Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 2.233
Filtrer
1.
J Ovarian Res ; 17(1): 143, 2024 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-38987824

RÉSUMÉ

BACKGROUND: This study was designed to examine the effect of resveratrol on mitochondrial biogenesis, oxidative stress (OS), and assisted reproductive technology (ART) outcomes in individuals with polycystic ovary syndrome (PCOS). METHODS: Fifty-six patients with PCOS were randomly assigned to receive 800 mg/day of resveratrol or placebo for 60 days. The primary outcome was OS in follicular fluid (FF). The secondary outcome involved assessing gene and protein expression related to mitochondrial biogenesis, mitochondrial DNA (mtDNA) copy number, and adenosine triphosphate (ATP) content in granulosa cells (GCs). ART outcomes were evaluated at the end of the trial. RESULTS: Resveratrol significantly reduced the total oxidant status (TOS) and oxidative stress index (OSI) in FF (P = 0.0142 and P = 0.0039, respectively) while increasing the total antioxidant capacity (TAC) (P < 0.0009). Resveratrol consumption also led to significant increases in the expression of critical genes involved in mitochondrial biogenesis, including peroxisome proliferator-activated receptor gamma coactivator (PGC-1α) and mitochondrial transcription factor A (TFAM) (P = 0.0032 and P = 0.0003, respectively). However, the effect on nuclear respiratory factor 1 (Nrf-1) expression was not statistically significant (P = 0.0611). Resveratrol significantly affected sirtuin1 (SIRT1) and PGC-1α protein levels (P < 0.0001 and P = 0.0036, respectively). Resveratrol treatment improved the mtDNA copy number (P < 0.0001) and ATP content in GCs (P = 0.0014). Clinically, the resveratrol group exhibited higher rates of oocyte maturity (P = 0.0012) and high-quality embryos (P = 0.0013) than did the placebo group. There were no significant differences between the groups in terms of chemical or clinical pregnancy rates (P > 0.05). CONCLUSIONS: These findings indicate that resveratrol may be a promising therapeutic agent for patients with PCOS undergoing assisted reproduction. TRIAL REGISTRATION NUMBER: http://www.irct.ir ; IRCT20221106056417N1; 2023 February 09.


Sujet(s)
Biogenèse des organelles , Syndrome des ovaires polykystiques , Techniques de reproduction assistée , Resvératrol , Humains , Femelle , Syndrome des ovaires polykystiques/traitement médicamenteux , Syndrome des ovaires polykystiques/métabolisme , Resvératrol/pharmacologie , Resvératrol/usage thérapeutique , Adulte , Stress oxydatif/effets des médicaments et des substances chimiques , Grossesse , Antioxydants/pharmacologie , Antioxydants/usage thérapeutique , ADN mitochondrial/génétique , Mitochondries/effets des médicaments et des substances chimiques , Mitochondries/métabolisme , Cellules de la granulosa/effets des médicaments et des substances chimiques , Cellules de la granulosa/métabolisme
2.
Sci Rep ; 14(1): 16260, 2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-39009622

RÉSUMÉ

The aim of this study was to evaluate the effects of C-type natriuretic peptide (CNP) treatment prior to in vitro maturation (IVM) on mitochondria biogenesis in bovine oocyte matured in vitro and explore the related causes. The results showed that treatment with CNP before IVM significantly improved mitochondrial content, elevated the expression of genes related to mitochondria biogenesis, and increased the protein levels of phosphorylation of cAMP-response element binding protein (p-CREB) in bovine oocytes following IVM. However, further studies revealed that treatment with CNP before IVM could not increased the protein levels of p-CREB in bovine oocytes when natriuretic peptide receptor 2 activities was inhibited using the relative specific inhibitor Gö6976. In addition, treatment with CNP before IVM could not improved mitochondrial content or elevated the expression of genes related to mitochondria biogenesis in bovine oocytes when CREB activities was abolished using the specific inhibitor 666-15. In summary, these results provide evidence that treatment of bovine oocytes with CNP before IVM promotes mitochondrial biogenesis in vitro, possibly by activating CREB.


Sujet(s)
Protéine de liaison à l'élément de réponse à l'AMP cyclique , Mitochondries , Peptide natriurétique de type C , Ovocytes , Biogenèse des organelles , Animaux , Bovins , Peptide natriurétique de type C/pharmacologie , Peptide natriurétique de type C/métabolisme , Ovocytes/métabolisme , Ovocytes/effets des médicaments et des substances chimiques , Protéine de liaison à l'élément de réponse à l'AMP cyclique/métabolisme , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Femelle , Techniques de maturation in vitro des ovocytes/méthodes , Phosphorylation/effets des médicaments et des substances chimiques
3.
Nutrients ; 16(12)2024 Jun 12.
Article de Anglais | MEDLINE | ID: mdl-38931191

RÉSUMÉ

Skeletal muscle is composed of bundles of muscle fibers with distinctive characteristics. Oxidative muscle fiber types contain higher mitochondrial content, relying primarily on oxidative phosphorylation for ATP generation. Notably, as a result of obesity, or following prolonged exposure to a high-fat diet, skeletal muscle undergoes a shift in fiber type toward a glycolytic type. Mitochondria are highly dynamic organelles, constantly undergoing mitochondrial biogenesis and dynamic processes. Our study aims to explore the impact of obesity on skeletal muscle mitochondrial biogenesis and dynamics and also ascertain whether the skeletal muscle fiber type shift occurs from the aberrant mitochondrial machinery. Furthermore, we investigated the impact of exercise in preserving the oxidative muscle fiber types despite obesity. Mice were subjected to a normal standard chow and water or high-fat diet with sugar water (HFS) with or without exercise training. After 12 weeks of treatment, the HFS diet resulted in a noteworthy reduction in the markers of mitochondrial content, which was recovered by exercise training. Furthermore, higher mitochondrial biogenesis markers were observed in the exercised group with a subsequent increase in the mitochondrial fission marker. In conclusion, these findings imply a beneficial impact of moderate-intensity exercise on the preservation of oxidative capacity in the muscle of obese mouse models.


