Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 10.500
Filtrer
1.
J Clin Invest ; 134(15)2024 Jun 06.
Article de Anglais | MEDLINE | ID: mdl-39087467

RÉSUMÉ

The blood-brain barrier (BBB) acquires unique properties to regulate neuronal function during development. The formation of the BBB, which occurs in tandem with angiogenesis, is directed by the Wnt/ß-catenin signaling pathway. Yet the exact molecular interplay remains elusive. Our study reveals the G protein-coupled receptor GPR126 as a critical target of canonical Wnt signaling, essential for the development of the BBB's distinctive vascular characteristics and its functional integrity. Endothelial cell-specific deletion of the Gpr126 gene in mice induced aberrant vascular morphogenesis, resulting in disrupted BBB organization. Simultaneously, heightened transcytosis in vitro compromised barrier integrity, resulting in enhanced vascular permeability. Mechanistically, GPR126 enhanced endothelial cell migration, pivotal for angiogenesis, acting through an interaction between LRP1 and ß1 integrin, thereby balancing the levels of ß1 integrin activation and recycling. Overall, we identified GPR126 as a specifier of an organotypic vascular structure, which sustained angiogenesis and guaranteed the acquisition of the BBB properties during development.


Sujet(s)
Barrière hémato-encéphalique , Antigènes CD29 , Récepteurs couplés aux protéines G , Animaux , Souris , Barrière hémato-encéphalique/métabolisme , Perméabilité capillaire , Mouvement cellulaire , Cellules endothéliales/métabolisme , Antigènes CD29/métabolisme , Antigènes CD29/génétique , Protéine-1 apparentée au récepteur des LDL/métabolisme , Protéine-1 apparentée au récepteur des LDL/génétique , Souris knockout , Néovascularisation physiologique , Récepteurs couplés aux protéines G/métabolisme , Récepteurs couplés aux protéines G/génétique , Voie de signalisation Wnt , Mâle , Femelle
2.
J Nanobiotechnology ; 22(1): 463, 2024 Aug 02.
Article de Anglais | MEDLINE | ID: mdl-39095888

RÉSUMÉ

Neurodegenerative disorders are complex, progressive, and life-threatening. They cause mortality and disability for millions of people worldwide. Appropriate treatment for neurodegenerative diseases (NDs) is still clinically lacking due to the presence of the blood-brain barrier (BBB). Developing an effective transport system that can cross the BBB and enhance the therapeutic effect of neuroprotective agents has been a major challenge for NDs. Exosomes are endogenous nano-sized vesicles that naturally carry biomolecular cargoes. Many studies have indicated that exosome content, particularly microRNAs (miRNAs), possess biological activities by targeting several signaling pathways involved in apoptosis, inflammation, autophagy, and oxidative stress. Exosome content can influence cellular function in healthy or pathological ways. Furthermore, since exosomes reflect the features of the parental cells, their cargoes offer opportunities for early diagnosis and therapeutic intervention of diseases. Exosomes have unique characteristics that make them ideal for delivering drugs directly to the brain. These characteristics include the ability to pass through the BBB, biocompatibility, stability, and innate targeting properties. This review emphasizes the role of exosomes in alleviating NDs and discusses the associated signaling pathways and molecular mechanisms. Furthermore, the unique biological features of exosomes, making them a promising natural transporter for delivering various medications to the brain to combat several NDs, are also discussed.


Sujet(s)
Barrière hémato-encéphalique , Systèmes de délivrance de médicaments , Exosomes , Maladies neurodégénératives , Exosomes/métabolisme , Humains , Maladies neurodégénératives/traitement médicamenteux , Maladies neurodégénératives/métabolisme , Barrière hémato-encéphalique/métabolisme , Barrière hémato-encéphalique/effets des médicaments et des substances chimiques , Animaux , Systèmes de délivrance de médicaments/méthodes , Neuroprotecteurs/usage thérapeutique , Neuroprotecteurs/pharmacologie , microARN/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques , Vecteurs de médicaments/composition chimique
4.
Nat Commun ; 15(1): 6701, 2024 Aug 07.
Article de Anglais | MEDLINE | ID: mdl-39112471

RÉSUMÉ

The hypothalamic arcuate nucleus (ARH) contains neurons vital for maintaining energy homeostasis that sense and respond to changes in blood-borne metabolic hormones. Despite its juxtaposition to the median eminence (ME), a circumventricular organ lacking a blood-brain barrier and thus exposed to circulating molecules, only a few ventral ARH neurons perceive these extravasating metabolic signals due to a poorly understood ME/ARH diffusion barrier. Here, we show in male mice that aggrecan, a perineural-net proteoglycan deposited by orexigenic ARH neurons, creates a peculiar ventrodorsal diffusion gradient. Fasting enhances aggrecan deposition more dorsally, reinforcing the diffusion barrier, particularly around neurons adjacent to fenestrated capillary loops that enter the ARH. The disruption of aggrecan deposits results in unregulated diffusion of blood-borne molecules into the ARH and impairs food intake. Our findings reveal the molecular nature and plasticity of the ME/ARH diffusion barrier, and indicate its physiological role in hypothalamic metabolic hormone sensing.


Sujet(s)
Agrécanes , Noyau arqué de l'hypothalamus , Métabolisme énergétique , Neurones , Animaux , Noyau arqué de l'hypothalamus/métabolisme , Mâle , Neurones/métabolisme , Agrécanes/métabolisme , Souris , Éminence médiane/métabolisme , Souris de lignée C57BL , Consommation alimentaire/physiologie , Jeûne/métabolisme , Barrière hémato-encéphalique/métabolisme , Transduction du signal
5.
Front Immunol ; 15: 1433590, 2024.
Article de Anglais | MEDLINE | ID: mdl-39139557

RÉSUMÉ

Salvianolic acid A (SalA), a bioactive compound extracted from Salvia miltiorrhiza, has garnered considerable interest for its potential in ameliorating the post-stroke neuroinflammation. This review delineates the possible molecular underpinnings of anti-inflammatory and neuroprotective roles of SalA, offering a comprehensive analysis of its therapeutic efficacy in preclinical studies of ischemic stroke. We explore the intricate interplay between post-stroke neuroinflammation and the modulatory effects of SalA on pro-inflammatory cytokines, inflammatory signaling pathways, the peripheral immune cell infiltration through blood-brain barrier disruption, and endothelial cell function. The pharmacokinetic profiles of SalA in the context of stroke, characterized by enhanced cerebral penetration post-ischemia, makes it particularly suitable as a therapeutic agent. Preliminary clinical findings have demonstrated that salvianolic acids (SA) has a positive impact on cerebral perfusion and neurological deficits in stroke patients, warranting further investigation. This review emphasizes SalA as a potential anti-inflammatory agent for the advancement of innovative therapeutic approaches in the treatment of ischemic stroke.


Sujet(s)
Anti-inflammatoires , Acides caféiques , Maladies neuro-inflammatoires , Accident vasculaire cérébral , Humains , Animaux , Acides caféiques/usage thérapeutique , Acides caféiques/pharmacologie , Accident vasculaire cérébral/traitement médicamenteux , Accident vasculaire cérébral/métabolisme , Maladies neuro-inflammatoires/traitement médicamenteux , Maladies neuro-inflammatoires/étiologie , Anti-inflammatoires/usage thérapeutique , Anti-inflammatoires/pharmacologie , Neuroprotecteurs/usage thérapeutique , Neuroprotecteurs/pharmacologie , Lactates/usage thérapeutique , Lactates/pharmacologie , Barrière hémato-encéphalique/métabolisme , Barrière hémato-encéphalique/effets des médicaments et des substances chimiques
6.
Sci Transl Med ; 16(760): eadi2245, 2024 Aug 14.
Article de Anglais | MEDLINE | ID: mdl-39141703

RÉSUMÉ

Antisense oligonucleotides (ASOs) are promising therapeutics for treating various neurological disorders. However, ASOs are unable to readily cross the mammalian blood-brain barrier (BBB) and therefore need to be delivered intrathecally to the central nervous system (CNS). Here, we engineered a human transferrin receptor 1 (TfR1) binding molecule, the oligonucleotide transport vehicle (OTV), to transport a tool ASO across the BBB in human TfR knockin (TfRmu/hu KI) mice and nonhuman primates. Intravenous injection and systemic delivery of OTV to TfRmu/hu KI mice resulted in sustained knockdown of the ASO target RNA, Malat1, across multiple mouse CNS regions and cell types, including endothelial cells, neurons, astrocytes, microglia, and oligodendrocytes. In addition, systemic delivery of OTV enabled Malat1 RNA knockdown in mouse quadriceps and cardiac muscles, which are difficult to target with oligonucleotides alone. Systemically delivered OTV enabled a more uniform ASO biodistribution profile in the CNS of TfRmu/hu KI mice and greater knockdown of Malat1 RNA compared with a bivalent, high-affinity TfR antibody. In cynomolgus macaques, an OTV directed against MALAT1 displayed robust ASO delivery to the primate CNS and enabled more uniform biodistribution and RNA target knockdown compared with intrathecal dosing of the same unconjugated ASO. Our data support systemically delivered OTV as a potential platform for delivering therapeutic ASOs across the BBB.


Sujet(s)
Barrière hémato-encéphalique , Oligonucléotides antisens , ARN long non codant , Récepteurs à la transferrine , Animaux , Oligonucléotides antisens/pharmacocinétique , Oligonucléotides antisens/administration et posologie , Barrière hémato-encéphalique/métabolisme , Récepteurs à la transferrine/métabolisme , Humains , ARN long non codant/métabolisme , ARN long non codant/génétique , Souris , Transport biologique , Macaca fascicularis , Techniques de knock-down de gènes , Distribution tissulaire
7.
Sci Adv ; 10(32): eadj7686, 2024 Aug 09.
Article de Anglais | MEDLINE | ID: mdl-39110811

RÉSUMÉ

Gene expression is a critical component of brain physiology, but monitoring this expression in the living brain represents a major challenge. Here, we introduce a new paradigm called recovery of markers through insonation (REMIS) for noninvasive measurement of gene expression in the brain with cell type, spatial, and temporal specificity. Our approach relies on engineered protein markers that are produced in neurons but exit into the brain's interstitium. When ultrasound is applied to targeted brain regions, it opens the blood-brain barrier and releases these markers into the bloodstream. Once in blood, the markers can be readily detected using biochemical techniques. REMIS can noninvasively confirm gene delivery and measure endogenous signaling in specific brain sites through a simple insonation and a subsequent blood test. REMIS is reliable and demonstrated consistent improvement in recovery of markers from the brain into the blood. Overall, this work establishes a noninvasive, spatially specific method of monitoring gene delivery and endogenous signaling in the brain.


