Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 359
Filtrer
1.
Mar Pollut Bull ; 203: 116412, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38703628

RÉSUMÉ

Marine noise is recognised as a growing threat that can induce maladaptive behavioural changes in many aquatic animals, including fishes. The plainfin midshipman is a soniferous fish with a prolonged breeding period, during which males produce tonal hums that attract females, and grunts and growls during agonistic interactions. In this study, we used acoustic recordings to assess the effects of boat noise on the presence, peak frequencies, and durations of plainfin midshipman calls in the wild. We found that all three call types were less likely to occur, and the peak frequencies of hums and grunts increased in the presence of boat noise. We also show that loud and quiet boat noise affected plainfin midshipman vocalizations similarly. As anthropogenic noise is likely to increase in the ocean, it will be important to understand how such noise can affect communication systems, and consequently population health and resiliency.


Sujet(s)
Bruit , Vocalisation animale , Animaux , Navires , Mâle , Femelle , Acoustique , Batrachoïdiformes/physiologie
2.
J Comp Physiol B ; 194(2): 167-177, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38622281

RÉSUMÉ

Neuroepithelial cells (NECs) within the fish gill contain the monoamine neurochemical serotonin (5-HT), sense changes in the partial pressure of oxygen (PO2) in the surrounding water and blood, and initiate the cardiovascular and ventilatory responses to hypoxia. The distribution of neuroepithelial cells (NECs) within the gill is known for some fish species but not for the Gulf toadfish, Opsanus beta, a fish that has always been considered hypoxia tolerant. Furthermore, whether NEC size, number, or distribution changes after chronic exposure to hypoxia, has never been tested. We hypothesize that toadfish NECs will respond to hypoxia with an increase in NEC size, number, and a change in distribution. Juvenile toadfish (N = 24) were exposed to either normoxia (21.4 ± 0.0 kPa), mild hypoxia (10.2 ± 0.3 kPa), or severe hypoxia (3.1 ± 0.2 kPa) for 7 days and NEC size, number, and distribution for each O2 regime were measured. Under normoxic conditions, juvenile toadfish have similar NEC size, number, and distribution as other fish species with NECs along their filaments but not throughout the lamellae. The distribution of NECs did not change with hypoxia exposure. Mild hypoxia exposure had no effect on NEC size or number, but fish exposed to severe hypoxia had a higher NEC density (# per mm filament) compared to mild hypoxia-exposed fish. Fish exposed to severe hypoxia also had longer gill filament lengths that could not be explained by body weight. These results point to signs of phenotypic plasticity in these juvenile, lab-bred fish with no previous exposure to hypoxia and a strategy to deal with hypoxia exposure that differs in toadfish compared to other fish.


Sujet(s)
Batrachoïdiformes , Branchies , Hypoxie , Cellules neuroépithéliales , Animaux , Cellules neuroépithéliales/métabolisme , Branchies/cytologie , Hypoxie/médecine vétérinaire , Batrachoïdiformes/physiologie , Oxygène/métabolisme , Numération cellulaire
3.
Horm Behav ; 161: 105507, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38479349

RÉSUMÉ

An amalgam of investigations at the interface of neuroethology and behavioral neuroendocrinology first established the most basic behavioral, neuroanatomical, and neurophysiological characters of vocal-acoustic communication morphs in the plainfin midshipman fish, Porichthys notatus Girard. This foundation has led, in turn, to the repeated demonstration that neuro-behavioral mechanisms driving reproductive-related, vocal-acoustic behaviors can be uncoupled from gonadal state for two adult male phenotypes that follow alternative reproductive tactics (ARTs).