Sujet(s)
Alimentation riche en graisse , Modèles animaux de maladie humaine , Mitochondries du muscle , Muscles squelettiques , Obésité , Biogenèse des organelles , Conditionnement physique d'animal , Animaux , Obésité/métabolisme , Alimentation riche en graisse/effets indésirables , Conditionnement physique d'animal/physiologie , Muscles squelettiques/métabolisme , Souris , Mâle , Mitochondries du muscle/métabolisme , Souris de lignée C57BL , Marqueurs biologiques/métabolisme , Dynamique mitochondriale , Fibres musculaires squelettiques/métabolisme
4.
Sci Adv ; 10(26): eadn4508, 2024 Jun 28.
Article de Anglais | MEDLINE | ID: mdl-38924407

RÉSUMÉ

Once considered as a "metabolic waste," lactate is now recognized as a major fuel for tricarboxylic acid (TCA) cycle. Our metabolic flux analysis reveals that skeletal muscle mainly uses lactate to fuel TCA cycle. Lactate is transported through the cell membrane via monocarboxylate transporters (MCTs) in which MCT1 is highly expressed in the muscle. We analyzed how MCT1 affects muscle functions using mice with specific deletion of MCT1 in skeletal muscle. MCT1 deletion enhances running performance, increases oxidative fibers while decreasing glycolytic fibers, and enhances flux of glucose to TCA cycle. MCT1 deficiency increases the expression of mitochondrial proteins, augments cell respiration rate, and elevates mitochondrial activity in the muscle. Mechanistically, the protein level of PGC-1α, a master regulator of mitochondrial biogenesis, is elevated upon loss of MCT1 via increases in cellular NAD+ level and SIRT1 activity. Collectively, these results demonstrate that MCT1-mediated lactate shuttle plays a key role in regulating muscle functions by modulating mitochondrial biogenesis and TCA flux.


Sujet(s)
Cycle citrique , Acide lactique , Transporteurs d'acides monocarboxyliques , Muscles squelettiques , Biogenèse des organelles , Symporteurs , Animaux , Transporteurs d'acides monocarboxyliques/métabolisme , Transporteurs d'acides monocarboxyliques/génétique , Muscles squelettiques/métabolisme , Symporteurs/métabolisme , Symporteurs/génétique , Acide lactique/métabolisme , Souris , Mitochondries/métabolisme , Sirtuine-1/métabolisme , Sirtuine-1/génétique , Coactivateur 1-alpha du récepteur gamma activé par les proliférateurs de peroxysomes/métabolisme , Coactivateur 1-alpha du récepteur gamma activé par les proliférateurs de peroxysomes/génétique , Souris knockout , Glycolyse
5.
J Exp Clin Cancer Res ; 43(1): 180, 2024 Jun 27.
Article de Anglais | MEDLINE | ID: mdl-38937832

RÉSUMÉ

BACKGROUND: Triple-negative breast cancer (TNBC) is characterized by its high metastatic potential, which results in poor patient survival. Cancer-associated fibroblasts (CAFs) are crucial in facilitating TNBC metastasis via induction of mitochondrial biogenesis. However, how to inhibit CAF-conferred mitochondrial biogenesis is still needed to explore. METHODS: We investigated metastasis using wound healing and cell invasion assays, 3D-culture, anoikis detection, and NOD/SCID mice. Mitochondrial biogenesis was detected by MitoTracker green FM staining, quantification of mitochondrial DNA levels, and blue-native polyacrylamide gel electrophoresis. The expression, transcription, and phosphorylation of peroxisome-proliferator activated receptor coactivator 1α (PGC-1α) were detected by western blotting, chromatin immunoprecipitation, dual-luciferase reporter assay, quantitative polymerase chain reaction, immunoprecipitation, and liquid chromatography-tandem mass spectrometry. The prognostic role of PGC-1α in TNBC was evaluated using the Kaplan-Meier plotter database and clinical breast cancer tissue samples. RESULTS: We demonstrated that PGC-1α indicated lymph node metastasis, tumor thrombus formation, and poor survival in TNBC patients, and it was induced by CAFs, which functioned as an inducer of mitochondrial biogenesis and metastasis in TNBC. Shikonin impeded the CAF-induced PGC-1α expression, nuclear localization, and interaction with estrogen-related receptor alpha (ERRα), thereby inhibiting PGC-1α/ERRα-targeted mitochondrial genes. Mechanistically, the downregulation of PGC-1α was mediated by synthase kinase 3ß-induced phosphorylation of PGC-1α at Thr295, which associated with neural precursor cell expressed developmentally downregulated 4e1 recognition and subsequent degradation by ubiquitin proteolysis. Mutation of PGC-1α at Thr295 negated the suppressive effects of shikonin on CAF-stimulated TNBC mitochondrial biogenesis and metastasis in vitro and in vivo. CONCLUSIONS: Our findings indicate that PGC-1α is a viable target for blocking TNBC metastasis by disrupting mitochondrial biogenesis, and that shikonin merits potential for treatment of TNBC metastasis as an inhibitor of mitochondrial biogenesis through targeting PGC-1α.


Sujet(s)
Glycogen synthase kinase 3 beta , Naphtoquinones , Biogenèse des organelles , Coactivateur 1-alpha du récepteur gamma activé par les proliférateurs de peroxysomes , Tumeurs du sein triple-négatives , Humains , Tumeurs du sein triple-négatives/métabolisme , Tumeurs du sein triple-négatives/anatomopathologie , Tumeurs du sein triple-négatives/traitement médicamenteux , Tumeurs du sein triple-négatives/génétique , Coactivateur 1-alpha du récepteur gamma activé par les proliférateurs de peroxysomes/métabolisme , Coactivateur 1-alpha du récepteur gamma activé par les proliférateurs de peroxysomes/génétique , Souris , Animaux , Phosphorylation , Glycogen synthase kinase 3 beta/métabolisme , Naphtoquinones/pharmacologie , Naphtoquinones/usage thérapeutique , Femelle , Fibroblastes associés au cancer/métabolisme , Fibroblastes associés au cancer/anatomopathologie , Lignée cellulaire tumorale , Souris SCID , Métastase tumorale , Souris de lignée NOD , Mitochondries/métabolisme , Tests d'activité antitumorale sur modèle de xénogreffe
6.
Nutrients ; 16(10)2024 May 17.
Article de Anglais | MEDLINE | ID: mdl-38794753

