Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 2.745
Filtrer
1.
Fluids Barriers CNS ; 21(1): 52, 2024 Jun 19.
Article de Anglais | MEDLINE | ID: mdl-38898501

RÉSUMÉ

Claudin-5 is one of the most essential tight junction proteins at the blood-brain barrier. A single nucleotide polymorphism rs10314 is located in the 3'-untranslated region of claudin-5 and has been shown to be a risk factor for schizophrenia. Here, we show that the pumilio RNA-binding protein, pumilio-1, is responsible for rs10314-mediated claudin-5 regulation. The RNA sequence surrounding rs10314 is highly homologous to the canonical pumilio-binding sequence and claudin-5 mRNA with rs10314 produces 25% less protein due to its inability to bind to pumilio-1. Pumilio-1 formed cytosolic granules under stress conditions and claudin-5 mRNA appeared to preferentially accumulate in these granules. Added to this, we observed granular pumilio-1 in endothelial cells in human brain tissues from patients with psychiatric disorders or epilepsy with increased/accumulated claudin-5 mRNA levels, suggesting translational claudin-5 suppression may occur in a brain-region specific manner. These findings identify a key regulator of claudin-5 translational processing and how its dysregulation may be associated with neurological and neuropsychiatric disorders.


Sujet(s)
Barrière hémato-encéphalique , Claudine-5 , Protéines de liaison à l'ARN , Humains , Claudine-5/métabolisme , Claudine-5/génétique , Protéines de liaison à l'ARN/métabolisme , Protéines de liaison à l'ARN/génétique , Barrière hémato-encéphalique/métabolisme , Polymorphisme de nucléotide simple , ARN messager/métabolisme , Animaux , Biosynthèse des protéines/physiologie , Cellules endothéliales/métabolisme
2.
Trends Neurosci ; 47(5): 319-321, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38614892

RÉSUMÉ

In a recent study, Oliveira and colleagues revealed how growth arrest and DNA damage-inducible protein 34 (GADD34), an effector of the integrated stress response, initiates the translation of synaptic plasticity-related mRNAs following brain-derived neurotrophic factor (BDNF) stimulation. This work suggests that GADD34 may link transcriptional products with translation control upon neuronal activation, illuminating how protein synthesis is orchestrated in neuronal plasticity.


Sujet(s)
Plasticité neuronale , Neurones , Biosynthèse des protéines , Protein Phosphatase 1 , Neurones/métabolisme , Neurones/physiologie , Animaux , Protein Phosphatase 1/métabolisme , Humains , Biosynthèse des protéines/physiologie , Plasticité neuronale/physiologie , Facteur neurotrophique dérivé du cerveau/métabolisme , Stress physiologique/physiologie
3.
Neurochem Int ; 176: 105740, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38636905

RÉSUMÉ

The benefits of physical exercise (PE) on memory consolidation have been well-documented in both healthy and memory-impaired animals. However, the underlying mechanisms through which PE exerts these effects are still unclear. In this study, we aimed to investigate the role of hippocampal protein synthesis in memory modulation by acute PE in rats. After novel object recognition (NOR) training, rats were subjected to a 30-min moderate-intensity acute PE on the treadmill, while control animals did not undergo any procedures. Using anisomycin (ANI) and rapamycin (RAPA), compounds that inhibit protein synthesis through different mechanisms, we manipulated protein synthesis in the CA1 region of the hippocampus to examine its contribution to memory consolidation. Memory was assessed on days 1, 7, and 14 post-training. Our results showed that inhibiting protein synthesis by ANI or RAPA impaired NOR memory consolidation in control animals. However, acute PE prevented this impairment without affecting memory persistence. We also evaluated brain-derived neurotrophic factor (BDNF) levels after acute PE at 0.5h, 2h, and 12h afterward and found no differences in levels compared to animals that did not engage in acute PE or were only habituated to the treadmill. Therefore, our findings suggest that acute PE could serve as a non-pharmacological intervention to enhance memory consolidation and prevent memory loss in conditions associated with hippocampal protein synthesis inhibition. This mechanism appears not to depend on BDNF synthesis in the early hours after exercise.