Sujet(s)
Batrachoïdiformes , Comportement sexuel chez les animaux , Vocalisation animale , Animaux , Mâle , Comportement sexuel chez les animaux/physiologie , Batrachoïdiformes/physiologie , Vocalisation animale/physiologie , Reproduction/physiologie , Femelle
4.
J Acoust Soc Am ; 155(2): 817-825, 2024 02 01.
Article de Anglais | MEDLINE | ID: mdl-38299939

RÉSUMÉ

The oyster toadfish, Opsanus tau, has been a valuable biomedical model for a wide diversity of studies. However, its vocalization ability arguably has attracted the most attention, with numerous studies focusing on its ecology, behavior, and neurophysiology in regard to its sound production and reception. This paper reviews 30 years of research in my laboratory using this model to understand how aquatic animals detect, integrate, and respond to external environment cues. The dual vestibular and auditory role of the utricle is examined, and its ability to integrate multimodal input is discussed. Several suggestions for future research are provided, including in situ auditory recording, interjecting natural relevant ambient soundscapes into laboratory sound studies, adding transparency to the field of acoustic deterrents, and calls for fish bioacoustics teaching modules to be incorporated in K-12 curricula to excite and diversify the next generation of scientists.


Sujet(s)
Batrachoïdiformes , Animaux , Acoustique , Signaux , Programme d'études , Neurophysiologie
5.
J Acoust Soc Am ; 155(2): 1230-1239, 2024 02 01.
Article de Anglais | MEDLINE | ID: mdl-38341750

RÉSUMÉ

The oyster toadfish (Opsanus tau) is an ideal model to examine the effects of anthropogenic noise on behavior because they rely on acoustic signals for mate attraction and social interactions. We predict that oyster toadfish have acclimated to living in noise-rich environments because they are common in waterways of urban areas, like New York City (NYC). We used passive acoustic monitoring at two locations to see if calling behavior patterns are altered in areas of typically high boat traffic versus low boat traffic (Pier 40, NYC, NY, and Eel Pond, Woods Hole, MA, respectively). We hypothesized that toadfish in NYC would adjust their circadian calling behavior in response to daily anthropogenic noise patterns. We quantified toadfish calls and ship noise over three 24-h periods in the summer reproductive period at both locations. We observed an inverse relationship between the duration of noise and the number of toadfish calls at Pier 40 in comparison to Eel Pond. Additionally, toadfish at Pier 40 showed significant differences in peak calling behavior compared to Eel Pond. Therefore, oyster toadfish may have acclimated to living in an urban environment by potentially altering their communication behavior in the presence of boat noise.


Sujet(s)
Batrachoïdiformes , Ostreidae , Animaux , Batrachoïdiformes/physiologie , Bruit/effets indésirables , Vocalisation animale/physiologie , New York (ville)
6.
Nat Commun ; 15(1): 189, 2024 Jan 02.
Article de Anglais | MEDLINE | ID: mdl-38167237

RÉSUMÉ

Vocalizations communicate information indicative of behavioural state across divergent social contexts. Yet, how brain regions actively pattern the acoustic features of context-specific vocal signals remains largely unexplored. The midbrain periaqueductal gray (PAG) is a major site for initiating vocalization among mammals, including primates. We show that PAG neurons in a highly vocal fish species (Porichthys notatus) are activated in distinct patterns during agonistic versus courtship calling by males, with few co-activated during a non-vocal behaviour, foraging. Pharmacological manipulations within vocally active PAG, but not hindbrain, sites evoke vocal network output to sonic muscles matching the temporal features of courtship and agonistic calls, showing that a balance of inhibitory and excitatory dynamics is likely necessary for patterning different call types. Collectively, these findings support the hypothesis that vocal species of fish and mammals share functionally comparable PAG nodes that in some species can influence the acoustic structure of social context-specific vocal signals.