RÉSUMÉ

Recent studies have indicated that fucoidan has the potential to improve cognitive impairment. The objective of this study was to demonstrate the protective effect and possible mechanisms of fucoidan in D-galactose (D-gal)-induced cognitive dysfunction. Sprague Dawley rats were injected with D-galactose (200 mg/kg, sc) and administrated with fucoidan (100 mg/kg or 200 mg/kg, ig) for 8 weeks. Our results suggested that fucoidan significantly ameliorated cognitive impairment in D-gal-exposed rats and reversed histopathological changes in the hippocampus. Fucoidan reduced D-gal-induced oxidative stress, declined the inflammation level and improved mitochondrial dysfunction in hippocampal. Fucoidan promoted mitochondrial biogenesis by regulating the PGC-1α/NRF1/TFAM pathway, thereby improving D-gal-induced mitochondrial dysfunction. The regulation effect of fucoidan on PGC-1α is linked to the upstream protein of APN/AMPK/SIRT1. Additionally, the neuroprotective action of fucoidan could be related to maintaining intestinal flora homeostasis with up-regulation of Bacteroidota, Muribaculaceae and Akkermansia and down-regulation of Firmicutes. In summary, fucoidan may be a natural, promising candidate active ingredient for age-related cognitive impairment interventions.


Sujet(s)
Dysfonctionnement cognitif , Galactose , Microbiome gastro-intestinal , Hippocampe , Homéostasie , Mitochondries , Biogenèse des organelles , Stress oxydatif , Coactivateur 1-alpha du récepteur gamma activé par les proliférateurs de peroxysomes , Polyosides , Rat Sprague-Dawley , Polyosides/pharmacologie , Animaux , Microbiome gastro-intestinal/effets des médicaments et des substances chimiques , Dysfonctionnement cognitif/traitement médicamenteux , Homéostasie/effets des médicaments et des substances chimiques , Mâle , Hippocampe/effets des médicaments et des substances chimiques , Hippocampe/métabolisme , Rats , Coactivateur 1-alpha du récepteur gamma activé par les proliférateurs de peroxysomes/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Mitochondries/métabolisme , Stress oxydatif/effets des médicaments et des substances chimiques , Neuroprotecteurs/pharmacologie , Sirtuine-1/métabolisme , Modèles animaux de maladie humaine , Facteurs de transcription
7.
Sci Adv ; 10(20): eadn2867, 2024 May 17.
Article de Anglais | MEDLINE | ID: mdl-38758794

RÉSUMÉ

Mitochondrial dysfunction is the pivotal driving factor of multiple inflammatory diseases, and targeting mitochondrial biogenesis represents an efficacious approach to ameliorate such dysfunction in inflammatory diseases. Here, we demonstrated that phosphoglycerate dehydrogenase (PHGDH) deficiency promotes mitochondrial biogenesis in inflammatory macrophages. Mechanistically, PHGDH deficiency boosts mitochondrial reactive oxygen species (mtROS) by suppressing cytoplasmic glutathione synthesis. mtROS provokes hypoxia-inducible factor-1α signaling to direct nuclear specificity protein 1 and nuclear respiratory factor 1 transcription. Moreover, myeloid Phgdh deficiency reverses diet-induced obesity. Collectively, this study reveals that a mechanism involving de novo serine synthesis orchestrates mitochondrial biogenesis via mitochondrial-to-nuclear communication, and provides a potential therapeutic target for tackling inflammatory diseases and mitochondria-mediated diseases.


Sujet(s)
Macrophages , Mitochondries , Biogenèse des organelles , Phosphoglycerate dehydrogenase , Espèces réactives de l'oxygène , Sérine , Macrophages/métabolisme , Animaux , Mitochondries/métabolisme , Phosphoglycerate dehydrogenase/métabolisme , Phosphoglycerate dehydrogenase/génétique , Sérine/métabolisme , Souris , Espèces réactives de l'oxygène/métabolisme , Transduction du signal , Souris knockout , Sous-unité alpha du facteur-1 induit par l'hypoxie/métabolisme , Sous-unité alpha du facteur-1 induit par l'hypoxie/génétique , Inflammation/métabolisme , Inflammation/anatomopathologie , Obésité/métabolisme , Obésité/anatomopathologie , Obésité/génétique , Souris de lignée C57BL
8.
J Transl Med ; 22(1): 419, 2024 May 03.
Article de Anglais | MEDLINE | ID: mdl-38702818

RÉSUMÉ

BACKGROUND: Glioblastoma is an aggressive brain tumor linked to significant angiogenesis and poor prognosis. Anti-angiogenic therapies with vascular endothelial growth factor receptor 2 (VEGFR2) inhibition have been investigated as an alternative glioblastoma treatment. However, little is known about the effect of VEGFR2 blockade on glioblastoma cells per se. METHODS: VEGFR2 expression data in glioma patients were retrieved from the public database TCGA. VEGFR2 intervention was implemented by using its selective inhibitor Ki8751 or shRNA. Mitochondrial biogenesis of glioblastoma cells was assessed by immunofluorescence imaging, mass spectrometry, and western blot analysis. RESULTS: VEGFR2 expression was higher in glioma patients with higher malignancy (grade III and IV). VEGFR2 inhibition hampered glioblastoma cell proliferation and induced cell apoptosis. Mass spectrometry and immunofluorescence imaging showed that the anti-glioblastoma effects of VEGFR2 blockade involved mitochondrial biogenesis, as evidenced by the increases of mitochondrial protein expression, mitochondria mass, mitochondrial oxidative phosphorylation (OXPHOS), and reactive oxygen species (ROS) production, all of which play important roles in tumor cell apoptosis, growth inhibition, cell cycle arrest and cell senescence. Furthermore, VEGFR2 inhibition exaggerated mitochondrial biogenesis by decreased phosphorylation of AKT and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), which mobilized PGC1α into the nucleus, increased mitochondrial transcription factor A (TFAM) expression, and subsequently enhanced mitochondrial biogenesis. CONCLUSIONS: VEGFR2 blockade inhibits glioblastoma progression via AKT-PGC1α-TFAM-mitochondria biogenesis signaling cascade, suggesting that VEGFR2 intervention might bring additive therapeutic values to anti-glioblastoma therapy.