Sujet(s)
Amnésie , Anisomycine , Facteur neurotrophique dérivé du cerveau , Hippocampe , Conditionnement physique d'animal , Rat Wistar , Animaux , Mâle , Conditionnement physique d'animal/physiologie , Rats , Hippocampe/métabolisme , Hippocampe/effets des médicaments et des substances chimiques , Anisomycine/pharmacologie , Facteur neurotrophique dérivé du cerveau/métabolisme , Facteur neurotrophique dérivé du cerveau/biosynthèse , Amnésie/métabolisme , Amnésie/prévention et contrôle , Inhibiteurs de la synthèse protéique/pharmacologie , Sirolimus/pharmacologie , Biosynthèse des protéines/effets des médicaments et des substances chimiques , Biosynthèse des protéines/physiologie , Consolidation de la mémoire/effets des médicaments et des substances chimiques , Consolidation de la mémoire/physiologie , /effets des médicaments et des substances chimiques , /physiologie
4.
Nat Neurosci ; 27(5): 822-835, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38589584

RÉSUMÉ

Learning and memory require activity-induced changes in dendritic translation, but which mRNAs are involved and how they are regulated are unclear. In this study, to monitor how depolarization impacts local dendritic biology, we employed a dendritically targeted proximity labeling approach followed by crosslinking immunoprecipitation, ribosome profiling and mass spectrometry. Depolarization of primary cortical neurons with KCl or the glutamate agonist DHPG caused rapid reprogramming of dendritic protein expression, where changes in dendritic mRNAs and proteins are weakly correlated. For a subset of pre-localized messages, depolarization increased the translation of upstream open reading frames (uORFs) and their downstream coding sequences, enabling localized production of proteins involved in long-term potentiation, cell signaling and energy metabolism. This activity-dependent translation was accompanied by the phosphorylation and recruitment of the non-canonical translation initiation factor eIF4G2, and the translated uORFs were sufficient to confer depolarization-induced, eIF4G2-dependent translational control. These studies uncovered an unanticipated mechanism by which activity-dependent uORF translational control by eIF4G2 couples activity to local dendritic remodeling.


Sujet(s)
Dendrites , Facteur-4G d'initiation eucaryote , Neurones , Cadres ouverts de lecture , Biosynthèse des protéines , Animaux , Dendrites/métabolisme , Facteur-4G d'initiation eucaryote/métabolisme , Biosynthèse des protéines/physiologie , Neurones/métabolisme , Cadres ouverts de lecture/génétique , Rats , Souris , Cellules cultivées , Chlorure de potassium/pharmacologie
5.
J Appl Physiol (1985) ; 136(6): 1388-1399, 2024 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-38385186

RÉSUMÉ

Feeding and resistance exercise stimulate myofibrillar protein synthesis (MPS) rates in healthy adults. This anabolic characterization of "healthy adults" has been namely focused on males. Therefore, the purpose of this study was to examine the temporal responses of MPS and anabolic signaling to resistance exercise alone or combined with the ingestion of protein in postmenopausal females and compare postabsorptive rates with young females. Sixteen females [60 ± 7 yr; body mass index (BMI) = 26 ± 12 kg·m-2] completed an acute bout of unilateral resistance exercise before consuming either: a fortified whey protein supplement (WHEY) or water. Participants received primed continuous infusions of L-[ring-13C6]phenylalanine with bilateral muscle biopsies before and after treatment ingestion at 2 h and 4 h in nonexercised and exercised legs. Resistance exercise transiently increased MPS above baseline at 0-2 h in the water condition (P = 0.007). Feeding after resistance exercise resulted in a late phase (2-4 h) increase in MPS in the WHEY condition (P = 0.005). In both conditions, resistance exercise did not enhance the cumulative (0-4 h) MPS response. In the nonexercised leg, MPS did not differ at 0-2 h, 2-4 h, or 0-4 h of the measurement periods (all, P > 0.05). Likewise, there were no changes in the phosphorylation of p70S6K, AMPKα, or total and phosphorylated yes-associated protein on Ser127. Finally, postabsorptive MPS was lower in premenopausal versus postmenopausal females (P = 0.023). Our results demonstrate that resistance exercise-induced changes in MPS are temporally regulated, but do not result in greater cumulative (0-4 h) MPS in postmenopausal women.NEW & NOTEWORTHY An adequate quality and quantity of skeletal muscle is relevant to support physical performance and metabolic health. Muscle protein synthesis (MPS) is an established remodeling marker, which can be hypertrophic or nonhypertrophic. Importantly, protein ingestion and resistance exercise are two strategies that support healthy muscle by stimulating MPS. Our study shows postmenopause modulates baseline MPS that may diminish the MPS response to the fundamental anabolic stimuli of protein ingestion and resistance exercise in older females.