Sujet(s)
Batrachoïdiformes , Vocalisation animale , Animaux , Mâle , Vocalisation animale/physiologie , Encéphale/physiologie , Substance grise centrale du mésencéphale/physiologie , Batrachoïdiformes/physiologie , Mammifères
7.
Proc Biol Sci ; 290(2013): 20231839, 2023 Dec 20.
Article de Anglais | MEDLINE | ID: mdl-38087920

RÉSUMÉ

Teleost fishes have evolved a number of sound-producing mechanisms, including vibrations of the swim bladder. In addition to sound production, the swim bladder also aids in sound reception. While the production and reception of sound by the swim bladder has been described separately in fishes, the extent to which it operates for both in a single species is unknown. Here, using morphological, electrophysiological and modelling approaches, we show that the swim bladder of male plainfin midshipman fish (Porichthys notatus) exhibits reproductive state-dependent changes in morphology and function for sound production and reception. Non-reproductive males possess rostral 'horn-like' swim bladder extensions that enhance low-frequency (less than 800 Hz) sound pressure sensitivity by decreasing the distance between the swim bladder and inner ear, thus enabling pressure-induced swim bladder vibrations to be transduced to the inner ear. By contrast, reproductive males display enlarged swim bladder sonic muscles that enable the production of advertisement calls but also alter swim bladder morphology and increase the swim bladder to inner ear distance, effectively reducing sound pressure sensitivity. Taken together, we show that the swim bladder exhibits a seasonal functional plasticity that allows it to effectively mediate both the production and reception of sound in a vocal teleost fish.


Sujet(s)
Batrachoïdiformes , Communication , Son (physique) , Animaux , Mâle , Acoustique , Batrachoïdiformes/physiologie , Structures anatomiques de l'animal
8.
J Acoust Soc Am ; 154(5): 2959-2973, 2023 11 01.
Article de Anglais | MEDLINE | ID: mdl-37947394

RÉSUMÉ

This paper outlines my research path over three decades while providing a review on the role of fish sounds in mate choice and reproduction. It also intends to provide advice to young scientists and point toward future avenues in this field of research. An overview of studies on different fish model species shows that male mating acoustic signals can inform females and male competitors about their size (dominant frequency, amplitude, and sound pulse rate modulation), body condition (calling activity and sound pulse rate), and readiness to mate (calling rate, number of pulses in a sound). At least in species with parental care, such as toadfishes, gobies, and pomacentrids, calling activity seems to be the main driver of reproductive success. Playback experiments ran on a restricted number of species consistently revealed that females prefer vocal to silent males and select for higher calling rates. This personal synthesis concludes with the suggestion to increase knowledge on fish mating signals, especially considering the emerging use of fish sounds to monitor aquatic environments due to increasing threats, like noise pollution.


Sujet(s)
Acoustique , Batrachoïdiformes , Animaux , Femelle , Mâle , Son (physique) , Bruit , Vocalisation animale
9.
J Acoust Soc Am ; 154(5): 3466-3478, 2023 11 01.
Article de Anglais | MEDLINE | ID: mdl-38019096

RÉSUMÉ

The relationship between sound complexity and the underlying morphology and physiology of the vocal organ anatomy is a fundamental component in the evolution of acoustic communication, particularly for fishes. Among vertebrates, the mammalian larynx and avian syrinx are the best-studied vocal organs, and their ability to produce complex vocalizations has been modeled. The range and complexity of the sounds in mammalian lineages have been attributed, in part, to the bilateral nature of the vocal anatomy. Similarly, we hypothesize that the bipartite swim bladder of some species of toadfish (family Batrachoididae) is responsible for complex nonlinear characters of the multiple call types that they can produce, supported by nerve transection experiments. Here, we develop a low-dimensional coupled-oscillator model of the mechanics underlying sound production by the two halves of the swim bladder of the three-spined toadfish, Batrachomoeus trispinosus. Our model was able to replicate the nonlinear structure of both courtship and agonistic sounds. The results provide essential support for the hypothesis that fishes and tetrapods have converged in an evolutionary innovation for complex acoustic signaling, namely, a relatively simple bipartite mechanism dependent on sonic muscles contracting around a gas filled structure.