Sujet(s)
Apoptose , Prolifération cellulaire , Glioblastome , Mitochondries , Biogenèse des organelles , Récepteur-2 au facteur croissance endothéliale vasculaire , Humains , Glioblastome/anatomopathologie , Glioblastome/métabolisme , Glioblastome/traitement médicamenteux , Récepteur-2 au facteur croissance endothéliale vasculaire/métabolisme , Prolifération cellulaire/effets des médicaments et des substances chimiques , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Apoptose/effets des médicaments et des substances chimiques , Espèces réactives de l'oxygène/métabolisme , Coactivateur 1-alpha du récepteur gamma activé par les proliférateurs de peroxysomes/métabolisme , Tumeurs du cerveau/anatomopathologie , Tumeurs du cerveau/métabolisme , Tumeurs du cerveau/traitement médicamenteux , Protéines proto-oncogènes c-akt/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques
9.
Int J Med Sci ; 21(6): 983-993, 2024.
Article de Anglais | MEDLINE | ID: mdl-38774750

RÉSUMÉ

Previous studies have highlighted the protective effects of pyruvate kinase M2 (PKM2) overexpression in septic cardiomyopathy. In our study, we utilized cardiomyocyte-specific PKM2 knockout mice to further investigate the role of PKM2 in attenuating LPS-induced myocardial dysfunction, focusing on mitochondrial biogenesis and prohibitin 2 (PHB2). Our findings confirmed that the deletion of PKM2 in cardiomyocytes significantly exacerbated LPS-induced myocardial dysfunction, as evidenced by impaired contractile function and relaxation. Additionally, the deletion of PKM2 intensified LPS-induced myocardial inflammation. At the molecular level, LPS triggered mitochondrial dysfunction, characterized by reduced ATP production, compromised mitochondrial respiratory complex I/III activities, and increased ROS production. Intriguingly, the absence of PKM2 further worsened LPS-induced mitochondrial damage. Our molecular investigations revealed that LPS disrupted mitochondrial biogenesis in cardiomyocytes, a disruption that was exacerbated by the absence of PKM2. Given that PHB2 is known as a downstream effector of PKM2, we employed PHB2 adenovirus to restore PHB2 levels. The overexpression of PHB2 normalized mitochondrial biogenesis, restored mitochondrial integrity, and promoted mitochondrial function. Overall, our results underscore the critical role of PKM2 in regulating the progression of septic cardiomyopathy. PKM2 deficiency impeded mitochondrial biogenesis, leading to compromised mitochondrial integrity, increased myocardial inflammation, and impaired cardiac function. The overexpression of PHB2 mitigated the deleterious effects of PKM2 deletion. This discovery offers a novel insight into the molecular mechanisms underlying septic cardiomyopathy and suggests potential therapeutic targets for intervention.


Sujet(s)
Cardiomyopathies , Souris knockout , Mitochondries du myocarde , Myocytes cardiaques , Prohibitines , Pyruvate kinase , Sepsie , Animaux , Cardiomyopathies/anatomopathologie , Cardiomyopathies/métabolisme , Cardiomyopathies/génétique , Cardiomyopathies/étiologie , Souris , Myocytes cardiaques/anatomopathologie , Myocytes cardiaques/métabolisme , Sepsie/métabolisme , Sepsie/anatomopathologie , Sepsie/génétique , Pyruvate kinase/métabolisme , Pyruvate kinase/génétique , Mitochondries du myocarde/métabolisme , Mitochondries du myocarde/anatomopathologie , Protéines de répression/génétique , Protéines de répression/métabolisme , Humains , Biogenèse des organelles , Lipopolysaccharides/toxicité , Mâle , Modèles animaux de maladie humaine
10.
Plant Cell Rep ; 43(5): 135, 2024 May 05.
Article de Anglais | MEDLINE | ID: mdl-38704787

RÉSUMÉ

KEY MESSAGE: The disruption of the SWL1 gene leads to a significant down regulation of chloroplast and secondary metabolites gene expression in Arabidopsis thaliana. And finally results in a dysfunction of chloroplast and plant growth. Although the development of the chloroplast has been a consistent focus of research, the corresponding regulatory mechanisms remain unidentified. In this study, the CRISPR/Cas9 system was used to mutate the SWL1 gene, resulting in albino cotyledons and variegated true leaf phenotype. Confocal microscopy and western blot of chloroplast protein fractions revealed that SWL1 localized in the chloroplast stroma. Electron microscopy indicated chloroplasts in the cotyledons of swl1 lack well-defined grana and internal membrane structures, and similar structures have been detected in the albino region of variegated true leaves. Transcriptome analysis revealed that down regulation of chloroplast and nuclear gene expression related to chloroplast, including light harvesting complexes, porphyrin, chlorophyll metabolism and carbon metabolism in the swl1 compared to wild-type plant. In addition, proteomic analysis combined with western blot analysis, showed that a significant decrease in chloroplast proteins of swl1. Furthermore, the expression of genes associated with secondary metabolites and growth hormones was also reduced, which may be attributed to SWL1 associated with absorption and fixation of inorganic carbon during chloroplast development. Together, the above findings provide valuable information to elucidate the exact function of SWL1 in chloroplast biogenesis and development.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Chloroplastes , Régulation de l'expression des gènes végétaux , Biogenèse des organelles , Arabidopsis/génétique , Arabidopsis/croissance et développement , Arabidopsis/métabolisme , Protéines d'Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , Chlorophylle/métabolisme , Protéines chloroplastiques/métabolisme , Protéines chloroplastiques/génétique , Chloroplastes/métabolisme , Chloroplastes/ultrastructure , Cotylédon/génétique , Cotylédon/métabolisme , Cotylédon/croissance et développement , Systèmes CRISPR-Cas , Feuilles de plante/génétique , Feuilles de plante/métabolisme , Feuilles de plante/croissance et développement , Feuilles de plante/ultrastructure , Protéomique
11.
Mol Med Rep ; 30(1)2024 07.
Article de Anglais | MEDLINE | ID: mdl-38785149