Sujet(s)
Protéines du muscle , Myofibrilles , Post-ménopause , Période post-prandiale , Entraînement en résistance , Protéines de lactosérum , Humains , Femelle , Post-ménopause/physiologie , Post-ménopause/métabolisme , Entraînement en résistance/méthodes , Adulte d'âge moyen , Période post-prandiale/physiologie , Myofibrilles/métabolisme , Protéines du muscle/biosynthèse , Protéines du muscle/métabolisme , Protéines de lactosérum/métabolisme , Muscles squelettiques/métabolisme , Repos/physiologie , Sujet âgé , Phénylalanine/métabolisme , Biosynthèse des protéines/physiologie , Compléments alimentaires , Adulte , Exercice physique/physiologie , Phosphorylation
6.
Genome Res ; 33(8): 1242-1257, 2023 08.
Article de Anglais | MEDLINE | ID: mdl-37487647

RÉSUMÉ

A complex interplay between mRNA translation and cellular respiration has been recently unveiled, but its regulation in humans is poorly characterized in either health or disease. Cancer cells radically reshape both biosynthetic and bioenergetic pathways to sustain their aberrant growth rates. In this regard, we have shown that the molecular chaperone TRAP1 not only regulates the activity of respiratory complexes, behaving alternatively as an oncogene or a tumor suppressor, but also plays a concomitant moonlighting function in mRNA translation regulation. Herein, we identify the molecular mechanisms involved, showing that TRAP1 (1) binds both mitochondrial and cytosolic ribosomes, as well as translation elongation factors; (2) slows down translation elongation rate; and (3) favors localized translation in the proximity of mitochondria. We also provide evidence that TRAP1 is coexpressed in human tissues with the mitochondrial translational machinery, which is responsible for the synthesis of respiratory complex proteins. Altogether, our results show an unprecedented level of complexity in the regulation of cancer cell metabolism, strongly suggesting the existence of a tight feedback loop between protein synthesis and energy metabolism, based on the demonstration that a single molecular chaperone plays a role in both mitochondrial and cytosolic translation, as well as in mitochondrial respiration.


Sujet(s)
Mitochondries , Protéines mitochondriales , Chaperons moléculaires , Tumeurs , Biosynthèse des protéines , Humains , Protéines du choc thermique HSP90/génétique , Protéines du choc thermique HSP90/métabolisme , Protéines mitochondriales/génétique , Protéines mitochondriales/métabolisme , Chaperons moléculaires/génétique , Chaperons moléculaires/métabolisme , Tumeurs/génétique , Tumeurs/métabolisme , Tumeurs/anatomopathologie , Biosynthèse des protéines/génétique , Biosynthèse des protéines/physiologie , Ribosomes/génétique , Ribosomes/métabolisme , Élongation de la traduction/génétique , Élongation de la traduction/physiologie , Mitochondries/génétique , Mitochondries/métabolisme
8.
Sheng Wu Gong Cheng Xue Bao ; 38(5): 1706-1723, 2022 May 25.
Article de Chinois | MEDLINE | ID: mdl-35611724

RÉSUMÉ

With the development of high-throughput sequencing technology, circular RNAs (circRNAs) have gradually become a hotspot in the research on non-coding RNA. CircRNAs are produced by the covalent circularization of a downstream 3' splice donor and an upstream 5' splice acceptor through backsplicing, and they are pervasive in eukaryotic cells. CircRNAs used to be considered byproducts of false splicing, whereas an explosion of related studies in recent years has disproved this misconception. Compared with the rich studies of circRNAs in animals, the study of circRNAs in plants is still in its infancy. In this review, we introduced the discovery of plant circRNAs, the discovery of plant circRNAs, the circularization feature, expression specificity, conservation, and stability of plant circRNAs and expounded the identification tools, main types, and biogenesis mechanisms of circRNAs. Furthermore, we summarized the potential roles of plant circRNAs as microRNA (miRNA) sponges and translation templates and in response to biotic/abiotic stress, and briefed the degradation and localization of plant circRNAs. Finally, we discussed the challenges and proposed the future directions in the research on plant circRNAs.


