halobacterium salinarum/métabolisme , Phosphates/métabolisme
19.
BMC Bioinformatics ; 24(1): 29, 2023 Jan 27.
Article de Anglais | MEDLINE | ID: mdl-36707759

RÉSUMÉ

BACKGROUND: Rhodopsin is a seven-transmembrane protein covalently linked with retinal chromophore that absorbs photons for energy conversion and intracellular signaling in eukaryotes, bacteria, and archaea. Haloarchaeal rhodopsins are Type-I microbial rhodopsin that elicits various light-driven functions like proton pumping, chloride pumping and Phototaxis behaviour. The industrial application of Ion-pumping Haloarchaeal rhodopsins is limited by the lack of full-length rhodopsin sequence-based classifications, which play an important role in Ion-pumping activity. The well-studied Haloarchaeal rhodopsin is a proton-pumping bacteriorhodopsin that shows promising applications in optogenetics, biosensitized solar cells, security ink, data storage, artificial retinal implant and biohydrogen generation. As a result, a low-cost computational approach is required to identify Ion-pumping Haloarchaeal rhodopsin sequences and its subtype. RESULTS: This study uses a support vector machine (SVM) technique to identify these ion-pumping Haloarchaeal rhodopsin proteins. The haloarchaeal ion pumping rhodopsins viz., bacteriorhodopsin, halorhodopsin, xanthorhodopsin, sensoryrhodopsin and marine prokaryotic Ion-pumping rhodopsins like actinorhodopsin, proteorhodopsin have been utilized to develop the methods that accurately identified the ion pumping haloarchaeal and other type I microbial rhodopsins. We achieved overall maximum accuracy of 97.78%, 97.84% and 97.60%, respectively, for amino acid composition, dipeptide composition and hybrid approach on tenfold cross validation using SVM. Predictive models for each class of rhodopsin performed equally well on an independent data set. In addition to this, similar results were achieved using another machine learning technique namely random forest. Simultaneously predictive models performed equally well during five-fold cross validation. Apart from this study, we also tested the own, blank, BLAST dataset and annotated whole-genome rhodopsin sequences of PWS haloarchaeal isolates in the developed methods. The developed web server ( https://bioinfo.imtech.res.in/servers/rhodopred ) can identify the Ion Pumping Haloarchaeal rhodopsin proteins and their subtypes. We expect this web tool would be useful for rhodopsin researchers. CONCLUSION: The overall performance of the developed method results show that it accurately identifies the Ionpumping Haloarchaeal rhodopsin and their subtypes using known and unknown microbial rhodopsin sequences. We expect that this study would be useful for optogenetics, molecular biologists and rhodopsin researchers.


Sujet(s)
Bactériorhodopsines , Rhodopsine , Bactéries/métabolisme , Bactériorhodopsines/composition chimique , Bactériorhodopsines/métabolisme , Lumière , Protons , Rhodopsine/composition chimique , Rhodopsine/métabolisme , Rhodopsines microbiennes/métabolisme , Apprentissage machine
20.
Photochem Photobiol Sci ; 22(3): 477-486, 2023 Mar.
Article de Anglais | MEDLINE | ID: mdl-36273368

RÉSUMÉ

In biological photoreceptors, the energy stored in early transient species is a key feature to drive the photocycle or a chain of reactions. Time-resolved photoacoustics (PA) can explore the energy landscape of transient species formed within few ns after photoexcitation, as well as volumetric changes (ΔV) of these intermediates with respect to the parental state. In this work, PA identified these important parameters for several channelrhodopsins, namely CaChR1 from Chlamydomonas augustae and CrChR2 from Chlamydomonas reinhardtii and various variants. PA has access to the sub-ns formation of the early photoproduct P1 and to its relaxation, provided that this latter process occurs within a few µs. We found that ΔVP1 for CaChR1 is ca. 12 mL/mol, while it is much smaller for CrChR2 (4.7 mL/mol) and for H. salinarum bacteriorhodopsin (HsBR, ΔVK = 2.8 mL/mol). PA experiments on variants strongly indicate that part of this large ΔVP1 value for CaChR1 is caused by the protonation dynamics of the Schiff base counterion complex involving E169 and D299. PA data further show that the energy level of P1 is higher in CrChR2 (ca. 96 kJ/mol) than in CaChr1 (ca. 46 kJ/mol), comparable to the energy level of the K state of HsBR (60 kJ/mol). Instrumental to gain these molecular values from the raw PA data was the estimation of the quantum yield (Φ) for P1 formation via transient spectroscopy; for both channelrhodopsins, ΦP2 was evaluated as ca. 0.4.


Sujet(s)
Bactériorhodopsines , Channelrhodopsines , Analyse spectrale , Bactériorhodopsines/composition chimique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...