RÉSUMÉ

Promotion of myoblast differentiation by activating mitochondrial biogenesis and protein synthesis signaling pathways provides a potential alternative strategy to balance energy and overcome muscle loss and muscle disorders. Saururus chinensis (Lour.) Baill. extract (SCE) has been used extensively as a traditional herbal medicine and has several physiological activities, including anti­asthmatic, anti­oxidant, anti­inflammatory, anti­atopic, anticancer and hepatoprotective properties. However, the effects and mechanisms of action of SCE on muscle differentiation have not yet been clarified. In the present study, it was investigated whether SCE affects skeletal muscle cell differentiation through the regulation of mitochondrial biogenesis and protein synthesis in murine C2C12 myoblasts. The XTT colorimetric assay was used to determine cell viability, and myosin heavy chain (MyHC) levels were determined using immunocytochemistry. SCE was applied to C2C12 myotube at different concentrations (1, 5, or 10 ng/ml) and times (1,3, or 5 days). Reverse transcription­quantitative PCR and western blotting were used to analyze the mRNA and protein expression change of factors related to differentiation, mitochondrial biogenesis and protein synthesis. Treatment of C2C12 cells with SCE at 1,5, and 10 ng/ml did not affect cell viability. SCE promoted C2C12 myotube formation and significantly increased MyHC expression in a concentration­ and time­dependent manner. SCE significantly increased the mRNA and protein expression of muscle differentiation­specific markers, such as MyHC, myogenic differentiation 1, myogenin, Myogenic Factor 5, and ß­catenin, mitochondrial biosynthesis­related factors, such as peroxisome proliferator­activated receptor­gamma coactivator­1α, nuclear respirator factor­1, AMP­activated protein kinase phosphorylation, and histone deacetylase 5 and AKT/mTOR signaling factors related to protein synthesis. SCE may prevent skeletal muscle dysfunction by enhancing myoblast differentiation through the promotion of mitochondrial biogenesis and protein synthesis.


Sujet(s)
Différenciation cellulaire , Biogenèse des organelles , Extraits de plantes , Protéines proto-oncogènes c-akt , Saururaceae , Transduction du signal , Sérine-thréonine kinases TOR , Animaux , Souris , Différenciation cellulaire/effets des médicaments et des substances chimiques , Transduction du signal/effets des médicaments et des substances chimiques , Sérine-thréonine kinases TOR/métabolisme , Protéines proto-oncogènes c-akt/métabolisme , Extraits de plantes/pharmacologie , Lignée cellulaire , Saururaceae/composition chimique , Survie cellulaire/effets des médicaments et des substances chimiques , Myoblastes/métabolisme , Myoblastes/effets des médicaments et des substances chimiques , Myoblastes/cytologie , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Développement musculaire/effets des médicaments et des substances chimiques , Fibres musculaires squelettiques/métabolisme , Fibres musculaires squelettiques/effets des médicaments et des substances chimiques , Fibres musculaires squelettiques/cytologie , Chaînes lourdes de myosine/métabolisme , Chaînes lourdes de myosine/génétique , Muscles squelettiques/métabolisme , Muscles squelettiques/effets des médicaments et des substances chimiques , Muscles squelettiques/cytologie
12.
Tissue Cell ; 88: 102393, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38705086

RÉSUMÉ

BACKGROUND: The cognitive deficits observed after treatment with chemotherapeutic drugs are obvious clinical problems. For treating chemotherapy-induced cognitive deficits (CICD), the treatment modalities must target its underlying mechanisms. Specifically, cisplatin may activate glycogen synthase kinase-3ß (GSK-3ß), thereby enhancing neuronal apoptosis. 6-bromoindirubin-3'-oxime (6BIO) was not investigated previously in a model of CICD. Therefore, this investigation aimed to address the impacts of GSK3 inhibition on regulating cell signaling, which contributes to neurodegeneration and cognitive impairment. METHODS: Thirty adult male Wistar rats were randomly allocated into control groups, while two experimental groups were exposed to repeated cisplatin injections (2 mg/kg intraperitoneally (ip), twice weekly, nine injections), termed chemobrain groups. The rats in the two experimental groups were equally divided into the chemobrain group (untreated) and the chemobrain-6BIO group (treated with 6BIO at a dose of 8.5 µg/kg ip every two days, started after the last dose of cisplatin and continued for two weeks). RESULTS: Repeated exposure to cisplatin led to a marked decline in cognitive functions. GSK3 inhibition exerted neuroprotection by decreasing the expression of p-tau and amyloid ß, thereby improving cognition. 6BIO, the GSK-3ß inhibitor, restored mitochondrial biogenesis by augmenting the protein levels of PGC1-α and increasing the number of mitochondria in the cerebral cortex and hippocampus. CONCLUSION: 6BIO provided neuroprotection and exhibited anti-apoptotic and anti-oxidative effects in a rat model of chemobrain.


Sujet(s)
Cisplatine , Glycogen synthase kinase 3 beta , Indoles , Biogenèse des organelles , Oximes , Coactivateur 1-alpha du récepteur gamma activé par les proliférateurs de peroxysomes , Rat Wistar , Animaux , Oximes/pharmacologie , Glycogen synthase kinase 3 beta/métabolisme , Indoles/pharmacologie , Cisplatine/pharmacologie , Mâle , Rats , Coactivateur 1-alpha du récepteur gamma activé par les proliférateurs de peroxysomes/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Maladies neurodégénératives/traitement médicamenteux , Maladies neurodégénératives/métabolisme , Maladies neurodégénératives/induit chimiquement
13.
FASEB J ; 38(10): e23703, 2024 May 31.
Article de Anglais | MEDLINE | ID: mdl-38805156