Sujet(s)
microARN , ARN circulaire , ARN des plantes , Animaux , microARN/génétique , microARN/métabolisme , Biogenèse des organelles , Plantes/génétique , Plantes/métabolisme , Biosynthèse des protéines/physiologie , ARN circulaire/génétique , ARN circulaire/métabolisme , ARN des plantes/génétique , ARN des plantes/métabolisme , Recherche/tendances , Stress physiologique/génétique
9.
Dev Cell ; 57(10): 1241-1256.e8, 2022 05 23.
Article de Anglais | MEDLINE | ID: mdl-35580611

RÉSUMÉ

Angiogenesis, the active formation of new blood vessels from pre-existing ones, is a complex and demanding biological process that plays an important role in physiological as well as pathological settings. Recent evidence supports cell metabolism as a critical regulator of angiogenesis. However, whether and how cell metabolism regulates endothelial growth factor receptor levels and nucleotide synthesis remains elusive. We here shown in both human cell lines and mouse models that during developmental and pathological angiogenesis, endothelial cells (ECs) use glutaminolysis-derived glutamate to produce aspartate (Asp) via aspartate aminotransferase (AST/GOT). Asp leads to mTORC1 activation which, in turn, regulates endothelial translation machinery for VEGFR2 and FGFR1 synthesis. Asp-dependent mTORC1 pathway activation also regulates de novo pyrimidine synthesis in angiogenic ECs. These findings identify glutaminolysis-derived Asp as a regulator of mTORC1-dependent endothelial translation and pyrimidine synthesis. Our studies may help overcome anti-VEGF therapy resistance by targeting endothelial growth factor receptor translation.


Sujet(s)
Acide aspartique , Cellules endothéliales , Complexe-1 cible mécanistique de la rapamycine , Néovascularisation pathologique , Néovascularisation physiologique , Animaux , Acide aspartique/métabolisme , Lignée cellulaire , Cellules endothéliales/métabolisme , Humains , Complexe-1 cible mécanistique de la rapamycine/métabolisme , Souris , Néovascularisation pathologique/métabolisme , Néovascularisation physiologique/physiologie , Biosynthèse des protéines/physiologie , Pyrimidines , Récepteurs aux facteurs de croissance endothéliale vasculaire/métabolisme , Transduction du signal , Facteur de croissance endothéliale vasculaire de type A/métabolisme , Récepteur-2 au facteur croissance endothéliale vasculaire/métabolisme
10.
Bioengineered ; 13(2): 3070-3081, 2022 02.
Article de Anglais | MEDLINE | ID: mdl-35100096

RÉSUMÉ

Hydrostatic pressure is known to regulate bovine nucleus pulposus cell metabolism, but its mechanism in human nucleus pulposus cells (HNPCs) remains obscure, which attracts our attention and becomes the focus in this study. Specifically, HNPCs were treated with SKL2001 (an agonist in the Wnt/ß-catenin pathway) or XAV-939 (an inhibitor of the Wnt/ß-catenin pathway), and pressurized under the hydrostatic pressure of 1, 3 and 30 atm. The viability, apoptosis and proteoglycan synthesis of treated HNPC were assessed by CCK-8, flow cytometry and radioisotope incorporation assays. The levels of extracellular matrix, Collagen-II, matrix metalloproteinase 3 (MMP3), Wnt-3a and ß-catenin were measured by toluidine blue staining, immunocytochemistry and Western blot. Appropriate hydrostatic stimulation (3 atm) enhanced the viability and proteoglycan synthesis yet inhibited the apoptosis of HNPCs, which also up-regulated extracellular matrix and Collagen-II levels, and down-regulated MMP3, Wnt-3a and ß-catenin levels in treated HNPCs. Furthermore, high hydrostatic pressure (30 atm) inhibited the viability and proteoglycan synthesis, and promoted the morphological change and apoptosis of HNPCs, which also down-regulated extracellular matrix and Collagen-II levels and up-regulated MMP3, Wnt-3a and ß-catenin levels. Besides, SKL2001 reversed the effects of hydrostatic pressure (3 atm) on inhibiting Wnt-3a, ß-catenin, and MMP3 levels and promoting Collagen-II level in HNPC; whereas, XAV-939 reversed the effects of high hydrostatic pressure (30 atm) on promoting MMP3, Wnt-3a, and ß-catenin levels and inhibiting Collagen-II level and proteoglycan synthesis of HNPCs. Collectively, high hydrostatic pressure promoted the apoptosis and inhibited the viability of HNPCs via activating the Wnt/ß-catenin pathway.


Sujet(s)
Matrice extracellulaire/métabolisme , Nucleus pulposus/physiologie , Protéoglycanes/biosynthèse , Apoptose/physiologie , Cellules cultivées , Humains , Pression hydrostatique/effets indésirables , Dégénérescence de disque intervertébral/étiologie , Dégénérescence de disque intervertébral/métabolisme , Dégénérescence de disque intervertébral/anatomopathologie , Nucleus pulposus/cytologie , Nucleus pulposus/métabolisme , Biosynthèse des protéines/physiologie , Voie de signalisation Wnt/physiologie , bêta-Caténine/métabolisme
11.
Cell Rep ; 38(2): 110208, 2022 01 11.
Article de Anglais | MEDLINE | ID: mdl-35021090

RÉSUMÉ

Midbrain dopaminergic (mDA) neurons exhibit extensive dendritic and axonal arborizations, but local protein synthesis is not characterized in these neurons. Here, we investigate messenger RNA (mRNA) localization and translation in mDA neuronal axons and dendrites, both of which release dopamine (DA). Using highly sensitive ribosome-bound RNA sequencing and imaging approaches, we find no evidence for mRNA translation in mDA axons. In contrast, mDA neuronal dendrites in the substantia nigra pars reticulata (SNr) contain ribosomes and mRNAs encoding the major components of DA synthesis, release, and reuptake machinery. Surprisingly, we also observe dendritic localization of mRNAs encoding synaptic vesicle-related proteins, including those involved in exocytic fusion. Our results are consistent with a role for local translation in the regulation of DA release from dendrites, but not from axons. Our translatome data define a molecular signature of sparse mDA neurons in the SNr, including the enrichment of Atp2a3/SERCA3, an atypical ER calcium pump.


Sujet(s)
Neurones dopaminergiques/métabolisme , Biosynthèse des protéines/physiologie , ARN messager/métabolisme , Animaux , Axones/métabolisme , Dendrites/métabolisme , Dopamine/métabolisme , Femelle , Mâle , Mésencéphale/physiologie , Souris , Souris de lignée C57BL , Plasticité neuronale/physiologie , Biosynthèse des protéines/génétique , ARN messager/génétique , Ribosomes/métabolisme , Analyse de séquence d'ARN/méthodes , Substantia nigra/métabolisme
12.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article de Anglais | MEDLINE | ID: mdl-35042799

RÉSUMÉ

Proteins, as essential biomolecules, account for a large fraction of cell mass, and thus the synthesis of the complete set of proteins (i.e., the proteome) represents a substantial part of the cellular resource budget. Therefore, cells might be under selective pressures to optimize the resource costs for protein synthesis, particularly the biosynthesis of the 20 proteinogenic amino acids. Previous studies showed that less energetically costly amino acids are more abundant in the proteomes of bacteria that survive under energy-limited conditions, but the energy cost of synthesizing amino acids was reported to be weakly associated with the amino acid usage in Saccharomyces cerevisiae Here we present a modeling framework to estimate the protein cost of synthesizing each amino acid (i.e., the protein mass required for supporting one unit of amino acid biosynthetic flux) and the glucose cost (i.e., the glucose consumed per amino acid synthesized). We show that the logarithms of the relative abundances of amino acids in S. cerevisiae's proteome correlate well with the protein costs of synthesizing amino acids (Pearson's r = -0.89), which is better than that with the glucose costs (Pearson's r = -0.5). Therefore, we demonstrate that S. cerevisiae tends to minimize protein resource, rather than glucose or energy, for synthesizing amino acids.


Sujet(s)
Acides aminés/biosynthèse , Protéines de Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/métabolisme , Acides aminés/composition chimique , Acides aminés/métabolisme , Évolution biologique , Métabolisme énergétique/physiologie , Évolution moléculaire , Génie métabolique/méthodes , Biosynthèse des protéines/génétique , Biosynthèse des protéines/physiologie , Protéome/métabolisme , Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/génétique
13.
Int J Biol Macromol ; 199: 252-263, 2022 Feb 28.
Article de Anglais | MEDLINE | ID: mdl-34995670

RÉSUMÉ

Translation of RNA to protein is a key feature of cellular life. The fidelity of this process mainly depends on the availability of correctly charged tRNAs. Different domains of tRNA synthetase (aaRS) maintain translation quality by ensuring the proper attachment of particular amino acid with respective tRNA, thus it establishes the rule of genetic code. However occasional errors by aaRS generate mischarged tRNAs, which can become lethal to the cells. Accurate protein synthesis necessitates hydrolysis of mischarged tRNAs. Various cis and trans-editing proteins are identified which recognize these mischarged products and correct them by hydrolysis. Trans-editing proteins are homologs of cis-editing domains of aaRS. The trans-editing proteins work in close association with aaRS, Ef-Tu, and ribosome to prevent global mistranslation and ensures correct charging of tRNA. In this review, we discuss the major trans-editing proteins and compared them with their cis-editing counterparts. We also discuss their structural features, biochemical activity and role in maintaining cellular protein homeostasis.


Sujet(s)
Amino acyl-tRNA synthetases , Biosynthèse des protéines , Amino acyl-tRNA synthetases/composition chimique , Biosynthèse des protéines/physiologie , Modification traductionnelle des protéines/physiologie , ARN de transfert/composition chimique
14.
Int J Mol Sci ; 23(2)2022 Jan 12.
Article de Anglais | MEDLINE | ID: mdl-35054973

RÉSUMÉ

Among the 20 amino acids needed for protein synthesis, Tryptophan (Trp) is an aromatic amino acid fundamental not only for the synthesis of the major components of living cells (namely, the proteins), but also for the maintenance of cellular homeostasis [...].


Sujet(s)
Voies et réseaux métaboliques , Biosynthèse des protéines , Tryptophane/métabolisme , Prédisposition aux maladies , Homéostasie , Humains , Biosynthèse des protéines/physiologie
15.
Mol Cell Biol ; 42(1): e0024421, 2022 01 20.
Article de Anglais | MEDLINE | ID: mdl-34723653

RÉSUMÉ

Ded1 is a conserved RNA helicase that promotes translation initiation in steady-state conditions. Ded1 has also been shown to regulate translation during cellular stress and affect the dynamics of stress granules (SGs), accumulations of RNA and protein linked to translation repression. To better understand its role in stress responses, we examined Ded1 function in two different models: DED1 overexpression and oxidative stress. DED1 overexpression inhibits growth and promotes the formation of SGs. A ded1 mutant lacking the low-complexity C-terminal region (ded1-ΔCT), which mediates Ded1 oligomerization and interaction with the translation factor eIF4G1, suppressed these phenotypes, consistent with other stresses. During oxidative stress, a ded1-ΔCT mutant was defective in growth and in SG formation compared to wild-type cells, although SGs were increased rather than decreased in these conditions. Unlike stress induced by direct TOR inhibition, the phenotypes in both models were only partially dependent on eIF4G1 interaction, suggesting an additional contribution from Ded1 oligomerization. Furthermore, examination of the growth defects and translational changes during oxidative stress suggested that Ded1 plays a role during recovery from stress. Integrating these disparate results, we propose that Ded1 controls multiple aspects of translation and RNP dynamics in both initial stress responses and during recovery.


Sujet(s)
DEAD-box RNA helicases/métabolisme , RNA helicases/génétique , Protéines de Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/métabolisme , Granulations cytoplasmiques/métabolisme , DEAD-box RNA helicases/génétique , Régulation de l'expression des gènes fongiques/génétique , Biosynthèse des protéines/physiologie , ARN messager/génétique , Saccharomyces cerevisiae/métabolisme , Stress physiologique/physiologie
16.
Chinese Journal of Biotechnology ; (12): 1706-1723, 2022.
Article de Chinois | WPRIM (Pacifique Occidental) | ID: wpr-927813

RÉSUMÉ

With the development of high-throughput sequencing technology, circular RNAs (circRNAs) have gradually become a hotspot in the research on non-coding RNA. CircRNAs are produced by the covalent circularization of a downstream 3' splice donor and an upstream 5' splice acceptor through backsplicing, and they are pervasive in eukaryotic cells. CircRNAs used to be considered byproducts of false splicing, whereas an explosion of related studies in recent years has disproved this misconception. Compared with the rich studies of circRNAs in animals, the study of circRNAs in plants is still in its infancy. In this review, we introduced the discovery of plant circRNAs, the discovery of plant circRNAs, the circularization feature, expression specificity, conservation, and stability of plant circRNAs and expounded the identification tools, main types, and biogenesis mechanisms of circRNAs. Furthermore, we summarized the potential roles of plant circRNAs as microRNA (miRNA) sponges and translation templates and in response to biotic/abiotic stress, and briefed the degradation and localization of plant circRNAs. Finally, we discussed the challenges and proposed the future directions in the research on plant circRNAs.


Sujet(s)
Animaux , microARN/métabolisme , Biogenèse des organelles , Plantes/métabolisme , Biosynthèse des protéines/physiologie , ARN circulaire/métabolisme , ARN des plantes/métabolisme , Recherche/tendances , Stress physiologique/génétique
17.
Nat Struct Mol Biol ; 28(12): 1029-1037, 2021 12.
Article de Anglais | MEDLINE | ID: mdl-34887561

RÉSUMÉ

Close coordination between chaperones is essential for protein biosynthesis, including the delivery of tail-anchored (TA) proteins containing a single C-terminal transmembrane domain to the endoplasmic reticulum (ER) by the conserved GET pathway. For successful targeting, nascent TA proteins must be promptly chaperoned and loaded onto the cytosolic ATPase Get3 through a transfer reaction involving the chaperone SGTA and bridging factors Get4, Ubl4a and Bag6. Here, we report cryo-electron microscopy structures of metazoan pretargeting GET complexes at 3.3-3.6 Å. The structures reveal that Get3 helix 8 and the Get4 C terminus form a composite lid over the Get3 substrate-binding chamber that is opened by SGTA. Another interaction with Get4 prevents formation of Get3 helix 4, which links the substrate chamber and ATPase domain. Both interactions facilitate TA protein transfer from SGTA to Get3. Our findings show how the pretargeting complex primes Get3 for coordinated client loading and ER targeting.


Sujet(s)
Arsenite Transporting ATPases/métabolisme , Chaperons moléculaires/métabolisme , Biosynthèse des protéines/physiologie , Protéines de poisson-zèbre/métabolisme , Animaux , Cryomicroscopie électronique , Réticulum endoplasmique/métabolisme , Humains , Modèles moléculaires , Conformation des protéines , Ubiquitines/métabolisme , Danio zébré
18.
Int J Mol Sci ; 22(24)2021 Dec 15.
Article de Anglais | MEDLINE | ID: mdl-34948282

RÉSUMÉ

Protein uL5 (formerly called L11) is an integral component of the large (60S) subunit of the human ribosome, and its deficiency in cells leads to the impaired biogenesis of 60S subunits. Using RNA interference, we reduced the level of uL5 in HEK293T cells by three times, which caused an almost proportional decrease in the content of the fraction corresponding to 80S ribosomes, without a noticeable diminution in the level of polysomes. By RNA sequencing of uL5-deficient and control cell samples, which were those of total mRNA and mRNA from the polysome fraction, we identified hundreds of differentially expressed genes (DEGs) at the transcriptome and translatome levels and revealed dozens of genes with altered translational efficiency (GATEs). Transcriptionally up-regulated DEGs were mainly associated with rRNA processing, pre-mRNA splicing, translation and DNA repair, while down-regulated DEGs were genes of membrane proteins; the type of regulation depended on the GC content in the 3' untranslated regions of DEG mRNAs. The belonging of GATEs to up-regulated and down-regulated ones was determined by the coding sequence length of their mRNAs. Our findings suggest that the effects observed in uL5-deficient cells result from an insufficiency of translationally active ribosomes caused by a deficiency of 60S subunits.


Sujet(s)
Régulation de l'expression des gènes/génétique , Protéines ribosomiques/déficit , Protéines ribosomiques/métabolisme , Expression des gènes/génétique , Analyse de profil d'expression de gènes/méthodes , Cellules HEK293 , Humains , Biosynthèse des protéines/physiologie , Maturation post-transcriptionnelle des ARN , ARN messager/génétique , Protéines ribosomiques/génétique , Ribosomes/métabolisme , Transcription génétique/physiologie , Transcriptome/génétique
19.
Dev Cell ; 56(21): 2928-2937.e9, 2021 11 08.
Article de Anglais | MEDLINE | ID: mdl-34752747

RÉSUMÉ

Although gene expression is tightly regulated during embryonic development, the impact of translational control has received less experimental attention. Here, we find that eukaryotic translation initiation factor-3 (eIF3) is required for Shh-mediated tissue patterning. Analysis of loss-of-function eIF3 subunit c (Eif3c) mice reveal a unique sensitivity to the Shh receptor patched 1 (Ptch1) dosage. Genome-wide in vivo enhanced cross-linking immunoprecipitation sequence (eCLIP-seq) shows unexpected specificity for eIF3 binding to a pyrimidine-rich motif present in subsets of 5'-UTRs and a corresponding change in the translation of these transcripts by ribosome profiling in Eif3c loss-of-function embryos. We further find a transcript specific effect in Eif3c loss-of-function embryos whereby translation of Ptch1 through this pyrimidine-rich motif is specifically sensitive to eIF3 amount. Altogether, this work uncovers hidden specificity of housekeeping translation initiation machinery for the translation of key developmental signaling transcripts.


Sujet(s)
Facteur-3 d'initiation eucaryote/métabolisme , Biosynthèse des protéines/physiologie , Maturation post-traductionnelle des protéines/physiologie , Ribosomes/métabolisme , Animaux , Lignée cellulaire , Facteur-3 d'initiation eucaryote/génétique , Humains , Souris , ARN messager/génétique , Transduction du signal/physiologie
20.
Nat Struct Mol Biol ; 28(11): 889-899, 2021 11.
Article de Anglais | MEDLINE | ID: mdl-34759377

RÉSUMÉ

Ribosomes are complex ribozymes that interpret genetic information by translating messenger RNA (mRNA) into proteins. Natural variation in ribosome composition has been documented in several organisms and can arise from several different sources. A key question is whether specific control over ribosome heterogeneity represents a mechanism by which translation can be regulated. We used RiboMeth-seq to demonstrate that differential 2'-O-methylation of ribosomal RNA (rRNA) represents a considerable source of ribosome heterogeneity in human cells, and that modification levels at distinct sites can change dynamically in response to upstream signaling pathways, such as MYC oncogene expression. Ablation of one prominent methylation resulted in altered translation of select mRNAs and corresponding changes in cellular phenotypes. Thus, differential rRNA 2'-O-methylation can give rise to ribosomes with specialized function. This suggests a broader mechanism where the specific regulation of rRNA modification patterns fine tunes translation.


Sujet(s)
Biosynthèse des protéines/physiologie , Protéines proto-oncogènes c-myc/génétique , Maturation post-transcriptionnelle des ARN/physiologie , ARN ribosomique/métabolisme , Ribosomes/métabolisme , Lignée cellulaire tumorale , Cellules HeLa , Humains , Méthylation , Maturation post-traductionnelle des protéines/physiologie , Protéines proto-oncogènes c-myc/biosynthèse , ARN messager/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...