Sujet(s)
Batrachoïdiformes , Vessie urinaire , Animaux , Phénomènes biomécaniques , Son (physique) , Acoustique , Mammifères
10.
J Acoust Soc Am ; 154(5): 2928-2936, 2023 11 01.
Article de Anglais | MEDLINE | ID: mdl-37938048

RÉSUMÉ

An unmanned surface vehicle (USV; Wave Glider) was deployed to study the coastal soundscape in shallow (less than 30 m) coastal waters off the coast of Cape Canaveral, FL, in July 2020 and January 2022. These surveys documented temporal and seasonal trends in biological sounds across a variety of habitats within an 812-km2 survey area, including sand shoals, sand-mud plains, and natural hardbottom. Among a broader diversity of identifiable and unidentifiable fish choruses recorded during the survey, a distinct and previously unidentified fish chorus was recorded; corroborating evidence suggests it and other sounds with similar spectral properties may be produced by Atlantic midshipman. Putative Atlantic midshipman sounds included an agnostic grunt and a seasonal chorus of persistent hums that peaked 3 h after sunset in the summer survey. While Atlantic midshipman have been demonstrated to have well-developed sonic muscles on their swim bladder, their acoustic behavior has not been previously described. Our use of a mobile passive acoustic platform combined with bottom sampling of fish communities highlights an important opportunity to identify previously undocumented biological sound sources in coastal habitats.


Sujet(s)
Batrachoïdiformes , Animaux , Sable , Acoustique , Sacs aériens , Véhicules de transport aérien
11.
J Acoust Soc Am ; 154(4): 2088-2098, 2023 10 01.
Article de Anglais | MEDLINE | ID: mdl-37787601

RÉSUMÉ

Anthropogenic sound is a prevalent environmental stressor that can have significant impacts on aquatic species, including fishes. In this study, the effects of anthropogenic sound on the vocalization behavior of oyster toadfish (Opasnus tau) at multiple time scales was investigated using passive acoustic monitoring. The effects of specific vessel passages were investigated by comparing vocalization rates immediately after a vessel passage with that of control periods using a generalized linear model. The effects of increased ambient sound levels as a result of aggregate exposure within hourly periods over a month were also analyzed using generalized additive models. To place the response to vessel sounds within an ecologically appropriate context, the effect of environmental variables on call density was compared to that of increasing ambient sound levels. It was found that the immediate effect of vessel passage was not a significant predictor for toadfish vocalization rate. However, analyzed over a longer time period, increased vessel-generated sound lowered call rate and there was a greater effect size from vessel sound than any environmental variable. This demonstrates the importance of evaluating responses to anthropogenic sound, including chronic sounds, on multiple time scales when assessing potential impacts.


Sujet(s)
Batrachoïdiformes , Ostreidae , Animaux , Batrachoïdiformes/physiologie , Vocalisation animale/physiologie , Son (physique) , Poissons , Périodicité
12.
Sci Rep ; 13(1): 13902, 2023 08 25.
Article de Anglais | MEDLINE | ID: mdl-37626080

RÉSUMÉ

Natural disturbances can modify extinction-colonization dynamics, driving changes in the genetic diversity and structure of marine populations. Along Chilean coast (36°S, 73°W), a strong hypoxic-upwelling event in 2008, and a mega earthquake-tsunami in 2010 caused mass mortality within the Aphos porosus population, which is a vulnerable species with low dispersal potential. We evaluated the effects of these two major disturbances on the diversity and spatial-temporal genetic structure of Aphos porosus in two neighboring areas that were impacted on different levels (High level: Coliumo Bay; Low level: Itata Shelf). Thirteen microsatellites (from 2008 to 2015) amplified in individuals collected from both locations were used to evaluate the effects of the two disturbances. Results showed that after the strong hypoxic-upwelling event and the mega earthquake-tsunami, Aphos porosus populations exhibited lower genetic diversity and less effective population sizes (Ne < 20), as well as asymmetries in migration and spatial-temporal genetic structure. These findings suggest a rise in extinction-recolonization dynamics in local Aphos porosus populations after the disturbances, which led to a loss of local genetic diversity (mainly in Coliumo Bay area impacted the most), and to greater spatial-temporal genetic structure caused by drift and gene flow. Our results suggest that continuous genetic monitoring is needed in order to assess potential risks for Aphos porosus in light of new natural and anthropogenic disturbances.


Sujet(s)
Batrachoïdiformes , Tremblements de terre , Humains , Animaux , Effets anthropiques , Chili , Hypoxie
13.
Sci Total Environ ; 899: 165491, 2023 Nov 15.
Article de Anglais | MEDLINE | ID: mdl-37453709

RÉSUMÉ

Few studies have been performed on early-life stage toadfish, and none have addressed their tolerance to temperature and hypoxia despite large seasonal temperature fluctuations and daily hypoxia in their natural environment. The first directed captive breeding of Opsanus beta allowed the examination of larval oxygen demands and hypoxia tolerance across the range of their environmental temperatures (23-33 °C). Larval toadfish exhibited a surprisingly large aerobic scope across the tested temperature range. In response to progressive hypoxia, larval toadfish showed early metabolic depression and a low regulation index (RI), while juveniles had higher regulatory abilities but, unexpectedly, a lower aerobic scope. Larval and juvenile toadfish survived hours of severe hypoxia, but larval fish had a higher excessive post-hypoxia oxygen consumption, yet their metabolic rate returned to RMR in the same timeframe as the juveniles, likely due to their higher aerobic scope. We defined hypoxia tolerance using a physiological trait, p50, the oxygen tension in which oxygen uptake is reduced to 50 % of the metabolic rate at rest and determined it at all tested temperatures. Comparing these p50 values to environmental conditions in Florida Bay using hourly temperature and oxygen measurements from January 2014-October 2021 revealed that larval toadfish rarely experience < p50 conditions (11 % of events). Further, the median duration of these events was 3 h. The metabolic performance of larval toadfish combined with temperature and oxygen observations from their natural environment reveals the fascinating strategy in which larval toadfish survive diel hypoxia across seasons.


Sujet(s)
Batrachoïdiformes , Animaux , Batrachoïdiformes/métabolisme , Larve/physiologie , Hypoxie/médecine vétérinaire , Oxygène/métabolisme , Environnement , Température , Consommation d'oxygène
14.
Zoology (Jena) ; 159: 126102, 2023 08.
Article de Anglais | MEDLINE | ID: mdl-37364349

RÉSUMÉ

The batracoidid Plainfin Midshipmen Porichthys notatus Girard has been extensively studied due to the sound production abilities and specializations of its swim bladder. The present study describes three-dimensional variations of the morphology of the swim bladder and sonic muscles of P. notatus during its post-hatch larval development, with the use of three-dimensional computed tomography. This study also includes descriptions of the relative position of the swim bladder to other visceral organs. The swim bladder, digestive tract, and liver were already present in the smallest examined specimens (5.9 mm; newly hatched larvae) along with the yolk sac. In the smallest specimens, the digestive tract is straight, but from 7.1 mm TL, the digestive tract forms the first intestinal loops, and at 25.5 mm TL, a second intestinal loop. In smallest specimens, the swim bladder is oval, but at 7.1 mm TL, the anterior margin starts invaginating, forming a pair of anterior lobes. The first appearance of the intrinsic sonic muscles in swim bladder occurs at 13.1 mm TL. Additionally, we provide comparisons between the shape of the swim bladder of P. notatus and other species. The shape of the swim bladder of P. notatus and other members of Porichthyinae have an ovoid posterior region with two anterior lobes and differs from the cordiform or semiconected/bilobed the swim bladders observed in the other Batrachoididae.


Sujet(s)
Batrachoïdiformes , Animaux , Batrachoïdiformes/anatomie et histologie , Batrachoïdiformes/physiologie , Vessie urinaire , Son (physique)
15.
Int J Mol Sci ; 24(9)2023 May 06.
Article de Anglais | MEDLINE | ID: mdl-37176045

RÉSUMÉ

Envenomation by venomous fish, although not always fatal, is capable of causing damage to homeostasis by activating the inflammatory process, with the formation of edema, excruciating pain, necrosis that is difficult to heal, as well as hemodynamic and cardiorespiratory changes. Despite the wide variety of pharmacological treatments used to manage acute symptoms, none are effective in controlling envenomation. Knowing the essential role of neutralizing polyclonal antibodies in the treatment of envenoming for other species, such as snakes, this work aimed to produce a polyclonal antiserum in mice and test its ability to neutralize the main toxic effects induced by the venoms of the main venomous Brazilian fish. We found that the antiserum recognizes the main toxins present in the different venoms of Thalassophryne nattereri, Scorpaena plumieri, Potamotrygon gr. Orbignyi, and Cathorops spixii and was effective in pre-incubation trials. In an independent test, the antiserum applied immediately to the topical application of T. nattereri, P. gr orbygnyi, and C. spixii venoms completely abolished the toxic effects on the microcirculation, preventing alterations such as arteriolar contraction, slowing of blood flow in postcapillary venules, venular stasis, myofibrillar hypercontraction, and increased leukocyte rolling and adherence. The edematogenic and nociceptive activities induced by these venoms were also neutralized by the immediate application of the antiserum. Importantly, the antiserum prevented the acute inflammatory response in the lungs induced by the S. plumieri venom. The success of antiserum containing neutralizing polyclonal antibodies in controlling the toxic effects induced by different venoms offers a new strategy for the treatment of fish envenomation in Brazil.


Sujet(s)
Batrachoïdiformes , Poissons-chats , Venins de poisson , Perciformes , Souris , Animaux , Venins de poisson/toxicité , Sérums immuns
16.
Aquat Toxicol ; 257: 106444, 2023 Apr.
Article de Anglais | MEDLINE | ID: mdl-36848692

RÉSUMÉ

The toxicity of the polycyclic aromatic hydrocarbons (PAHs) in Deepwater Horizon (DWH) oil is well-established, but a knowledge gap exists regarding how this combination of PAHs affects the vertebrate stress axis. We hypothesized that (1) marine vertebrates exposed to DWH PAHs experience stress axis impairment, and co-exposure to an additional chronic stressor may exacerbate these effects, (2) serotonin (5-hydroxytryptamine; 5-HT) may act as a secondary cortisol secretagogue in DWH PAH-exposed fish to compensate for impairment, and (3) the mechanism of stress axis impairment may involve downregulation of cyclic adenosine monophosphate (cAMP; as proxy for melanocortin 2 receptor (MC2R) functionality), total cholesterol, and/or mRNA expression of CYP1A and steroidogenic proteins StAR, P450scc, and 11ß-h at the level of the kidney. We found that in vivo plasma cortisol and plasma adrenocorticotropic hormone (ACTH) concentrations in Gulf toadfish exposed to an environmentally relevant DWH PAH concentration (ΣPAH50= 4.6 ± 1.6 µg/L) for 7 days were not significantly different from controls, whether fish were chronically stressed or not. However, the rate of cortisol secretion by isolated kidneys after acute stimulation with ACTH was significantly lower in PAH-exposed toadfish compared to clean seawater (SW) controls. 5-HT does not appear to be acting as a secondary cortisol secretagogue, rather, PAH-exposed + stressed toadfish exhibited significantly lower plasma 5-HT concentrations than clean SW + stressed fish as well as a reduced sensitivity to 5-HT at the level of the kidney. There was a tendency for kidney cAMP concentrations to be lower in PAH-exposed fish (p = 0.069); however, mRNA expression of steroidogenic proteins between control and PAH-exposed toadfish were not significantly different and a significant elevation in total cholesterol concentration in PAH-exposed toadfish compared to controls was measured. Future work is needed to establish whether the slower cortisol secretion rate by isolated kidneys of PAH-exposed fish is detrimental, to determine the potential role of other secretagogues in compensating for the impaired kidney interrenal cell function, and to determine whether there is a reduction in MC2R mRNA expression or an impairment in the function of steroidogenic proteins.


Sujet(s)
Batrachoïdiformes , Pollution pétrolière , Pétrole , Hydrocarbures aromatiques polycycliques , Polluants chimiques de l'eau , Animaux , Hydrocortisone , Pétrole/toxicité , Sérotonine , Sécrétagogues , Polluants chimiques de l'eau/toxicité , Hormone corticotrope , Batrachoïdiformes/métabolisme , ARN messager/métabolisme , Cholestérol , Hydrocarbures aromatiques polycycliques/toxicité
17.
Physiol Behav ; 263: 114131, 2023 05 01.
Article de Anglais | MEDLINE | ID: mdl-36796532

RÉSUMÉ

Across vertebrates, the midbrain periaqueductal gray (PAG) plays a critical role in social and vocal behavior. Dopaminergic neurotransmission also modulates these behaviors, and dopaminergic innervation of the PAG has been well documented. Nonetheless, the potential role of dopamine in shaping vocal production at the level of the PAG is not well understood. Here, we tested the hypothesis that dopamine modulates vocal production in the PAG, using a well-characterized vertebrate model system for the study of vocal communication, the plainfin midshipman fish, Porichthys notatus. We found that focal dopamine injections to the midshipman PAG rapidly and reversibly inhibited vocal production triggered by stimulation of known vocal-motor structures in the preoptic area / anterior hypothalamus. While dopamine inhibited vocal-motor output, it did not alter behaviorally-relevant parameters of this output, such as vocalization duration and frequency. Dopamine-induced inhibition of vocal production was prevented by the combined blockade of D1- and D2-like receptors but was unaffected by isolated blockade of either D1-receptors or D2-receptors. Our results suggest dopamine neuromodulation in the midshipman PAG may inhibit natural vocal behavior, in courtship and/or agonistic social contexts.


Sujet(s)
Dopamine , Activité motrice , Substance grise centrale du mésencéphale , Vocalisation animale , Dopamine/pharmacologie , Animaux , Substance grise centrale du mésencéphale/effets des médicaments et des substances chimiques , Vocalisation animale/effets des médicaments et des substances chimiques , Activité motrice/effets des médicaments et des substances chimiques , Batrachoïdiformes
18.
J Anat ; 242(3): 447-494, 2023 03.
Article de Anglais | MEDLINE | ID: mdl-36524549

RÉSUMÉ

Batrachoidiformes are benthic fishes that utilize the undersides of rocks as spawning nests. Their larvae are attached to the nest and nourished by a large yolk sac. The evolutionary shift from feeding, free-swimming larvae to sedentary larvae that are reliant on their yolk sac for nutrition can lead to changes in skeletal development. Batrachoidiformes also have many morphological specializations, such as five pectoral-fin radials (versus four in other acanthomorphs) that are of uncertain homology, the determination of which may have phylogenetic implications. A larval series of Porichthys notatus was collected and its skeletal ontogeny is described. In P. notatus the ossification of the pharyngeal toothplates occurs relatively later than in percomorphs with free-swimming larvae. The posterior basibranchial copula cartilage (= fourth basibranchial) in Porichthys notatus has a unique development among fishes: it initially develops as a paired element at 6.8-7.1 mm NL before fusing posteriorly and forming single median cartilage at 7.4 mm SL. Cartilages of hypobranchial four are transitory, being observed in two specimens of 6.8 and 7.3 mm NL before fusing with ceratobranchial four. The previously identified dorsalmost pectoral radial is a bone formed by a hypertrophied propterygium that ossifies later in development. The earliest stages of P. notatus have three dorsal spines, but during late larval development, the growth of the third dorsal spine is interrupted. The development of P. notatus is compared and discussed in context to that of other acanthomorph.


Sujet(s)
Batrachoïdiformes , Animaux , Batrachoïdiformes/anatomie et histologie , Phylogenèse
19.
J Neurophysiol ; 128(5): 1344-1354, 2022 11 01.
Article de Anglais | MEDLINE | ID: mdl-36286323

RÉSUMÉ

The plainfin midshipman, Porichthys notatus, is a seasonally breeding vocal fish that relies on acoustic communication to mediate nocturnal reproductive behaviors. Reproductive females use their auditory senses to detect and localize "singing" males that produce multiharmonic advertisement (mate) calls during the breeding season. Previous work showed that the midshipman saccule, which is considered the primary end organ used for hearing in midshipman and most other fishes, exhibits reproductive state and hormone-dependent changes that enhance saccular auditory sensitivity. In contrast, the utricle was previously posited to serve primarily a vestibular function, but recent evidence in midshipman and related toadfish suggests that it may also serve an auditory function and aid in the detection of behaviorally relevant acoustic stimuli. Here, we characterized the auditory-evoked potentials recorded from utricular hair cells in reproductive and nonreproductive female midshipman in response to underwater sound to test the hypothesis that variation in reproductive state affects utricular auditory sensitivity. We show that utricular hair cells in reproductive females exhibit up to a sixfold increase in the utricular potential magnitude and have thresholds based on measures of particle acceleration (re: 1 ms-2) that are 7-10 dB lower than nonreproductive females across a broad range of frequencies, which include the dominant harmonics of male advertisement calls. This enhanced auditory sensitivity of the utricle likely plays an essential role in facilitating midshipman social and reproductive acoustic communication.NEW & NOTEWORTHY In many animals, vocal-acoustic communication is fundamental for facilitating social behaviors. For the vocal plainfin midshipman fish, the detection and localization of social acoustic signals are critical to the species' reproductive success. Here, we show that the utricle, an inner ear end organ often thought to primarily serve a vestibular function, serves an auditory function that is seasonally plastic and modulated by the animal's reproductive state effectively enhancing auditory sensitivity to courting male advertisement calls.


Sujet(s)
Batrachoïdiformes , Animaux , Femelle , Mâle , Batrachoïdiformes/physiologie , Saccule et utricule , Stimulation acoustique , Ouïe/physiologie , Potentiels évoqués auditifs/physiologie , Vocalisation animale/physiologie
20.
J Neurophysiol ; 128(2): 364-377, 2022 08 01.
Article de Anglais | MEDLINE | ID: mdl-35830608

RÉSUMÉ

The inner ear of teleost fishes is composed of three paired multimodal otolithic end organs (saccule, utricle, and lagena), which encode auditory and vestibular inputs via the deflection of hair cells contained within the sensory epithelia of each organ. However, it remains unclear how the multimodal otolithic end organs of the teleost inner ear simultaneously integrate vestibular and auditory inputs. Therefore, microwire electrodes were chronically implanted using a 3-D printed micromanipulator into the utricular nerve of oyster toadfish (Opsanus tau) to determine how utricular afferents respond to conspecific mate vocalizations termed boatwhistles (180 Hz fundamental frequency) during movement. Utricular afferents were recorded while fish were passively moved using a sled system along an underwater track at variable speeds (velocity: 4.0-12.5 cm/s; acceleration: 0.2-2.6 cm/s2) and while fish freely swam (velocity: 3.5-18.6 cm/s; acceleration: 0.8-29.8 cm/s2). Afferent fiber activities (spikes/s) increased in response to the onset of passive and active movements; however, afferent fibers differentially adapted to sustained movements. In addition, utricular afferent fibers remained sensitive to playbacks of conspecific male boatwhistle vocalizations during both passive and active movements. Here, we demonstrate in alert toadfish that utricular afferents exhibit enhanced activity levels (spikes/s) in response to behaviorally relevant acoustic stimuli during swimming.NEW & NOTEWORTHY The inner ear of teleost fishes is composed of three paired multimodal otolithic end organs, which are sensitive to vestibular and auditory inputs. Previous studies investigating inner ear functions have primarily focused on the effects of unimodal stimuli; therefore, it remains unclear how otolithic end organs simultaneously encode multiple stimuli. Here, we show that utricular afferents remain sensitive to behaviorally relevant acoustic stimuli during swimming.


Sujet(s)
Batrachoïdiformes , Labyrinthe vestibulaire , Stimulation acoustique , Animaux , Batrachoïdiformes/physiologie , Cellules ciliées auditives , Mâle , Saccule et utricule
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...