RÉSUMÉ

Renal tubules are featured with copious mitochondria and robust transport activity. Mutations in mitochondrial genes cause congenital renal tubulopathies, and changes in transport activity affect mitochondrial morphology, suggesting mitochondrial function and transport activity are tightly coupled. Current methods of using bulk kidney tissues or cultured cells to study mitochondrial bioenergetics are limited. Here, we optimized an extracellular flux analysis (EFA) to study mitochondrial respiration and energy metabolism using microdissected mouse renal tubule segments. EFA detects mitochondrial respiration and glycolysis by measuring oxygen consumption and extracellular acidification rates, respectively. We show that both measurements positively correlate with sample sizes of a few centimeter-length renal tubules. The thick ascending limbs (TALs) and distal convoluted tubules (DCTs) critically utilize glucose/pyruvate as energy substrates, whereas proximal tubules (PTs) are significantly much less so. Acute inhibition of TALs' transport activity by ouabain treatment reduces basal and ATP-linked mitochondrial respiration. Chronic inhibition of transport activity by 2-week furosemide treatment or deletion of with-no-lysine kinase 4 (Wnk4) decreases maximal mitochondrial capacity. In addition, chronic inhibition downregulates mitochondrial DNA mass and mitochondrial length/density in TALs and DCTs. Conversely, gain-of-function Wnk4 mutation increases maximal mitochondrial capacity and mitochondrial length/density without increasing mitochondrial DNA mass. In conclusion, EFA is a sensitive and reliable method to investigate mitochondrial functions in isolated renal tubules. Transport activity tightly regulates mitochondrial bioenergetics and biogenesis to meet the energy demand in renal tubules. The system allows future investigation into whether and how mitochondria contribute to tubular remodeling adapted to changes in transport activity.


Sujet(s)
Métabolisme énergétique , Tubules rénaux , Mitochondries , Animaux , Souris , Mitochondries/métabolisme , Tubules rénaux/métabolisme , Mâle , Souris de lignée C57BL , Consommation d'oxygène , Biogenèse des organelles , Transport biologique , Glycolyse/physiologie , ADN mitochondrial/génétique , ADN mitochondrial/métabolisme , Protein-Serine-Threonine Kinases/métabolisme , Protein-Serine-Threonine Kinases/génétique
14.
Int J Cardiol ; 408: 132149, 2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-38723908

RÉSUMÉ

BACKGROUND: Ubiquitination is an enzymatic modification involving ubiquitin chains, that can be reversed by deubiquitination (DUB) enzymes. Ubiquitin-specific protease 7 (USP7), which is also known as herpes virus-associated ubiquitin-specific protease (HAUSP), has been shown to play a vital role in cardiovascular diseases. However, the underlying molecular mechanism by which USP7 regulates cardiomyocyte function has not been reported. METHODS: To understand the physiological function of USP7 in the heart, we constructed cardiomyocyte-specific USP7 conditional knockout mice. RESULTS: We found that homozygous knockout mice died approximately three weeks after birth, while heterozygous knockout mice grew normally into adulthood. Severe cardiac dysfunction, hypertrophy, fibrosis, and cell apoptosis were observed in cardiomyocyte-specific USP7 knockout mice, and these effects were accompanied by disordered mitochondrial dynamics and cardiometabolic-related proteins. CONCLUSIONS: In summary, we investigated changes in the growth status and cardiac function of cardiomyocyte-specific USP7 knockout mice, and preliminarily explored the underlying mechanism.


Sujet(s)
Animaux nouveau-nés , Souris knockout , Myocytes cardiaques , Ubiquitin-specific peptidase 7 , Animaux , Myocytes cardiaques/métabolisme , Myocytes cardiaques/anatomopathologie , Souris , Ubiquitin-specific peptidase 7/métabolisme , Ubiquitin-specific peptidase 7/génétique , Biogenèse des organelles , Dynamique mitochondriale/physiologie , Dynamique mitochondriale/génétique
15.
J Physiol ; 602(12): 2737-2750, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38795332

RÉSUMÉ

World Health Organisation data suggest that up to 99% of the global population are exposed to air pollutants above recommended levels. Impacts to health range from increased risk of stroke and cardiovascular disease to chronic respiratory conditions, and air pollution may contribute to over 7 million premature deaths a year. Additionally, mounting evidence suggests that in utero or early life exposure to particulate matter (PM) in ambient air pollution increases the risk of neurodevelopmental impairment with obvious lifelong consequences. Identifying brain-specific cellular targets of PM is vital for determining its long-term consequences. We previously established that microglial-like BV2 cells were particularly sensitive to urban (U)PM-induced damage including reactive oxygen species production, which was abrogated by a mitochondrially targeted antioxidant. Here we extend those studies to find that UPM treatment causes a rapid impairment of mitochondrial function and increased mitochondrial fragmentation. However, there is a subsequent restoration of mitochondrial and therefore cell health occurring concomitantly with upregulated measures of mitochondrial biogenesis and mitochondrial load. Our data highlight that protecting mitochondrial function may represent a valuable mechanism to offset the effects of UPM exposure in the neonatal brain. KEY POINTS: Air pollution represents a growing risk to long-term health especially in early life, and the CNS is emerging a target for airborne particulate matter (PM). We previously showed that microglial-like BV2 cells were vulnerable to urban (U)PM exposure, which impaired cell survival and promoted reactive oxygen species production. Here we find that, following UPM exposure, BV2 mitochondrial membrane potential is rapidly reduced, concomitant with decreased cellular bioenergetics and increased mitochondrial fission. However, markers of mitochondrial biogenesis and mitochondrial mass are subsequently induced, which may represent a cellular mitigation strategy. As mitochondria are more vulnerable in the developing brain, exposure to air pollution may represent a greater risk to lifelong health in this cohort; conversely, promoting mitochondrial integrity may offset these risks.


Sujet(s)
Microglie , Mitochondries , Dynamique mitochondriale , Matière particulaire , Matière particulaire/toxicité , Animaux , Souris , Dynamique mitochondriale/effets des médicaments et des substances chimiques , Lignée cellulaire , Mitochondries/effets des médicaments et des substances chimiques , Mitochondries/métabolisme , Microglie/effets des médicaments et des substances chimiques , Microglie/métabolisme , Biogenèse des organelles , Polluants atmosphériques/toxicité , Espèces réactives de l'oxygène/métabolisme
16.
Phytomedicine ; 130: 155747, 2024 Jul 25.
Article de Anglais | MEDLINE | ID: mdl-38788397

RÉSUMÉ

BACKGROUND: Chronic inflammation, which becomes more prevalent during aging, contributes to sarcopenia by reducing muscle mass and strength. PURPOSE: Wheat seedlings extract (WSE) is known for its various physiological activities, including anti-inflammation and antioxidant effects. However, its efficacy against sarcopenia is not well documented. STUDY DESIGN: 8-week-old and 50-week-old C57BL/6 J mice were used as young control (YC group) and aged controls (AC group), respectively. Then, aged mice were randomly divided into 5 groups (WSE100mg/kg, WSE200mg/kg, WSE400mg/kg, and schizandrin as a positive control) and fed each experimental diet for 10 weeks. METHOD: We investigated the effects of WSE on muscle quality and protein homeostasis pathways based on improvements in mitochondrial function and chronic inflammation. We then used TNFα-treated C2C12 to investigate the effects of isoorientin (ISO) and isoschaftoside (ISS), the active substances of WSE, on the myogenic pathway. RESULTS: We administered WSE to aging mice and observed an increase in muscle mass, thickness, protein content, and strength in mice treated with WSE at a dose of 200 mg/kg or 400 mg/kg. Furthermore, the administration of WSE led to a reduction in inflammatory factors (TNFα, IL-1, and IL-6) and an increase in mitochondrial biogenesis (p-AMPK/SIRT3/PGC1α) in muscle. This effect was also observed in TNFα-induced muscle atrophy in C2C12 cells, and we additionally identified the upregulation of myogenic regulatory factors, including Myf5, Myf6, MyoD, and myogenin, by WSE, ISO, and ISS. CONCLUSION: These findings suggest that WSE could function as a dietary anti-inflammatory factor and mitochondrial activator, potentially exerting modulatory effects on the metabolism and mechanical properties of skeletal muscles in the aging population. Furthermore, Our results demonstrate the potential value of ISO and ISS as functional food ingredients for preventing muscle atrophy.


Sujet(s)
Anti-inflammatoires , Souris de lignée C57BL , Biogenèse des organelles , Extraits de plantes , Sarcopénie , Plant , Triticum , Animaux , Sarcopénie/traitement médicamenteux , Extraits de plantes/pharmacologie , Anti-inflammatoires/pharmacologie , Mâle , Triticum/composition chimique , Muscles squelettiques/effets des médicaments et des substances chimiques , Muscles squelettiques/métabolisme , Vieillissement/effets des médicaments et des substances chimiques , Souris , Biosynthèse des protéines/effets des médicaments et des substances chimiques , Protéolyse/effets des médicaments et des substances chimiques , Facteur de nécrose tumorale alpha/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Mitochondries/métabolisme , Coactivateur 1-alpha du récepteur gamma activé par les proliférateurs de peroxysomes/métabolisme , Lignanes/pharmacologie
17.
Biochem Biophys Res Commun ; 722: 150161, 2024 Aug 30.
Article de Anglais | MEDLINE | ID: mdl-38797153

RÉSUMÉ

Melanoma, arising from the malignant transformation of melanocytes, stands as the most lethal type of skin cancer. While significant strides have been made in targeted therapy and immunotherapy, substantially enhancing therapeutic efficacy, the prognosis for melanoma patients remains unoptimistic. SIRT7, a nuclear-localized deacetylase, plays a pivotal role in maintaining cellular homeostasis and adapting to external stressors in melanoma, with its activity closely tied to intracellular nicotinamide adenine dinucleotide (NAD+). However, its involvement in adaptive resistance to targeted therapy remains unclear. Herein, we unveil that up-regulated SIRT7 promotes mitochondrial biogenesis to render the adaptive resistance to MAPK inhibition in melanoma. Initially, we observed a significant increase of SIRT7 expression in publicly available datasets following targeted therapy within a short duration. In consistent, we found elevated SIRT7 expression in melanoma cells subjected to BRAF or MEK inhibitors in vitro. The up-regulation of SIRT7 expression was also confirmed in xenograft tumors in mice after targeted therapy in vivo. Furthermore, we proved that SIRT7 deficiency led to decreased cell viability upon prolonged exposure to BRAF or MEK inhibitors, accompanied by an increase in cell apoptosis. Mechanistically, SIRT7 deficiency restrained the upregulation of genes associated with mitochondrial biogenesis and intracellular ATP levels in response to targeted therapy treatment in melanoma cells. Ultimately, we proved that SIRT7 deficieny could sensitize BRAF-mutant melanoma cells to MAPK inhibition targeted therapy in vivo. In conclusion, our findings underscore the role of SIRT7 in fostering adaptive resistance to targeted therapy through the facilitation of mitochondrial biogenesis. Targeting SIRT7 emerges as a promising strategy to overcome MAPK inhibitor adaptive resistance in melanoma.


Sujet(s)
Résistance aux médicaments antinéoplasiques , Mélanome , Biogenèse des organelles , Inhibiteurs de protéines kinases , Sirtuines , Mélanome/métabolisme , Mélanome/anatomopathologie , Mélanome/génétique , Mélanome/traitement médicamenteux , Humains , Sirtuines/métabolisme , Sirtuines/génétique , Animaux , Lignée cellulaire tumorale , Résistance aux médicaments antinéoplasiques/génétique , Inhibiteurs de protéines kinases/pharmacologie , Souris , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Tumeurs cutanées/anatomopathologie , Tumeurs cutanées/métabolisme , Tumeurs cutanées/génétique , Tumeurs cutanées/traitement médicamenteux , Souris nude , Protéines proto-oncogènes B-raf/génétique , Protéines proto-oncogènes B-raf/métabolisme , Protéines proto-oncogènes B-raf/antagonistes et inhibiteurs
18.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article de Anglais | MEDLINE | ID: mdl-38673823

RÉSUMÉ

Energy metabolism plays a pivotal role in the pathogenesis of endometriosis. For the initial stages of the disease in adolescents, this aspect remains unexplored. The objective of this paper was to analyze the association of cellular and endosomal profiles of markers of glycolysis, mitochondrial biogenesis, apoptosis, autophagy and estrogen signaling in peritoneal endometriosis (PE) in adolescents. We included 60 girls aged 13-17 years in a case-control study: 45 with laparoscopically confirmed PE (main group) and 15 with paramesonephric cysts (comparison group). Samples of plasma and peritoneal fluid exosomes, endometrioid foci and non-affected peritoneum were tested for estrogen receptor (Erα/ß), hexokinase (Hex2), pyruvate dehydrogenase kinase (PDK1), glucose transporter (Glut1), monocarboxylate transporters (MCT1 and MCT2), optic atrophy 1 (OPA1, mitochondrial fusion protein), dynamin-related protein 1 (DRP1, mitochondrial fission protein), Bax, Bcl2, Beclin1, Bnip3, P38 mitogen-activated protein kinase (MAPK), hypoxia-inducible factor 1 (Hif-1α), mitochondrial voltage-dependent anion channel (VDAC) and transforming growth factor (TGFß) proteins as markers of estrogen signaling, glycolysis rates, mitochondrial biogenesis and damage, apoptosis and autophagy (Western-Blot and PCR). The analysis identified higher levels of molecules associated with proliferation (ERß), glycolysis (MCT2, PDK1, Glut1, Hex2, TGFß and Hif-1α), mitochondrial biogenesis (OPA1, DRP1) and autophagy (P38, Beclin1 and Bnip3) and decreased levels of apoptosis markers (Bcl2/Bax) in endometrioid foci compared to non-affected peritoneum and that in the comparison group (p < 0.05). Patients with PE had altered profiles of ERß in plasma and peritoneal fluid exosomes and higher levels of Glut1, MCT2 and Bnip3 in plasma exosomes (p < 0.05). The results of the differential expression profiles indicate microenvironment modification, mitochondrial biogenesis, estrogen reception activation and glycolytic switch along with apoptosis suppression in peritoneal endometrioid foci already in adolescents.


Sujet(s)
Apoptose , Autophagie , Endométriose , Glycolyse , Femelle , Humains , Adolescent , Endométriose/métabolisme , Endométriose/anatomopathologie , Études cas-témoins , Biogenèse des organelles , Récepteur bêta des oestrogènes/métabolisme , Transduction du signal , Récepteur alpha des oestrogènes/métabolisme , Marqueurs biologiques
19.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1064-1072, 2024 Feb.
Article de Chinois | MEDLINE | ID: mdl-38621913

RÉSUMÉ

This article explored the mechanism by which ginsenoside Re reduces hypoxia/reoxygenation(H/R) injury in H9c2 cells by regulating mitochondrial biogenesis through nuclear factor E2-related factor 2(Nrf2)/heme oxygenase-1(HO-1)/peroxisome prolife-rator-activated receptor gamma coactivator-1α(PGC-1α) pathway. In this study, H9c2 cells were cultured in hypoxia for 4 hours and then reoxygenated for 2 hours to construct a cardiomyocyte H/R injury model. After ginsenoside Re pre-administration intervention, cell activity, superoxide dismutase(SOD) activity, malondialdehyde(MDA) content, intracellular reactive oxygen species(Cyto-ROS), and intramitochondrial reactive oxygen species(Mito-ROS) levels were detected to evaluate the protective effect of ginsenoside Re on H/R injury of H9c2 cells by resisting oxidative stress. Secondly, fluorescent probes were used to detect changes in mitochondrial membrane potential(ΔΨ_m) and mitochondrial membrane permeability open pore(mPTP), and immunofluorescence was used to detect the expression level of TOM20 to study the protective effect of ginsenoside Re on mitochondria. Western blot was further used to detect the protein expression levels of caspase-3, cleaved caspase-3, Cyto C, Nrf2, HO-1, and PGC-1α to explore the specific mechanism by which ginsenoside Re protected mitochondria against oxidative stress and reduced H/R injury. Compared with the model group, ginse-noside Re effectively reduced the H/R injury oxidative stress response of H9c2 cells, increased SOD activity, reduced MDA content, and decreased Cyto-ROS and Mito-ROS levels in cells. Ginsenoside Re showed a good protective effect on mitochondria by increasing ΔΨ_m, reducing mPTP, and increasing TOM20 expression. Further studies showed that ginsenoside Re promoted the expression of Nrf2, HO-1, and PGC-1α proteins, and reduced the activation of the apoptosis-related regulatory factor caspase-3 to cleaved caspase-3 and the expression of Cyto C protein. In summary, ginsenoside Re can significantly reduce I/R injury in H9c2 cells. The specific mechanism is related to the promotion of mitochondrial biogenesis through the Nrf2/HO-1/PGC-1α pathway, thereby increasing the number of mitochondria, improving mitochondrial function, enhancing the ability of cells to resist oxidative stress, and alleviating cell apoptosis.


Sujet(s)
Ginsénosides , Facteur-2 apparenté à NF-E2 , Biogenèse des organelles , Humains , Espèces réactives de l'oxygène/métabolisme , Facteur-2 apparenté à NF-E2/génétique , Facteur-2 apparenté à NF-E2/métabolisme , Caspase-3/métabolisme , Transduction du signal , Stress oxydatif , Hypoxie , Myocytes cardiaques , Apoptose , Superoxide dismutase/métabolisme
20.
Int J Mol Sci ; 25(7)2024 Apr 05.
Article de Anglais | MEDLINE | ID: mdl-38612863

RÉSUMÉ

Our study aimed to explore the potential positive effects of cold water exercise on mitochondrial biogenesis and muscle energy metabolism in aging rats. The study involved 32 male and 32 female rats aged 15 months, randomly assigned to control sedentary animals, animals training in cold water at 5 ± 2 °C, or animals training in water at thermal comfort temperature (36 ± 2 °C). The rats underwent swimming training for nine weeks, gradually increasing the duration of the sessions from 2 min to 4 min per day, five days a week. The results demonstrated that swimming in thermally comfortable water improved the energy metabolism of aging rat muscles (increased metabolic rates expressed as increased ATP, ADP concentration, TAN (total adenine nucleotide) and AEC (adenylate energy charge value)) and increased mRNA and protein expression of fusion regulatory proteins. Similarly, cold-water swimming improved muscle energy metabolism in aging rats, as shown by an increase in muscle energy metabolites and enhanced mitochondrial biogenesis and dynamics. It can be concluded that the additive effect of daily activity in cold water influenced both an increase in the rate of energy metabolism in the muscles of the studied animals and an intensification of mitochondrial biogenesis and dynamics (related to fusion and fragmentation processes). Daily activity in warm water also resulted in an increase in the rate of energy metabolism in muscles, but at the same time did not cause significant changes in mitochondrial dynamics.


Sujet(s)
Biogenèse des organelles , Natation , Femelle , Mâle , Animaux , Rats , Muscles , Métabolisme énergétique , Vieillissement , Eau
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...