Sujet(s)
Barrière hémato-encéphalique , Encéphale , Transgènes , Animaux , Encéphale/métabolisme , Barrière hémato-encéphalique/métabolisme , Souris , Techniques de transfert de gènes , Expression des gènes , Humains
8.
Theranostics ; 14(11): 4519-4535, 2024.
Article de Anglais | MEDLINE | ID: mdl-39113808

RÉSUMÉ

Background : Focused ultrasound (FUS) in combination with microbubbles has recently shown great promise in facilitating blood-brain barrier (BBB) opening for drug delivery and immunotherapy in Alzheimer's disease (AD). However, it is currently limited to systems integrated within the MRI suites or requiring post-surgical implants, thus restricting its widespread clinical adoption. In this pilot study, we investigate the clinical safety and feasibility of a portable, non-invasive neuronavigation-guided FUS (NgFUS) system with integrated real-time 2-D microbubble cavitation mapping. Methods : A phase 1 clinical study with mild to moderate AD patients (N = 6) underwent a single session of microbubble-mediated NgFUS to induce transient BBB opening (BBBO). Microbubble activity under FUS was monitored with real-time 2-D cavitation maps and dosing to ensure the efficacy and safety of the NgFUS treatment. Post-operative MRI was used for BBB opening and closure confirmation as well as safety assessment. Changes in AD biomarker levels in both blood serum and extracellular vesicles (EVs) were evaluated, while changes in amyloid-beta (Aß) load in the brain were assessed through 18F-florbetapir PET. Results : BBBO was achieved in 5 out of 6 subjects with an average volume of 983 ± 626 mm3 following FUS at the right frontal lobe both in white and gray matter regions. The outpatient treatment was completed within 34.8 ± 10.7 min. Cavitation dose significantly correlated with the BBBO volume (R 2 > 0.9, N = 4), demonstrating the portable NgFUS system's capability of predicting opening volumes. The cavitation maps co-localized closely with the BBBO location, representing the first report of real-time transcranial 2-D cavitation mapping in the human brain. Larger opening volumes correlated with increased levels of AD biomarkers, including Aß42 (R 2 = 0.74), Tau (R 2 = 0.95), and P-Tau181 (R 2 = 0.86), assayed in serum-derived EVs sampled 3 days after FUS (N = 5). From PET scans, subjects showed a lower Aß load increase in the treated frontal lobe region compared to the contralateral region. Reduction in asymmetry standardized uptake value ratios (SUVR) correlated with the cavitation dose (R 2 > 0.9, N = 3). Clinical changes in the mini-mental state examination over 6 months were within the expected range of cognitive decline with no additional changes observed as a result of FUS. Conclusion : We showed the safety and feasibility of this cost-effective and time-efficient portable NgFUS treatment for BBBO in AD patients with the first demonstration of real-time 2-D cavitation mapping. The cavitation dose correlated with BBBO volume, a slowed increase in pathology, and serum detection of AD proteins. Our study highlights the potential for accessible FUS treatment in AD, with or without drug delivery.


Sujet(s)
Maladie d'Alzheimer , Barrière hémato-encéphalique , Imagerie par résonance magnétique , Microbulles , Humains , Barrière hémato-encéphalique/métabolisme , Barrière hémato-encéphalique/imagerie diagnostique , Maladie d'Alzheimer/thérapie , Maladie d'Alzheimer/imagerie diagnostique , Mâle , Sujet âgé , Femelle , Projets pilotes , Imagerie par résonance magnétique/méthodes , Peptides bêta-amyloïdes/métabolisme , Adulte d'âge moyen , Marqueurs biologiques/métabolisme , Systèmes de délivrance de médicaments/méthodes , Sujet âgé de 80 ans ou plus
9.
Int J Mol Sci ; 25(15)2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-39125975

RÉSUMÉ

The endothelial glycocalyx (GCX), located on the luminal surface of vascular endothelial cells, is composed of glycoproteins, proteoglycans, and glycosaminoglycans. It plays a pivotal role in maintaining blood-brain barrier (BBB) integrity and vascular health within the central nervous system (CNS), influencing critical processes such as blood flow regulation, inflammation modulation, and vascular permeability. While the GCX is ubiquitously expressed on the surface of every cell in the body, the GCX at the BBB is highly specialized, with a distinct composition of glycans, physical structure, and surface charge when compared to GCX elsewhere in the body. There is evidence that the GCX at the BBB is disrupted and partially shed in many diseases that impact the CNS. Despite this, the GCX has yet to be a major focus of therapeutic targeting for CNS diseases. This review examines diverse model systems used in cerebrovascular GCX-related research, emphasizing the importance of selecting appropriate models to ensure clinical relevance and translational potential. This review aims to highlight the importance of the GCX in disease and how targeting the GCX at the BBB specifically may be an effective approach for brain specific targeting for therapeutics.


Sujet(s)
Barrière hémato-encéphalique , Glycocalyx , Glycocalyx/métabolisme , Barrière hémato-encéphalique/métabolisme , Humains , Animaux , Cellules endothéliales/métabolisme , Maladies du système nerveux central/métabolisme , Maladies du système nerveux central/anatomopathologie , Sucres/métabolisme
10.
Nano Lett ; 24(32): 9906-9915, 2024 Aug 14.
Article de Anglais | MEDLINE | ID: mdl-39087644

RÉSUMÉ

Rectifying the aberrant microenvironment of a disease through maintenance of redox homeostasis has emerged as a promising perspective with significant therapeutic potential for Alzheimer's disease (AD). Herein, we design and construct a novel nanozyme-boosted MOF-CRISPR platform (CMOPKP), which can maintain redox homeostasis and rescue the impaired microenvironment of AD. By modifying the targeted peptides KLVFFAED, CMOPKP can traverse the blood-brain barrier and deliver the CRISPR activation system for precise activation of the Nrf2 signaling pathway and downstream redox proteins in regions characterized by oxidative stress, thereby reinstating neuronal antioxidant capacity and preserving redox homeostasis. Furthermore, cerium dioxide possessing catalase enzyme-like activity can synergistically alleviate oxidative stress. Further in vivo studies demonstrate that CMOPKP can effectively alleviate cognitive impairment in 3xTg-AD mouse models. Therefore, our design presents an effective way for regulating redox homeostasis in AD, which shows promise as a therapeutic strategy for mitigating oxidative stress in AD.


Sujet(s)
Maladie d'Alzheimer , Stress oxydatif , Maladie d'Alzheimer/traitement médicamenteux , Maladie d'Alzheimer/métabolisme , Maladie d'Alzheimer/génétique , Animaux , Souris , Stress oxydatif/effets des médicaments et des substances chimiques , Humains , Facteur-2 apparenté à NF-E2/métabolisme , Réseaux organométalliques/composition chimique , Modèles animaux de maladie humaine , Systèmes CRISPR-Cas/génétique , Cérium/composition chimique , Cérium/usage thérapeutique , Cérium/pharmacologie , Barrière hémato-encéphalique/métabolisme , Oxydoréduction , Antioxydants/composition chimique , Antioxydants/pharmacologie , Antioxydants/usage thérapeutique
11.
Fluids Barriers CNS ; 21(1): 65, 2024 Aug 13.
Article de Anglais | MEDLINE | ID: mdl-39138578

RÉSUMÉ

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a rapidly progressing neurodegenerative disorder with minimally effective treatment options. An important hurdle in ALS drug development is the non-invasive therapeutic access to the motor cortex currently limited by the presence of the blood-brain barrier (BBB). Focused ultrasound and microbubble (FUS+ MB) treatment is an emerging technology that was successfully used in ALS patients to temporarily open the cortical BBB. However, FUS+ MB-mediated drug delivery across ALS patients' BBB has not yet been reported. Similarly, the effects of FUS+ MB on human ALS BBB cells remain unexplored. METHODS: Here we established the first FUS+ MB-compatible, fully-human ALS patient-cell-derived BBB model based on induced brain endothelial-like cells (iBECs) to study anti-TDP-43 antibody delivery and FUS+ MB bioeffects in vitro. RESULTS: Generated ALS iBECs recapitulated disease-specific hallmarks of BBB pathology, including reduced BBB integrity and permeability, and TDP-43 proteinopathy. The results also identified differences between sporadic ALS and familial (C9orf72 expansion carrying) ALS iBECs reflecting patient heterogeneity associated with disease subgroups. Studies in these models revealed successful ALS iBEC monolayer opening in vitro with no adverse cellular effects of FUS+ MB as reflected by lactate dehydrogenase (LDH) release viability assay and the lack of visible monolayer damage or morphology change in FUS+ MB treated cells. This was accompanied by the molecular bioeffects of FUS+ MB in ALS iBECs including changes in expression of tight and adherens junction markers, and drug transporter and inflammatory mediators, with sporadic and C9orf72 ALS iBECs generating transient specific responses. Additionally, we demonstrated an effective increase in the delivery of anti-TDP-43 antibody with FUS+ MB in C9orf72 (2.7-fold) and sporadic (1.9-fold) ALS iBECs providing the first proof-of-concept evidence that FUS+ MB can be used to enhance the permeability of large molecule therapeutics across the BBB in a human ALS in vitro model. CONCLUSIONS: Together, this study describes the first characterisation of cellular and molecular responses of ALS iBECs to FUS+ MB and provides a fully-human platform for FUS+ MB-mediated drug delivery screening on an ALS BBB in vitro model.


Sujet(s)
Sclérose latérale amyotrophique , Barrière hémato-encéphalique , Protéines de liaison à l'ADN , Microbulles , Sclérose latérale amyotrophique/métabolisme , Sclérose latérale amyotrophique/traitement médicamenteux , Barrière hémato-encéphalique/métabolisme , Barrière hémato-encéphalique/effets des médicaments et des substances chimiques , Humains , Protéines de liaison à l'ADN/métabolisme , Systèmes de délivrance de médicaments/méthodes , Cellules endothéliales/métabolisme , Anticorps/administration et posologie , Ondes ultrasonores , Cellules cultivées
12.
Stem Cell Reports ; 19(8): 1122-1136, 2024 Aug 13.
Article de Anglais | MEDLINE | ID: mdl-39094561

RÉSUMÉ

Reactive astrocytes are known to exert detrimental effects upon neurons in several neurodegenerative diseases, yet our understanding of how astrocytes promote neurotoxicity remains incomplete, especially in human systems. In this study, we leveraged human pluripotent stem cell (hPSC) models to examine how reactivity alters astrocyte function and mediates neurodegeneration. hPSC-derived astrocytes were induced to a reactive phenotype, at which point they exhibited a hypertrophic profile and increased complement C3 expression. Functionally, reactive astrocytes displayed decreased intracellular calcium, elevated phagocytic capacity, and decreased contribution to the blood-brain barrier. Subsequently, co-culture of reactive astrocytes with a variety of neuronal cell types promoted morphological and functional alterations. Furthermore, when reactivity was induced in astrocytes from patient-specific hPSCs (glaucoma, Alzheimer's disease, and amyotrophic lateral sclerosis), the reactive state exacerbated astrocytic disease-associated phenotypes. These results demonstrate how reactive astrocytes modulate neurodegeneration, significantly contributing to our understanding of a role for reactive astrocytes in neurodegenerative diseases.


Sujet(s)
Astrocytes , Techniques de coculture , Cellules souches pluripotentes , Astrocytes/métabolisme , Humains , Cellules souches pluripotentes/métabolisme , Cellules souches pluripotentes/cytologie , Maladies neurodégénératives/métabolisme , Maladies neurodégénératives/anatomopathologie , Complément C3/métabolisme , Différenciation cellulaire , Neurones/métabolisme , Maladie d'Alzheimer/anatomopathologie , Maladie d'Alzheimer/métabolisme , Phagocytose , Barrière hémato-encéphalique/métabolisme , Glaucome/anatomopathologie , Glaucome/métabolisme , Sclérose latérale amyotrophique/métabolisme , Sclérose latérale amyotrophique/anatomopathologie , Calcium/métabolisme , Phénotype
13.
Methods Mol Biol ; 2828: 45-55, 2024.
Article de Anglais | MEDLINE | ID: mdl-39147969

RÉSUMÉ

Multiphoton intravital microscopy (MP-IVM) is an imaging technique used for the observation of living organisms at a microscopic resolution. The tissue of interest is exposed through a window allowing imaging of cells in real time. Using MP-IVM, the temporospatial kinetics of leukocyte transendothelial migration can be visualized and quantitated using reporter mice and cell-specific fluorophore-conjugated monoclonal antibodies to track the leukocytes within and outside of vascular beds. Here we describe a method used to study neutrophil transendothelial migration and blood-brain barrier permeability in a mouse model of herpes simplex virus I (HSV) encephalitis.


Sujet(s)
Barrière hémato-encéphalique , Modèles animaux de maladie humaine , Encéphalite à herpès simplex , Microscopie intravitale , Microscopie de fluorescence multiphotonique , Granulocytes neutrophiles , Migration transendothéliale et transépithéliale , Animaux , Barrière hémato-encéphalique/métabolisme , Barrière hémato-encéphalique/virologie , Barrière hémato-encéphalique/anatomopathologie , Souris , Microscopie intravitale/méthodes , Microscopie de fluorescence multiphotonique/méthodes , Granulocytes neutrophiles/métabolisme , Encéphalite à herpès simplex/anatomopathologie , Encéphalite à herpès simplex/virologie , Encéphalite à herpès simplex/métabolisme , Herpèsvirus humain de type 1/physiologie , Perméabilité
14.
Nat Commun ; 15(1): 6892, 2024 Aug 12.
Article de Anglais | MEDLINE | ID: mdl-39134522

RÉSUMÉ

Nipah virus infection, one of the top priority diseases recognized by the World Health Organization, underscores the urgent need to develop effective countermeasures against potential epidemics and pandemics. Here, we identify a fully human single-domain antibody that targets a highly conserved cryptic epitope situated at the dimeric interface of the Nipah virus G protein (receptor binding protein, RBP), as elucidated through structures by high-resolution cryo-electron microscopy (cryo-EM). This unique binding mode disrupts the tetramerization of the G protein, consequently obstructing the activation of the F protein and inhibiting viral membrane fusion. Furthermore, our investigations reveal that this compact antibody displays enhanced permeability across the blood-brain barrier (BBB) and demonstrates superior efficacy in eliminating pseudovirus within the brain in a murine model of Nipah virus infection, particularly compared to the well-characterized antibody m102.4 in an IgG1 format. Consequently, this single-domain antibody holds promise as a therapeutic candidate to prevent Nipah virus infections and has potential implications for vaccine development.


Sujet(s)
Anticorps antiviraux , Cryomicroscopie électronique , Épitopes , Infections à hénipavirus , Virus Nipah , Anticorps à domaine unique , Virus Nipah/immunologie , Humains , Animaux , Infections à hénipavirus/immunologie , Infections à hénipavirus/prévention et contrôle , Infections à hénipavirus/virologie , Épitopes/immunologie , Souris , Anticorps à domaine unique/immunologie , Anticorps à domaine unique/composition chimique , Anticorps antiviraux/immunologie , Barrière hémato-encéphalique/métabolisme , Barrière hémato-encéphalique/immunologie , Protéines de l'enveloppe virale/immunologie , Protéines de l'enveloppe virale/composition chimique , Femelle , Cellules HEK293
15.
J Nanobiotechnology ; 22(1): 477, 2024 Aug 12.
Article de Anglais | MEDLINE | ID: mdl-39135044

RÉSUMÉ

The secondary injury is more serious after traumatic brain injury (TBI) compared with primary injury. Release of excessive reactive oxygen species (ROS) and Ca2+ influx at the damaged site trigger the secondary injury. Herein, a neutrophil-like cell membrane-functionalized nanoparticle was developed to prevent ROS-associated secondary injury. NCM@MP was composed of three parts: (1) Differentiated neutrophil-like cell membrane (NCM) was synthesized, with inflammation-responsive ability to achieve effective targeting and to increase the retention time of Mn3O4 and nimodipine (MP) in deep injury brain tissue via C-X-C chemokine receptor type 4, integrin beta 1 and macrophage antigen-1. (2) Nimodipine was used to inhibit Ca2+ influx, eliminating the ROS at source. (3) Mn3O4 further eradicated the existing ROS. In addition, NCM@MP also exhibited desirable properties for T1 enhanced imaging and low toxicity which may serve as promising multifunctional nanoplatforms for precise therapies. In our study, NCM@MP obviously alleviated oxidative stress response, reduced neuroinflammation, protected blood-brain barrier integrity, relieved brain edema, promoted the regeneration of neurons, and improved the cognition of TBI mice. This study provides a promising TBI management to relieve the secondary spread of damage.


Sujet(s)
Lésions traumatiques de l'encéphale , Calcium , Nanoparticules , Granulocytes neutrophiles , Espèces réactives de l'oxygène , Animaux , Espèces réactives de l'oxygène/métabolisme , Lésions traumatiques de l'encéphale/traitement médicamenteux , Lésions traumatiques de l'encéphale/métabolisme , Souris , Nanoparticules/composition chimique , Calcium/métabolisme , Granulocytes neutrophiles/métabolisme , Granulocytes neutrophiles/effets des médicaments et des substances chimiques , Mâle , Membrane cellulaire/métabolisme , Membrane cellulaire/effets des médicaments et des substances chimiques , Stress oxydatif/effets des médicaments et des substances chimiques , Barrière hémato-encéphalique/métabolisme , Barrière hémato-encéphalique/effets des médicaments et des substances chimiques , Souris de lignée C57BL
16.
Eur J Med Chem ; 276: 116729, 2024 Oct 05.
Article de Anglais | MEDLINE | ID: mdl-39088998

RÉSUMÉ

Soluble transforming growth factor beta receptor 3 (sTGFBR3) antagonist is a new focus in the research and development of Alzheimer's disease (AD) drugs. Our previous studies have identified sTGFBR3 as a promising new target for AD, with few targeted antagonists identified. In this study, we performed structural modeling of sTGFBR3 using AlphaFold2, followed by high-throughput virtual screening and surface plasmon resonance assays. which collectively identified Xanthone as potential compounds for targeting sTGFBR3. After optimizing the sTGFBR3-Xanthone complex using molecular dynamics (MD) simulations, we prepared a series of novel Xanthone derivatives and evaluated their anti-inflammatory activity, toxicity, and structure-activity relationship in BV2 cell model induced by lipopolysaccharides (LPS) or APP/PS1/tau mouse brain extract (BE). Several derivatives with the most potent anti-inflammatory activity were tested for blood-brain barrier permeability and sTGFBR3 affinity. Derivative P24, selected for its superior properties, was further evaluated in vitro. The results indicated that P24 increased the activation of TGF-ß signaling and decreased the activation of IκBα/NF-κB signaling by targeting sTGFBR3, thereby regulating the inflammation-phagocytosis balance in microglia. Moreover, the low acute toxicity, long half-life, and low plasma clearance of P24 suggest that it can be sustained in vivo. This property may render P24 a more effective treatment modality for chronic diseases, particularly AD. The study demonstrates P24 serve as potential novel candidates for the treatment of AD via antagonizing sTGFBR3.


Sujet(s)
Maladie d'Alzheimer , Xanthones , Xanthones/composition chimique , Xanthones/pharmacologie , Xanthones/synthèse chimique , Animaux , Humains , Souris , Relation structure-activité , Maladie d'Alzheimer/traitement médicamenteux , Maladie d'Alzheimer/métabolisme , Structure moléculaire , Découverte de médicament , Relation dose-effet des médicaments , Lipopolysaccharides/pharmacologie , Lipopolysaccharides/antagonistes et inhibiteurs , Barrière hémato-encéphalique/métabolisme , Barrière hémato-encéphalique/effets des médicaments et des substances chimiques , Anti-inflammatoires/pharmacologie , Anti-inflammatoires/composition chimique , Anti-inflammatoires/synthèse chimique , Souris de lignée C57BL , Mâle
17.
Nanoscale ; 16(32): 15158-15169, 2024 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-39091152

RÉSUMÉ

Dopamine is a neurotransmitter in the central nervous system that is essential for many bodily and mental processes, and a lack of it can cause Parkinson's disease. DNA tetrahedral (TD) nanocages are promising in bio-nanotechnology, especially as a nanocarrier. TD is highly programmable, biocompatible, and capable of cell differentiation and proliferation. It also has tissue and blood-brain barrier permeability, making it a powerful tool that could overcome potential barriers in treating neurological disorders. In this study, we used DNA TD as a carrier for dopamine to cells and zebrafish embryos. We investigated the mechanism of complexation between TD and dopamine hydrochloride using gel electrophoresis, fluorescence and circular dichroism (CD) spectroscopy, atomic force microscopy (AFM), and molecular dynamic (MD) simulation tools. Further, we demonstrate that these dopamine-loaded DNA TD nanostructures enhanced cellular uptake and differentiation ability in SH-SY5Y neuroblastoma cells. Furthermore, we extended the study to zebrafish embryos as a model organism to examine survival and uptake. The research provides valuable insights into the complexation mechanism and cellular uptake of dopamine-loaded DNA tetrahedral nanostructures, paving the way for further advancements in nanomedicine for Parkinson's disease and other neurological disorders.


Sujet(s)
ADN , Dopamine , Vecteurs de médicaments , Danio zébré , Dopamine/composition chimique , Dopamine/métabolisme , Dopamine/pharmacologie , Animaux , ADN/composition chimique , ADN/métabolisme , Humains , Lignée cellulaire tumorale , Vecteurs de médicaments/composition chimique , Nanostructures/composition chimique , Maladie de Parkinson/traitement médicamenteux , Maladie de Parkinson/métabolisme , Simulation de dynamique moléculaire , Maladies du système nerveux/traitement médicamenteux , Maladies du système nerveux/métabolisme , Différenciation cellulaire/effets des médicaments et des substances chimiques , Barrière hémato-encéphalique/métabolisme
18.
Cell Mol Life Sci ; 81(1): 352, 2024 Aug 17.
Article de Anglais | MEDLINE | ID: mdl-39153043

RÉSUMÉ

Parkinson's disease (PD) is the second most common neurodegenerative disease, and its hallmark pathological features are the loss of dopaminergic (DA) neurons in the midbrain substantia nigra pars compacta (SNpc) and the accumulation of alpha-synuclein (α-syn). It has been shown that the integrity of the blood-brain barrier (BBB) is damaged in PD patients, and a large number of infiltrating T cells and inflammatory cytokines have been detected in the cerebrospinal fluid (CSF) and brain parenchyma of PD patients and PD animal models, including significant change in the number and proportion of different CD4+ T cell subsets. This suggests that the neuroinflammatory response caused by CD4+ T cells is an important risk factor for the development of PD. Here, we systematically review the differentiation of CD4+ T cell subsets, and focus on describing the functions and mechanisms of different CD4+ T cell subsets and their secreted cytokines in PD. We also summarize the current immunotherapy targeting CD4+ T cells with a view to providing assistance in the diagnosis and treatment of PD.


Sujet(s)
Lymphocytes T CD4+ , Différenciation cellulaire , Cytokines , Maladie de Parkinson , Maladie de Parkinson/anatomopathologie , Maladie de Parkinson/immunologie , Maladie de Parkinson/métabolisme , Humains , Lymphocytes T CD4+/immunologie , Lymphocytes T CD4+/métabolisme , Animaux , Cytokines/métabolisme , Sous-populations de lymphocytes T/immunologie , Sous-populations de lymphocytes T/métabolisme , Barrière hémato-encéphalique/métabolisme , Barrière hémato-encéphalique/anatomopathologie , Barrière hémato-encéphalique/immunologie , alpha-Synucléine/métabolisme , alpha-Synucléine/immunologie
19.
J Cell Mol Med ; 28(16): e70008, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39153195

RÉSUMÉ

Blood-brain barrier (BBB) disruption is a major pathophysiological event of ischemic stroke. Brain microvascular endothelial cells are critical to maintain homeostasis between central nervous system and periphery. Resveratrol protects against ischemic stroke. 3,3',4,5'-tetramethoxy-trans-stilbene (3,3',4,5'-TMS) and 3,4',5-trimethoxy-trans-stilbene (3,4',5-TMS) are resveratrol derivatives with addition of methoxy groups, showing better pharmacokinetic performance. We aimed to explore their protective effects and underlying mechanisms. Oxygen-glucose deprivation (OGD) model was applied in bEnd.3 cell line, mouse brain microvascular endothelium to mimic ischemia. The cells were pre-treated with 3,3',4,5'-TMS or 3,4',5-TMS (1 and 5 µM, 24 h) and then subjected to 2-h OGD injury. Cell viability, levels of proinflammatory cytokines and reactive oxygen species (ROS), and protein expressions were measured by molecular assays and fluorescence staining. OGD injury triggered cell death, inflammatory responses, ROS production and nuclear factor-kappa B (NF-κB) signalling pathway. These impairments were remarkably attenuated by the two stilbenes, 3,3',4,5'-TMS and 3,4',5-TMS. They also alleviated endothelial barrier injuries through upregulating the expression of tight junction proteins. Moreover, 3,3',4,5'-TMS and 3,4',5-TMS activated 5' adenosine monophosphate-activated protein kinase (AMPK) and endothelial nitric oxide synthase (eNOS). Overall, 3,3',4,5'-TMS and 3,4',5-TMS exert protective effects against OGD damage through suppressing cell death, inflammatory responses, oxidative stress, as well as BBB disruption on bEnd.3 cells.


Sujet(s)
Encéphale , Survie cellulaire , Cellules endothéliales , Glucose , Oxygène , Espèces réactives de l'oxygène , Stilbènes , Stilbènes/pharmacologie , Animaux , Glucose/métabolisme , Souris , Cellules endothéliales/métabolisme , Cellules endothéliales/effets des médicaments et des substances chimiques , Espèces réactives de l'oxygène/métabolisme , Oxygène/métabolisme , Lignée cellulaire , Encéphale/métabolisme , Encéphale/effets des médicaments et des substances chimiques , Encéphale/anatomopathologie , Survie cellulaire/effets des médicaments et des substances chimiques , Barrière hémato-encéphalique/effets des médicaments et des substances chimiques , Barrière hémato-encéphalique/métabolisme , Stress oxydatif/effets des médicaments et des substances chimiques , Cytokines/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques , Hypoxie cellulaire/effets des médicaments et des substances chimiques
20.
Fluids Barriers CNS ; 21(1): 66, 2024 Aug 16.
Article de Anglais | MEDLINE | ID: mdl-39152442

RÉSUMÉ

BACKGROUND: Group B Streptococcus (GBS) is the leading cause of neonatal meningitis responsible for a substantial cause of death and disability worldwide. The vast majority of GBS neonatal meningitis cases are due to the CC17 hypervirulent clone. However, the cellular and molecular pathways involved in brain invasion by GBS CC17 isolates remain largely elusive. Here, we studied the specific interaction of the CC17 clone with the choroid plexus, the main component of the blood-cerebrospinal fluid (CSF) barrier. METHODS: The interaction of GBS CC17 or non-CC17 strains with choroid plexus cells was studied using an in vivo mouse model of meningitis and in vitro models of primary and transformed rodent choroid plexus epithelial cells (CPEC and Z310). In vivo interaction of GBS with the choroid plexus was assessed by microscopy. Bacterial invasion and cell barrier penetration were examined in vitro, as well as chemokines and cytokines in response to infection. RESULTS: GBS CC17 was found associated with the choroid plexus of the lateral, 3rd and 4th ventricles. Infection of choroid plexus epithelial cells revealed an efficient internalization of the bacteria into the cells with GBS CC17 displaying a greater ability to invade these cells than a non-CC17 strain. Internalization of the GBS CC17 strain involved the CC17-specific HvgA adhesin and occurred via a clathrin-dependent mechanism leading to transcellular transcytosis across the choroid plexus epithelial monolayer. CPEC infection resulted in the secretion of several chemokines, including CCL2, CCL3, CCL20, CX3CL1, and the matrix metalloproteinase MMP3, as well as immune cell infiltration. CONCLUSION: Our findings reveal a GBS strain-specific ability to infect the blood-CSF barrier, which appears to be an important site of bacterial entry and an active site of immune cell trafficking in response to infection.


Sujet(s)
Plexus choroïde , Streptococcus agalactiae , Plexus choroïde/métabolisme , Plexus choroïde/microbiologie , Plexus choroïde/immunologie , Animaux , Streptococcus agalactiae/pathogénicité , Souris , Adhésines bactériennes/métabolisme , Virulence , Cellules épithéliales/métabolisme , Cellules épithéliales/microbiologie , Barrière hémato-encéphalique/microbiologie , Barrière hémato-encéphalique/métabolisme , Modèles animaux de maladie humaine , Infections à streptocoques/métabolisme , Infections à streptocoques/microbiologie , Infections à streptocoques/immunologie , Souris de lignée C57BL , Transcytose/physiologie , Femelle
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE