Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 168
Filtrer
1.
Bioorg Chem ; 150: 107605, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-38971095

RÉSUMÉ

The dorsal root ganglion (DRG) is the primary neuron responsible for transmitting peripheral pain signals to the central nervous system and plays a crucial role in pain transduction. Modulation of DRG excitability is considered a viable approach for pain management. Neuronal excitability is intricately linked to the ion channels on the neurons. The small and medium-sized DRG neurons are chiefly engaged in pain conduction and have high levels of TTX-S sodium channels, with Nav1.7 accounting for approximately 80% of the current. Voltage-gated sodium channel (VGSC or Nav) blockers are vital targets for the management of central nervous system diseases, particularly chronic pain. VGSCs play a key role in controlling cellular excitability. Clinical research has shown that Nav1.7 plays a crucial role in pain sensation, and there is strong genetic evidence linking Nav1.7 and its encoding gene SCN9A gene to painful disorders in humans. Many studies have shown that Nav1.7 plays an important role in pain management. The role of Nav1.7 in pain signaling pathways makes it an attractive target for the potential development of new pain drugs. Meanwhile, understanding the architecture of Nav1.7 may help to develop the next generation of painkillers. This review provides updates on the recently reported molecular inhibitors targeting the Nav1.7 pathway, summarizes their structure-activity relationships (SARs), and discusses their therapeutic effects on painful diseases. Pharmaceutical chemists are working to improve the therapeutic index of Nav1.7 inhibitors, achieve better analgesic effects, and reduce side effects. We hope that this review will contribute to the development of novel Nav1.7 inhibitors as potential drugs.


Sujet(s)
Canal sodique voltage-dépendant NAV1.7 , Bloqueurs de canaux sodiques voltage-dépendants , Humains , Canal sodique voltage-dépendant NAV1.7/métabolisme , Bloqueurs de canaux sodiques voltage-dépendants/pharmacologie , Bloqueurs de canaux sodiques voltage-dépendants/composition chimique , Bloqueurs de canaux sodiques voltage-dépendants/usage thérapeutique , Bibliothèques de petites molécules/composition chimique , Bibliothèques de petites molécules/pharmacologie , Bibliothèques de petites molécules/usage thérapeutique , Douleur cancéreuse/traitement médicamenteux , Douleur cancéreuse/métabolisme , Analgésiques/composition chimique , Analgésiques/pharmacologie , Analgésiques/usage thérapeutique , Animaux , Relation structure-activité , Gestion de la douleur/méthodes , Structure moléculaire , Tumeurs/traitement médicamenteux , Bloqueurs de canaux sodiques/pharmacologie , Bloqueurs de canaux sodiques/composition chimique , Bloqueurs de canaux sodiques/usage thérapeutique
2.
J Med Chem ; 67(15): 12912-12931, 2024 Aug 08.
Article de Anglais | MEDLINE | ID: mdl-39037114

RÉSUMÉ

Dysfunction of voltage-gated sodium channel Nav1.2 causes various epileptic disorders, and inhibition of the channel has emerged as an attractive therapeutic strategy. However, currently available Nav1.2 inhibitors exhibit low potency and limited structural diversity. In this study, a novel series of pyrimidine-based derivatives with Nav1.2 inhibitory activity were designed, synthesized, and evaluated. Compounds 14 and 35 exhibited potent activity against Nav1.2, boasting IC50 values of 120 and 65 nM, respectively. Compound 14 displayed favorable pharmacokinetics (F = 43%) following intraperitoneal injection and excellent brain penetration potency (B/P = 3.6). Compounds 14 and 35 exhibited robust antiepileptic activities in the maximal electroshock test, with ED50 values of 3.2 and 11.1 mg/kg, respectively. Compound 35 also demonstrated potent antiepileptic activity in a 6 Hz (32 mA) model, with an ED50 value of 18.5 mg/kg. Overall, compounds 14 and 35 are promising leads for the development of new small-molecule therapeutics for epilepsy.


Sujet(s)
Anticonvulsivants , Épilepsie , Canal sodique voltage-dépendant NAV1.2 , Pyrimidines , Animaux , Pyrimidines/pharmacologie , Pyrimidines/composition chimique , Pyrimidines/synthèse chimique , Pyrimidines/pharmacocinétique , Pyrimidines/usage thérapeutique , Anticonvulsivants/pharmacologie , Anticonvulsivants/composition chimique , Anticonvulsivants/synthèse chimique , Anticonvulsivants/usage thérapeutique , Anticonvulsivants/pharmacocinétique , Épilepsie/traitement médicamenteux , Épilepsie/métabolisme , Souris , Canal sodique voltage-dépendant NAV1.2/métabolisme , Relation structure-activité , Humains , Modèles animaux de maladie humaine , Mâle , Bloqueurs de canaux sodiques voltage-dépendants/pharmacologie , Bloqueurs de canaux sodiques voltage-dépendants/composition chimique , Bloqueurs de canaux sodiques voltage-dépendants/synthèse chimique , Bloqueurs de canaux sodiques voltage-dépendants/pharmacocinétique , Bloqueurs de canaux sodiques voltage-dépendants/usage thérapeutique , Découverte de médicament , Électrochoc , Simulation de docking moléculaire
3.
Drug Deliv Transl Res ; 14(8): 2112-2145, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38861139

RÉSUMÉ

Pain, a complex and debilitating condition affecting millions globally, is a significant concern, especially in the context of post-operative recovery. This comprehensive review explores the complexity of pain and its global impact, emphasizing the modulation of voltage-gated sodium channels (VGSC or NaV channels) as a promising avenue for pain management with the aim of reducing reliance on opioids. The article delves into the role of specific NaV isoforms, particularly NaV 1.7, NaV 1.8, and NaV 1.9, in pain process and discusses the development of sodium channel blockers to target these isoforms precisely. Traditional local anesthetics and selective NaV isoform inhibitors, despite showing varying efficacy in pain management, face challenges in systemic distribution and potential side effects. The review highlights the potential of nanomedicine in improving the delivery of local anesthetics, toxins and selective NaV isoform inhibitors for a targeted and sustained release at the site of pain. This innovative strategy seeks to improve drug bioavailability, minimize systemic exposure, and optimize therapeutic outcomes, holding significant promise for secure pain management and enhancing the quality of life for individuals recovering from surgical procedures or suffering from chronic pain.


Sujet(s)
Nanomédecine , Gestion de la douleur , Bloqueurs de canaux sodiques voltage-dépendants , Humains , Bloqueurs de canaux sodiques voltage-dépendants/administration et posologie , Bloqueurs de canaux sodiques voltage-dépendants/pharmacocinétique , Bloqueurs de canaux sodiques voltage-dépendants/usage thérapeutique , Gestion de la douleur/méthodes , Animaux , Canaux sodiques voltage-dépendants/métabolisme , Anesthésiques locaux/administration et posologie , Anesthésiques locaux/usage thérapeutique , Anesthésiques locaux/pharmacocinétique , Douleur/traitement médicamenteux
4.
Pharmacol Rev ; 76(5): 828-845, 2024 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-38914468

RÉSUMÉ

Voltage-gated sodium (NaV) channels are intimately involved in the generation and transmission of action potentials, and dysfunction of these channels may contribute to nervous system diseases, such as epilepsy, neuropathic pain, psychosis, autism, and cardiac arrhythmia. Many venom peptides selectively act on NaV channels. These include conotoxins, which are neurotoxins secreted by cone snails for prey capture or self-defense but which are also valuable pharmacological tools for the identification and/or treatment of human diseases. Typically, conotoxins contain two or three disulfide bonds, and these internal crossbraces contribute to conotoxins having compact, well defined structures and high stability. Of the conotoxins containing three disulfide bonds, some selectively target mammalian NaV channels and can block, stimulate, or modulate these channels. Such conotoxins have great potential to serve as pharmacological tools for studying the functions and characteristics of NaV channels or as drug leads for neurologic diseases related to NaV channels. Accordingly, discovering or designing conotoxins targeting NaV channels with high potency and selectivity is important. The amino acid sequences, disulfide bond connectivity, and three-dimensional structures are key factors that affect the biological activity of conotoxins, and targeted synthetic modifications of conotoxins can greatly improve their activity and selectivity. This review examines NaV channel-targeted conotoxins, focusing on their structures, activities, and designed modifications, with a view toward expanding their applications. SIGNIFICANCE STATEMENT: NaV channels are crucial in various neurologic diseases. Some conotoxins selectively target NaV channels, causing either blockade or activation, thus enabling their use as pharmacological tools for studying the channels' characteristics and functions. Conotoxins also have promising potential to be developed as drug leads. The disulfide bonds in these peptides are important for stabilizing their structures, thus leading to enhanced specificity and potency. Together, conotoxins targeting NaV channels have both immediate research value and promising future application prospects.


Sujet(s)
Conotoxines , Canaux sodiques voltage-dépendants , Conotoxines/pharmacologie , Conotoxines/composition chimique , Humains , Animaux , Canaux sodiques voltage-dépendants/métabolisme , Canaux sodiques voltage-dépendants/composition chimique , Canaux sodiques voltage-dépendants/effets des médicaments et des substances chimiques , Bloqueurs de canaux sodiques voltage-dépendants/pharmacologie , Bloqueurs de canaux sodiques voltage-dépendants/composition chimique , Bloqueurs de canaux sodiques voltage-dépendants/usage thérapeutique , Séquence d'acides aminés
5.
J Biol Chem ; 300(5): 107294, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38636665

RÉSUMÉ

Exenatide, a promising cardioprotective agent, protects against cardiac structural remodeling and diastolic dysfunction. Combined blockade of sodium and potassium channels is valuable for managing atrial fibrillation (AF). Here, we explored whether exenatide displayed anti-AF effects by inhibiting human Kv1.5 and Nav1.5 channels. We used the whole-cell patch-clamp technique to investigate the effects of exenatide on hKv1.5 and hNav1.5 channels expressed in human embryonic kidney 293 cells and studied the effects of exenatide on action potential (AP) and other cardiac ionic currents in rat atrial myocytes. Additionally, an electrical mapping system was used to explore the effects of exenatide on electrical properties and AF activity in isolated rat hearts. Finally, a rat AF model, established using acetylcholine and calcium chloride, was employed to evaluate the anti-AF potential of exenatide in rats. Exenatide reversibly suppressed IKv1.5 with IC50 of 3.08 µM, preferentially blocked the hKv1.5 channel in its closed state, and positively shifted the voltage-dependent activation curve. Exenatide also reversibly inhibited INav1.5 with IC50 of 3.30 µM, negatively shifted the voltage-dependent inactivation curve, and slowed its recovery from inactivation with significant use-dependency at 5 and 10 Hz. Furthermore, exenatide prolonged AP duration and suppressed the sustained K+ current (Iss) and transient outward K+ current (Ito), but without inhibition of L-type Ca2+ current (ICa,L) in rat atrial myocytes. Exenatide prevented AF incidence and duration in rat hearts and rats. These findings demonstrate that exenatide inhibits IKv1.5 and INav1.5in vitro and reduces AF susceptibility in isolated rat hearts and rats.


Sujet(s)
Potentiels d'action , Fibrillation auriculaire , Exénatide , Canal potassique Kv1.5 , Myocytes cardiaques , Canal sodique voltage-dépendant NAV1.5 , Bloqueurs de canaux sodiques voltage-dépendants , Animaux , Humains , Mâle , Rats , Potentiels d'action/effets des médicaments et des substances chimiques , Fibrillation auriculaire/traitement médicamenteux , Fibrillation auriculaire/métabolisme , Exénatide/pharmacologie , Exénatide/usage thérapeutique , Cellules HEK293 , Canal potassique Kv1.5/antagonistes et inhibiteurs , Myocytes cardiaques/effets des médicaments et des substances chimiques , Myocytes cardiaques/métabolisme , Canal sodique voltage-dépendant NAV1.5/métabolisme , Canal sodique voltage-dépendant NAV1.5/génétique , Rat Sprague-Dawley , Bloqueurs de canaux sodiques voltage-dépendants/pharmacologie , Bloqueurs de canaux sodiques voltage-dépendants/usage thérapeutique
7.
Arch Cardiovasc Dis ; 117(6-7): 450-456, 2024.
Article de Anglais | MEDLINE | ID: mdl-38677940

RÉSUMÉ

In France, mexiletine - a class I antiarrhythmic drug - can be prescribed for the symptomatic treatment of myotonia of the skeletal muscles in adult patients with myotonic dystrophy under a compassionate use programme. Mexiletine is used according to its summary of product characteristics, which describes its use for myotonia treatment in adult patients with non-dystrophic myotonia, a different neuromuscular condition without cardiac involvement. A cardiac assessment is required prior to initiation and throughout treatment due to potential proarrhythmic effects. The presence of conduction system disease, the most common cardiac manifestation of myotonic dystrophy, mandates repeated cardiac evaluations in patients with this condition, and becomes even more important when they are given mexiletine. A group of experts, including three neurologists and five cardiologists from French neuromuscular reference centres, were involved in a task force to develop a treatment algorithm to guide mexiletine use in myotonic dystrophy. The recommendations are based on data from a literature review of the safety of mexiletine-treated patients with myotonic dystrophy, the compassionate use protocol for mexiletine and the personal clinical experience of the experts. The main conclusion of the expert group is that, although existing safety data in mexiletine-treated patients with myotonic dystrophy are reassuring, cardiac assessments should be reinforced in such patients compared with mexiletine-treated patients with non-dystrophic myotonia. This expert opinion to guide mexiletine treatment in patients with myotonic dystrophy should help to reduce the risk of severe adverse events and facilitate interactions between specialists involved in the routine care of patients with myotonic dystrophy.


Sujet(s)
Méxilétine , Dystrophie myotonique , Adulte , Humains , Algorithmes , Antiarythmiques/usage thérapeutique , Antiarythmiques/effets indésirables , Troubles du rythme cardiaque/physiopathologie , Troubles du rythme cardiaque/diagnostic , Troubles du rythme cardiaque/étiologie , Troubles du rythme cardiaque/induit chimiquement , Prise de décision clinique , Essais cliniques à usage compassionnel , Consensus , France , Méxilétine/usage thérapeutique , Méxilétine/effets indésirables , Dystrophie myotonique/traitement médicamenteux , Dystrophie myotonique/diagnostic , Dystrophie myotonique/physiopathologie , Appréciation des risques , Facteurs de risque , Résultat thérapeutique , Bloqueurs de canaux sodiques voltage-dépendants/usage thérapeutique , Bloqueurs de canaux sodiques voltage-dépendants/effets indésirables
8.
Neurol Sci ; 45(8): 3989-4001, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38403671

RÉSUMÉ

BACKGROUND: The rare nature of dystrophic and non-dystrophic myotonia has limited the available evidence on the efficacy of mexiletine as a potential treatment. To address this gap, we conducted a systematic review and meta-analysis to evaluate the effectiveness and safety of mexiletine for both dystrophic and non-dystrophic myotonic patients. METHODS: The search was conducted on various electronic databases up to March 2023, for randomized clinical trials (RCTs) comparing mexiletine versus placebo in myotonic patients. A risk of bias assessment was carried out, and relevant data was extracted manually into an online sheet. RevMan software (version 5.4) was employed for analysis. RESULTS: A total of five studies, comprising 186 patients, were included in the meta-analysis. Our findings showed that mexiletine was significantly more effective than placebo in improving stiffness score (SMD = - 1.19, 95% CI [- 1.53, - 0.85]), as well as in reducing hand grip myotonia (MD = - 1.36 s, 95% CI [- 1.83, - 0.89]). Mexiletine also significantly improved SF-36 Physical and Mental Component Score in patients with non-dystrophic myotonia only. Regarding safety, mexiletine did not significantly alter ECG parameters but was associated with greater gastrointestinal symptoms (GIT) compared to placebo (RR 3.7, 95% CI [1.79, 7.64]). Other adverse events showed no significant differences. CONCLUSION: The results support that mexiletine is effective and safe in myotonic patients; however, it is associated with a higher risk of GIT symptoms. Due to the scarcity of published RCTs and the prevalence of GIT symptoms, we recommend further well-designed RCTs testing various drug combinations to reduce GIT symptoms.


Sujet(s)
Méxilétine , Myotonie , Humains , Méxilétine/usage thérapeutique , Myotonie/traitement médicamenteux , Essais contrôlés randomisés comme sujet , Résultat thérapeutique , Bloqueurs de canaux sodiques voltage-dépendants/effets indésirables , Bloqueurs de canaux sodiques voltage-dépendants/usage thérapeutique , Bloqueurs de canaux sodiques voltage-dépendants/administration et posologie , Bloqueurs de canaux sodiques voltage-dépendants/pharmacologie
9.
Br J Cancer ; 130(9): 1415-1419, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38424164

RÉSUMÉ

BACKGROUND: Multi-faceted evidence from a range of cancers suggests strongly that de novo expression of voltage-gated sodium channels (VGSCs) plays a significant role in driving cancer cell invasiveness. Under hypoxic conditions, common to growing tumours, VGSCs develop a persistent current (INaP) which can be blocked selectively by ranolazine. METHODS: Several different carcinomas were examined. We used data from a range of experimental approaches relating to cellular invasiveness and metastasis. These were supplemented by survival data mined from cancer patients. RESULTS: In vitro, ranolazine inhibited invasiveness of cancer cells especially under hypoxia. In vivo, ranolazine suppressed the metastatic abilities of breast and prostate cancers and melanoma. These data were supported by a major retrospective epidemiological study on breast, colon and prostate cancer patients. This showed that risk of dying from cancer was reduced by ca.60% among those taking ranolazine, even if this started 4 years after the diagnosis. Ranolazine was also shown to reduce the adverse effects of chemotherapy on heart and brain. Furthermore, its anti-cancer effectiveness could be boosted by co-administration with other drugs. CONCLUSIONS: Ranolazine, alone or in combination with appropriate therapies, could be reformulated as a safe anti-metastatic drug offering many potential advantages over current systemic treatment modalities.


Sujet(s)
Ranolazine , Ranolazine/pharmacologie , Ranolazine/usage thérapeutique , Humains , Canaux sodiques voltage-dépendants/métabolisme , Canaux sodiques voltage-dépendants/effets des médicaments et des substances chimiques , Mâle , Antinéoplasiques/pharmacologie , Antinéoplasiques/usage thérapeutique , Animaux , Femelle , Métastase tumorale , Tumeurs/traitement médicamenteux , Tumeurs/anatomopathologie , Tumeurs/métabolisme , Invasion tumorale , Bloqueurs de canaux sodiques voltage-dépendants/pharmacologie , Bloqueurs de canaux sodiques voltage-dépendants/usage thérapeutique
10.
Nature ; 625(7995): 557-565, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-38172636

RÉSUMÉ

Osteoarthritis (OA) is the most common joint disease. Currently there are no effective methods that simultaneously prevent joint degeneration and reduce pain1. Although limited evidence suggests the existence of voltage-gated sodium channels (VGSCs) in chondrocytes2, their expression and function in chondrocytes and in OA remain essentially unknown. Here we identify Nav1.7 as an OA-associated VGSC and demonstrate that human OA chondrocytes express functional Nav1.7 channels, with a density of 0.1 to 0.15 channels per µm2 and 350 to 525 channels per cell. Serial genetic ablation of Nav1.7 in multiple mouse models demonstrates that Nav1.7 expressed in dorsal root ganglia neurons is involved in pain, whereas Nav1.7 in chondrocytes regulates OA progression. Pharmacological blockade of Nav1.7 with selective or clinically used pan-Nav channel blockers significantly ameliorates the progression of structural joint damage, and reduces OA pain behaviour. Mechanistically, Nav1.7 blockers regulate intracellular Ca2+ signalling and the chondrocyte secretome, which in turn affects chondrocyte biology and OA progression. Identification of Nav1.7 as a novel chondrocyte-expressed, OA-associated channel uncovers a dual target for the development of disease-modifying and non-opioid pain relief treatment for OA.


Sujet(s)
Chondrocytes , Canal sodique voltage-dépendant NAV1.7 , Arthrose , Bloqueurs de canaux sodiques voltage-dépendants , Animaux , Humains , Souris , Calcium/métabolisme , Signalisation calcique/effets des médicaments et des substances chimiques , Chondrocytes/effets des médicaments et des substances chimiques , Chondrocytes/métabolisme , Évolution de la maladie , Ganglions sensitifs des nerfs spinaux/cytologie , Ganglions sensitifs des nerfs spinaux/métabolisme , Canal sodique voltage-dépendant NAV1.7/déficit , Canal sodique voltage-dépendant NAV1.7/génétique , Canal sodique voltage-dépendant NAV1.7/métabolisme , Neurones/métabolisme , Arthrose/complications , Arthrose/traitement médicamenteux , Arthrose/génétique , Arthrose/métabolisme , Douleur/complications , Douleur/traitement médicamenteux , Douleur/métabolisme , Bloqueurs de canaux sodiques voltage-dépendants/pharmacologie , Bloqueurs de canaux sodiques voltage-dépendants/usage thérapeutique
11.
Int J Mol Sci ; 24(1)2023 Jan 03.
Article de Anglais | MEDLINE | ID: mdl-36614292

RÉSUMÉ

The voltage-gated sodium channels represent an important target for drug discovery since a large number of physiological processes are regulated by these channels. In several excitability disorders, including epilepsy, cardiac arrhythmias, chronic pain, and non-dystrophic myotonia, blockers of voltage-gated sodium channels are clinically used. Myotonia is a skeletal muscle condition characterized by the over-excitability of the sarcolemma, resulting in delayed relaxation after contraction and muscle stiffness. The therapeutic management of this disorder relies on mexiletine and other sodium channel blockers, which are not selective for the Nav1.4 skeletal muscle sodium channel isoform. Hence, the importance of deepening the knowledge of molecular requirements for developing more potent and use-dependent drugs acting on Nav1.4. Here, we review the available treatment options for non-dystrophic myotonia and the structure-activity relationship studies performed in our laboratory with a focus on new compounds with potential antimyotonic activity.


Sujet(s)
Méxilétine , Myotonie , Canal sodique voltage-dépendant NAV1.4 , Bloqueurs de canaux sodiques voltage-dépendants , Humains , Méxilétine/pharmacologie , Méxilétine/usage thérapeutique , Muscles squelettiques/effets des médicaments et des substances chimiques , Myotonie/traitement médicamenteux , Canal sodique voltage-dépendant NAV1.4/métabolisme , Syndrome , Bloqueurs de canaux sodiques voltage-dépendants/pharmacologie , Bloqueurs de canaux sodiques voltage-dépendants/usage thérapeutique
12.
Am J Manag Care ; 28(9 Suppl): S159-S165, 2022 09.
Article de Anglais | MEDLINE | ID: mdl-36198074

RÉSUMÉ

Cough serves a protective physiologic function as a vital defensive reflex preventing aspiration. However, exposure to viral infections or other triggers induces, in some individuals, a chronic cough (CC) that causes a significant symptomatic burden. Most cases of CC are due to conditions that respond to appropriate therapeutic trials (upper airway cough syndrome; asthma; reflux). Unfortunately, a significant subgroup of patients will have refractory CC, which does not respond to treatment of known underlying causes of CC. Currently, available therapeutic options for refractory CC are inadequate due to limited efficacy and frequently intolerable adverse effects. Current professional society guideline recommendations are discussed, and a promising pipeline of antitussive drugs in development is introduced, including purinergic 2X3 receptor antagonists, neurokinin-1 receptor antagonists, oral mixed ĸ-opioid receptor agonists/µ-opioid receptor antagonists, and voltage-gated sodium channel blockers.


Sujet(s)
Antitussifs , Analgésiques morphiniques/usage thérapeutique , Antitussifs/pharmacologie , Antitussifs/usage thérapeutique , Maladie chronique , Toux/traitement médicamenteux , Toux/étiologie , Humains , Antagonistes narcotiques/usage thérapeutique , Antagonistes du récepteur de la neurokinine-1/usage thérapeutique , Récepteurs aux opioïdes/usage thérapeutique , Bloqueurs de canaux sodiques voltage-dépendants/usage thérapeutique
13.
Zool Res ; 43(5): 886-896, 2022 Sep 18.
Article de Anglais | MEDLINE | ID: mdl-36052553

RÉSUMÉ

Various peptide toxins in animal venom inhibit voltage-gated sodium ion channel Nav1.7, including Nav-targeting spider toxin (NaSpTx) Family I. Toxins in NaSpTx Family I share a similar structure, i.e., N-terminal, loops 1-4, and C-terminal. Here, we used Mu-theraphotoxin-Ca2a (Ca2a), a peptide isolated from Cyriopagopus albostriatus, as a template to investigate the general properties of toxins in NaSpTx Family I. The toxins interacted with the cell membrane prior to binding to Nav1.7 via similar hydrophobic residues. Residues in loop 1, loop 4, and the C-terminal primarily interacted with the S3-S4 linker of domain II, especially basic amino acids binding to E818. We also identified the critical role of loop 2 in Ca2a regarding its affinity to Nav1.7. Our results provide further evidence that NaSpTx Family I toxins share similar structures and mechanisms of binding to Nav1.7.


Sujet(s)
Venins d'araignée , Animaux , Peptides/composition chimique , Canaux sodiques , Venins d'araignée/composition chimique , Venins d'araignée/génétique , Venins d'araignée/pharmacologie , Bloqueurs de canaux sodiques voltage-dépendants/composition chimique , Bloqueurs de canaux sodiques voltage-dépendants/pharmacologie , Bloqueurs de canaux sodiques voltage-dépendants/usage thérapeutique
14.
Bioorg Med Chem Lett ; 75: 128946, 2022 11 01.
Article de Anglais | MEDLINE | ID: mdl-35985458

RÉSUMÉ

The voltage-gated sodium (Nav) channel is one of most important targets for treatment of epilepsy, and rufinamide is an approved third-generation anti-seizure drug as Nav1.1 channel blocker. Herein, by triazenylation of rufinamide, we reported the triazenyl triazoles as new Nav1.1 channel blocker for treatment of epilepsy. Through the electrophysiological activity assay, compound 6a and 6e were found to modulate the inactivation voltage of Nav 1.1 channel with shift of -10.07 mv and -11.28 mV, respectively. In the pentylenetetrazole (PTZ) mouse model, 6a and 6e reduced the seizure level, prolonged seizure latency and improved the survival rate of epileptic mice at an intragastric administration of 50 mg/kg dosage. In addition, 6a also exhibited promising effectiveness in the maximal electroshock (MES) mouse model and possessed moderate pharmacokinetic profiles. These results demonstrated that 6a was a novel Nav1.1 channel blocker for treatment of epilepsy.


Sujet(s)
Épilepsie , Pentétrazol , Animaux , Modèles animaux de maladie humaine , Épilepsie/traitement médicamenteux , Souris , Sodium , Bloqueurs de canaux sodiques/pharmacologie , Bloqueurs de canaux sodiques/usage thérapeutique , Triazoles/pharmacologie , Triazoles/usage thérapeutique , Bloqueurs de canaux sodiques voltage-dépendants/pharmacologie , Bloqueurs de canaux sodiques voltage-dépendants/usage thérapeutique
15.
Respir Physiol Neurobiol ; 299: 103856, 2022 05.
Article de Anglais | MEDLINE | ID: mdl-35114369

RÉSUMÉ

Cough in chronic respiratory diseases is a common symptom associated with significant comorbidities including visceral pain. Available antitussive therapy still has limited efficacy. Recent advances in the understanding of voltage-gated sodium channels (NaVs) lead to the rational hypothesis that subtype NaV1.7 is involved in initiating cough and thus may present a promising therapeutic target for antitussive therapy. We evaluated the antitussive effect of NaV1.7 blocker PF-05089771 administered systemically and topically in awake guinea pigs using capsaicin cough challenge. Compared to vehicle, peroral or inhaled PF-05089771 administration caused about 50-60 % inhibition of cough at the doses that did not alter respiratory rate. We conclude that the NaV1.7 blocker PF-05089771 inhibits cough in a manner consistent with its electrophysiological effect on airway C-fibre nerve terminals.


Sujet(s)
Antitussifs , Canaux sodiques voltage-dépendants , Animaux , Antitussifs/pharmacologie , Antitussifs/usage thérapeutique , Toux/traitement médicamenteux , Cochons d'Inde , Éthers phényliques , Sulfonamides , Bloqueurs de canaux sodiques voltage-dépendants/pharmacologie , Bloqueurs de canaux sodiques voltage-dépendants/usage thérapeutique , Canaux sodiques voltage-dépendants/physiologie
16.
Biomed Pharmacother ; 147: 112671, 2022 Mar.
Article de Anglais | MEDLINE | ID: mdl-35104697

RÉSUMÉ

When peripheral neuropathy occurs due to chemotherapy treatment, it is referred to as chemotherapy-induced peripheral neuropathy (CIPN). Typically, symptoms are sensory rather than motor and include reduced feeling and heightened sensitivity to pressure, pain, temperature, and touch. The pathophysiology of CIPN is very complex, and it involves multiple mechanisms leading to its development which will be described specifically for each chemotherapeutic class. There are currently no approved or effective agents for CIPN prevention, and Duloxetine is the only medication that is an effective treatment against CIPN. There is an unavoidable necessity to develop preventative and treatment approaches for CIPN due to its detrimental impact on patients' lives. The purpose of this review is to examine CIPN, innovative pharmacological and nonpharmacological therapy and preventive strategies for this illness, and future perspectives for this condition and its therapies.


Sujet(s)
Antinéoplasiques/effets indésirables , Neuropathies périphériques/induit chimiquement , Neuropathies périphériques/thérapie , Analgésiques/usage thérapeutique , Antioxydants/usage thérapeutique , Thérapies complémentaires , Humains , Neuroprotecteurs/usage thérapeutique , Acuité des besoins du patient , Neuropathies périphériques/diagnostic , Neuropathies périphériques/traitement médicamenteux , Facteurs de risque , Inhibiteurs de la recapture de la sérotonine et de la noradrénaline/usage thérapeutique , Bloqueurs de canaux sodiques voltage-dépendants/usage thérapeutique
17.
Biochem Soc Trans ; 49(5): 1941-1961, 2021 11 01.
Article de Anglais | MEDLINE | ID: mdl-34643236

RÉSUMÉ

Voltage-dependent Na+ channel activation underlies action potential generation fundamental to cellular excitability. In skeletal and cardiac muscle this triggers contraction via ryanodine-receptor (RyR)-mediated sarcoplasmic reticular (SR) Ca2+ release. We here review potential feedback actions of intracellular [Ca2+] ([Ca2+]i) on Na+ channel activity, surveying their structural, genetic and cellular and functional implications, translating these to their possible clinical importance. In addition to phosphorylation sites, both Nav1.4 and Nav1.5 possess potentially regulatory binding sites for Ca2+ and/or the Ca2+-sensor calmodulin in their inactivating III-IV linker and C-terminal domains (CTD), where mutations are associated with a range of skeletal and cardiac muscle diseases. We summarize in vitro cell-attached patch clamp studies reporting correspondingly diverse, direct and indirect, Ca2+ effects upon maximal Nav1.4 and Nav1.5 currents (Imax) and their half-maximal voltages (V1/2) characterizing channel gating, in cellular expression systems and isolated myocytes. Interventions increasing cytoplasmic [Ca2+]i down-regulated Imax leaving V1/2 constant in native loose patch clamped, wild-type murine skeletal and cardiac myocytes. They correspondingly reduced action potential upstroke rates and conduction velocities, causing pro-arrhythmic effects in intact perfused hearts. Genetically modified murine RyR2-P2328S hearts modelling catecholaminergic polymorphic ventricular tachycardia (CPVT), recapitulated clinical ventricular and atrial pro-arrhythmic phenotypes following catecholaminergic challenge. These accompanied reductions in action potential conduction velocities. The latter were reversed by flecainide at RyR-blocking concentrations specifically in RyR2-P2328S as opposed to wild-type hearts, suggesting a basis for its recent therapeutic application in CPVT. We finally explore the relevance of these mechanisms in further genetic paradigms for commoner metabolic and structural cardiac disease.


Sujet(s)
Signalisation calcique , Calcium/métabolisme , Ouverture et fermeture des portes des canaux ioniques , Myocytes cardiaques/métabolisme , Canal sodique voltage-dépendant NAV1.4/métabolisme , Canal sodique voltage-dépendant NAV1.5/métabolisme , Sodium/métabolisme , Potentiels d'action , Animaux , Sites de fixation , Modèles animaux de maladie humaine , Flécaïnide/usage thérapeutique , Humains , Souris , Canal de libération du calcium du récepteur à la ryanodine/génétique , Canal de libération du calcium du récepteur à la ryanodine/métabolisme , Tachycardie ventriculaire/traitement médicamenteux , Tachycardie ventriculaire/génétique , Tachycardie ventriculaire/métabolisme , Résultat thérapeutique , Bloqueurs de canaux sodiques voltage-dépendants/usage thérapeutique
18.
Neurotherapeutics ; 18(3): 1490-1499, 2021 07.
Article de Anglais | MEDLINE | ID: mdl-34431030

RÉSUMÉ

Genetic testing has yielded major advances in our understanding of the causes of epilepsy. Seizures remain resistant to treatment in a significant proportion of cases, particularly in severe, childhood-onset epilepsy, the patient population in which an underlying causative genetic variant is most likely to be identified. A genetic diagnosis can be explanatory as to etiology, and, in some cases, might suggest a therapeutic approach; yet, a clear path from genetic diagnosis to treatment remains unclear in most cases. Here, we discuss theoretical considerations behind the attempted use of small molecules for the treatment of genetic epilepsies, which is but one among various approaches currently under development. We explore a few salient examples and consider the future of the small molecule approach for genetic epilepsies. We conclude that significant additional work is required to understand how genetic variation leads to dysfunction of epilepsy-associated protein targets, and how this impacts the function of diverse subtypes of neurons embedded within distributed brain circuits to yield epilepsy and epilepsy-associated comorbidities. A syndrome- or even variant-specific approach may be required to achieve progress. Advances in the field will require improved methods for large-scale target validation, compound identification and optimization, and the development of accurate model systems that reflect the core features of human epilepsy syndromes, as well as novel approaches towards clinical trials of such compounds in small rare disease cohorts.


Sujet(s)
Anticonvulsivants/usage thérapeutique , Épilepsie/génétique , Épilepsie/thérapie , Dépistage génétique/méthodes , Thérapie génétique/méthodes , Bloqueurs de canaux sodiques voltage-dépendants/usage thérapeutique , Essais cliniques comme sujet/méthodes , Épilepsie/diagnostic , Humains , Canal sodique voltage-dépendant NAV1.6/génétique , Protéines de tissu nerveux/génétique , Phénytoïne/usage thérapeutique , Canaux potassiques activés par le sodium/génétique , Quinidine/usage thérapeutique
19.
J Ethnopharmacol ; 281: 114495, 2021 Dec 05.
Article de Anglais | MEDLINE | ID: mdl-34364968

RÉSUMÉ

ETHNOPHARMACOLOGICAL RELEVANCE: Allium macrostemon Bunge. is an edible Chinese herb traditionally used for the treatment of thoracic pain, stenocardia, heart asthma and diarrhea. Although its biological potential has been extensively proven such as antioxidant activity, antiplatelet aggregation, vasodilation and antidepressant-like activity, there are no reports in the literature regarding its pharmacological analgesic activity. AIM OF THE STUDY: The study was carried out to examine the anti-nociceptive activity of the crude extract of A. macrostemon bulbs and interpret its likely molecular target. MATERIALS AND METHODS: The bulbs of A. macrostemon were gathered, dried-up, and extracted with water (AMWD). AMWD was subjected to activity testing, using chemical-induced (acetic acid and formalin test) and heat-induced (hot plate) pain models. To evaluate the likely mechanistic strategy involved in the analgesic effect of AMWD, whole-cell patch clamp recordings were conducted in acutely dissociated dorsal root ganglion (DRG) neurons and human embryonic kidney 293T (HEK293T) cells expressing pain-related receptors. Electrophysiological methods were employed to detect the action potentials of DRG neurons and potential targets of A. macrostemon. RESULTS: AMWD showed significant palliative effect in all heat and chemical induced pain assays. Moreover, AMWD significantly reduces the excitability of dorsal root ganglion neurons by reducing the firing frequency of action potentials. Further analysis revealed that voltage-gated sodium channel Nav1.7 is the potential target of A. macrostemon for its analgesic activity. CONCLUSION: This study has brought new scientific evidence of preclinical efficacy of A. macrostemon as an anti-nociceptive agent. Apparently, these effects are involved with the inhibition of the voltage-sensitive Nav1.7 channel contributing to the reduction of peripheral neuronal excitability. Our present study justifies the folkloric usage of A. macrostemon as a remedy for several pain states. Furthermore, A. macrostemon is a good resource for the development of analgesic drugs targeting Nav1.7 channel.


Sujet(s)
Analgésiques/usage thérapeutique , Ciboulette , Douleur/traitement médicamenteux , Extraits de plantes/usage thérapeutique , Bloqueurs de canaux sodiques voltage-dépendants/usage thérapeutique , Acide acétique , Analgésiques/pharmacologie , Animaux , Survie cellulaire/effets des médicaments et des substances chimiques , Formaldéhyde , Ganglions sensitifs des nerfs spinaux/effets des médicaments et des substances chimiques , Ganglions sensitifs des nerfs spinaux/physiologie , Cellules HEK293 , Température élevée , Humains , Locomotion/effets des médicaments et des substances chimiques , Mâle , Souris de lignée C57BL , Canal sodique voltage-dépendant NAV1.7/physiologie , Nocicepteurs/physiologie , Douleur/étiologie , Extraits de plantes/pharmacologie , Racines de plante , Cellules réceptrices sensorielles/effets des médicaments et des substances chimiques , Cellules réceptrices sensorielles/physiologie , Bloqueurs de canaux sodiques voltage-dépendants/pharmacologie
20.
Acta Pharmacol Sin ; 42(8): 1235-1247, 2021 Aug.
Article de Anglais | MEDLINE | ID: mdl-34103689

RÉSUMÉ

Voltage-gated sodium channel Nav1.7 robustly expressed in peripheral nociceptive neurons has been considered as a therapeutic target for chronic pain, but there is no selective Nav1.7 inhibitor available for therapy of chronic pain. Ralfinamide has shown anti-nociceptive activity in animal models of inflammatory and neuropathic pain and is currently under phase III clinical trial for neuropathic pain. Based on ralfinamide, a novel small molecule (S)-2-((3-(4-((2-fluorobenzyl) oxy) phenyl) propyl) amino) propanamide (QLS-81) was synthesized. Here, we report the electrophysiological and pharmacodynamic characterization of QLS-81 as a Nav1.7 channel inhibitor with promising anti-nociceptive activity. In whole-cell recordings of HEK293 cells stably expressing Nav1.7, QLS-81 (IC50 at 3.5 ± 1.5 µM) was ten-fold more potent than its parent compound ralfinamide (37.1 ± 2.9 µM) in inhibiting Nav1.7 current. QLS-81 inhibition on Nav1.7 current was use-dependent. Application of QLS-81 (10 µM) caused a hyperpolarizing shift of the fast and slow inactivation of Nav1.7 channel about 7.9 mV and 26.6 mV, respectively, and also slowed down the channel fast and slow inactivation recovery. In dissociated mouse DRG neurons, QLS-81 (10 µM) inhibited native Nav current and suppressed depolarizing current pulse-elicited neuronal firing. Administration of QLS-81 (2, 5, 10 mg· kg-1· d-1, i.p.) in mice for 10 days dose-dependently alleviated spinal nerve injury-induced neuropathic pain and formalin-induced inflammatory pain. In addition, QLS-81 (10 µM) did not significantly affect ECG in guinea pig heart ex vivo; and administration of QLS-81 (10, 20 mg/kg, i.p.) in mice had no significant effect on spontaneous locomotor activity. Taken together, our results demonstrate that QLS-81, as a novel Nav1.7 inhibitor, is efficacious on chronic pain in mice, and it may hold developmental potential for pain therapy.


Sujet(s)
Analgésiques/usage thérapeutique , Fluorobenzènes/usage thérapeutique , Canal sodique voltage-dépendant NAV1.7/métabolisme , Névralgie/traitement médicamenteux , Bloqueurs de canaux sodiques voltage-dépendants/usage thérapeutique , Potentiels d'action/effets des médicaments et des substances chimiques , Animaux , Formaldéhyde , Ganglions sensitifs des nerfs spinaux/cytologie , Ganglions sensitifs des nerfs spinaux/effets des médicaments et des substances chimiques , Cochons d'Inde , Cellules HEK293 , Humains , Inflammation/induit chimiquement , Inflammation/complications , Mâle , Souris de lignée C57BL , Névralgie/induit chimiquement , Névralgie/étiologie , Neurones/effets des médicaments et des substances chimiques , Nerfs spinaux/traumatismes
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE