Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 200
Filtrer
1.
Environ Monit Assess ; 196(10): 990, 2024 Sep 30.
Article de Anglais | MEDLINE | ID: mdl-39349862

RÉSUMÉ

This research describes an easy, rapid, and inexpensive magnetic solid-phase extraction (MSPE) approach employing Fe3O4 magnetic nanoparticles modified with cetylpyridinium chloride (Fe3O4@CPC/MNPs) for extracting amoxicillin (AMX) and doxycycline (DOX) after derivatization with 4-chloroaniline as a color reagent. The azo-coupling of AMX and DOX with the color reagent in the alkaline medium caused yellow and yellow-orange azo dyes with maximum absorption wavelengths of 435 and 438 nm, respectively. The UV-Vis spectroscopy was utilized to determine the target analyte after the extraction procedure. Good linearities (R2 > 0.99) in the concentration ranges of 0.03-4.50 and 0.05-6.00 µg/mL were obtained for AMX and DOX, respectively. The experimental detection limits of AMX and DOX were obtained as 0.01 and 0.02 µg/mL, respectively. The developed approach was effectively applied to pre-concentrate and quantify AMX and DOX in environmental water and urine samples.


Sujet(s)
Amoxicilline , Cétylpyridinium , Doxycycline , Nanoparticules de magnétite , Extraction en phase solide , Polluants chimiques de l'eau , Extraction en phase solide/méthodes , Amoxicilline/composition chimique , Amoxicilline/urine , Polluants chimiques de l'eau/analyse , Cétylpyridinium/composition chimique , Doxycycline/composition chimique , Doxycycline/urine , Nanoparticules de magnétite/composition chimique , Spectrophotométrie , Surveillance de l'environnement/méthodes , Antibactériens/urine , Antibactériens/analyse , Antibactériens/composition chimique
2.
J Appl Biomater Funct Mater ; 22: 22808000241248886, 2024.
Article de Anglais | MEDLINE | ID: mdl-38678374

RÉSUMÉ

OBJECTIVE: To evaluate the effect of COVID-19 preventive mouthwashes on the surface hardness, surface roughness (Ra), and color change (ΔE) of three different polymer-based composite CAD/CAM materials (Vita Enamic (ENA), Grandio Block (GB), Lava Ultimate (LU)). METHODS: A total of 100 rectangular-shaped specimens with dimensions of 2 mm × 7 mm × 12 mm were obtained by sectioning three different CAD/CAM blocks and randomly divided into five subgroups according to the 30 days of mouthwash immersion protocol as follows: Control: artificial saliva, PVP-I: 1% povidone-iodine, HP: 1.5% hydrogen peroxide, CPC: mouthwash containing 0.075% cetylpyridinium chloride, EO: mouthwash containing essential oils. Microhardness, Ra, and ΔE values were measured at baseline and after 30 days of immersion protocols. Data were analyzed using the Wald Chi-square, two-way ANOVA, and post hoc Tukey tests. RESULTS: The independent factors (materials and solutions) significantly influenced the microhardness and color (p < 0.001). Ra of the materials was not affected by any of the mouthwashes (p > 0.05). The microhardness and color of each material varied significantly after immersion in PvP-I and HP (p < 0.05). The highest percentage change in microhardness, Ra, and ΔE was found in LU immersed in PvP-I and HP mouthwashes, while the lowest change was found in ENA groups (p < 0.05). CONCLUSION: Within the limitations of this study, it was found that the surface hardness and color of tested polymer-based composite CAD/CAM materials are susceptible to degradation and change after 30 days of immersion in 1% PvP-I and 1.5% HP mouthwashes.


Sujet(s)
Antiviraux , Céramiques , Dureté , Bains de bouche , Propriétés de surface , Bains de bouche/composition chimique , Antiviraux/composition chimique , Couleur , Test de matériaux , Cétylpyridinium/composition chimique , Résines composites/composition chimique , Humains , Conception assistée par ordinateur , COVID-19 , Povidone iodée/composition chimique , Peroxyde d'hydrogène/composition chimique
3.
Food Chem Toxicol ; 186: 114547, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38408634

RÉSUMÉ

People are exposed to high concentrations of antibacterial agent cetylpyridinium chloride (CPC) via food and personal care products, despite little published information regarding CPC effects on eukaryotes. Here, we show that low-micromolar CPC exposure, which does not cause cell death, inhibits mitochondrial ATP production in primary human keratinocytes, mouse NIH-3T3 fibroblasts, and rat RBL-2H3 immune mast cells. ATP inhibition via CPC (EC50 1.7 µM) is nearly as potent as that caused by canonical mitotoxicant CCCP (EC50 1.2 µM). CPC inhibition of oxygen consumption rate (OCR) tracks with that of ATP: OCR is halved due to 1.75 µM CPC in RBL-2H3 cells and 1.25 µM in primary human keratinocytes. Mitochondrial [Ca2+] changes can cause mitochondrial dysfunction. Here we show that CPC causes mitochondrial Ca2+ efflux from mast cells via an ATP-inhibition mechanism. Using super-resolution microscopy (fluorescence photoactivation localization) in live cells, we have discovered that CPC causes mitochondrial nanostructural defects in live cells within 60 min, including the formation of spherical structures with donut-like cross section. This work reveals CPC as a mitotoxicant despite widespread use, highlighting the importance of further research into its toxicological safety.


Sujet(s)
Anti-infectieux locaux , Anti-infectieux , Souris , Humains , Rats , Animaux , Cétylpyridinium/composition chimique , Cétylpyridinium/pharmacologie , Rodentia , Anti-infectieux/pharmacologie , Mitochondries , Adénosine triphosphate
4.
Environ Sci Pollut Res Int ; 29(42): 64177-64191, 2022 Sep.
Article de Anglais | MEDLINE | ID: mdl-35471759

RÉSUMÉ

We engineered a tiger nut residue (TNR, a low-cost agricultural waste material) through a facile and simple process to take advantage of the introduced functional groups (cetylpyridinium chloride, CPC) in the removal of 2,4-dichlorophenoxyacetic acid (2,4-D) in batch mode and further investigated its impingement on bacterial growth in a yeast-dextrose broth. The surface characterizations of the adsorbent were achieved through Fourier-transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller method (BET), X-ray diffraction analysis (XRD), and X-ray photoelectron spectroscopy (XPS). The batch adsorption studies revealed that solution pH, adsorbent dose, temperature, and salt affected the adsorptive capacity of TNR-CPC. The equilibrium data were best fitted by Langmuir isotherm model with a maximum monolayer adsorption capacity of 90.2 mg g-1 at 318 K and pH 3. Pseudo-second-order model best fitted the kinetics data for the adsorption process. Physisorption largely mediated the adsorption system with spontaneity and a shift in entropy of the aqueous solid-solute interface reflecting decreased randomness with an exothermic character. TNR-CPC demonstrated a good reusability potential making it highly economical and compares well with other adsorbents for decontamination of 2,4-D. The adsorption of 2,4-D proceeded through a probable trio-mechanism; electrostatic attraction between the carboxylate anion of 2,4-D and the pyridinium cation of TNR-CPC, hydrogen bonding between the hydroxyl (-OH) group inherent in the TNR and the carboxyl groups in 2,4-D and a triggered π-π stacking between the benzene structures in the adsorbate and the adsorbent. TNR-CPC reported about 99% inhibition rate against both gram-positive S. aureus and gram-negative E. coli. It would be appropriate to investigate the potential of TNR-CPC as a potential replacement to the metal oxides used in wastewater treatment for antibacterial capabilities, and its effects against airborne bacteria could also be of interest.


Sujet(s)
Cétylpyridinium , Polluants chimiques de l'eau , Acide 2,4-dichlorophénoxy-acétique , Adsorption , Antibactériens/pharmacologie , Benzène , Cétylpyridinium/composition chimique , Escherichia coli , Glucose , Concentration en ions d'hydrogène , Cinétique , Oxydes , Spectroscopie infrarouge à transformée de Fourier , Staphylococcus aureus , Thermodynamique , Polluants chimiques de l'eau/composition chimique
5.
Toxicol Appl Pharmacol ; 440: 115913, 2022 04 01.
Article de Anglais | MEDLINE | ID: mdl-35149080

RÉSUMÉ

The COVID-19 pandemic raises significance for a potential influenza therapeutic compound, cetylpyridinium chloride (CPC), which has been extensively used in personal care products as a positively-charged quaternary ammonium antibacterial agent. CPC is currently in clinical trials to assess its effects on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) morbidity. Two published studies have provided mouse and human data indicating that CPC may alleviate influenza infection, and here we show that CPC (0.1 µM, 1 h) reduces zebrafish mortality and viral load following influenza infection. However, CPC mechanisms of action upon viral-host cell interaction are currently unknown. We have utilized super-resolution fluorescence photoactivation localization microscopy to probe the mode of CPC action. Reduction in density of influenza viral protein hemagglutinin (HA) clusters is known to reduce influenza infectivity: here, we show that CPC (at non-cytotoxic doses, 5-10 µM) reduces HA density and number of HA molecules per cluster within the plasma membrane of NIH-3T3 mouse fibroblasts. HA is known to colocalize with the negatively-charged mammalian lipid phosphatidylinositol 4,5-bisphosphate (PIP2); here, we show that nanoscale co-localization of HA with the PIP2-binding Pleckstrin homology (PH) reporter in the plasma membrane is diminished by CPC. CPC also dramatically displaces the PIP2-binding protein myristoylated alanine-rich C-kinase substrate (MARCKS) from the plasma membrane of rat RBL-2H3 mast cells; this disruption of PIP2 is correlated with inhibition of mast cell degranulation. Together, these findings offer a PIP2-focused mechanism underlying CPC disruption of influenza and suggest potential pharmacological use of this drug as an influenza therapeutic to reduce global deaths from viral disease.


Sujet(s)
COVID-19 , Grippe humaine , Animaux , Humains , Souris , Rats , Communication cellulaire , Cétylpyridinium/composition chimique , Cétylpyridinium/pharmacologie , Immunité , Mammifères , Microscopie de fluorescence , Pandémies , Phosphatidyl inositols , SARS-CoV-2 , Danio zébré
6.
Environ Sci Pollut Res Int ; 29(13): 18932-18943, 2022 Mar.
Article de Anglais | MEDLINE | ID: mdl-34704229

RÉSUMÉ

Using biomass wastes as adsorbents is a promising option for organic waste reclamation, but unfortunately, their adsorption capacity is usually limited, especially for hydrophobic organic pollutants. To address this issue, this work prepared cetylpyridinium chloride (a cationic surfactant)-modified pine sawdust (CPC-PS) and further demonstrated their performance for hydrophobic bisphenol A (BPA) and 2,4-dichlorophenol (DCP) adsorption. Compared to the PS, the CPC-PS improved the maximum adsorption capacity for BPA and DCP by approximately 98% and 122%, respectively. The kinetic and thermodynamic analyses showed that the BPA and DCP adsorption onto the CPC-PS fitted the pseudo-second-order kinetics and the Freundlich model. After regeneration using NaOH, the adsorption capacity of the CPC-PS for BPA still maintained 80.2% of the initial value after five cycles. Based on the experimental results, the CPC-PS was proposed to enhance the BPA and DCP adsorption through the solubilization of hemimicelles for hydrophobic organic pollutants, the π-π stacking between benzene-ring structures, and the hydrogen binding between the adsorbents and the pollutants. This work provides a viable method to use surfactant-modified pine sawdust as effective adsorbents to remove hydrophobic pollutants.


Sujet(s)
Cétylpyridinium , Polluants chimiques de l'eau , Adsorption , Composés benzhydryliques , Cétylpyridinium/composition chimique , Chlorophénols , Concentration en ions d'hydrogène , Cinétique , Phénols , Thermodynamique , Polluants chimiques de l'eau/analyse
7.
Molecules ; 26(7)2021 Apr 01.
Article de Anglais | MEDLINE | ID: mdl-33916013

RÉSUMÉ

Periodontal diseases like gingivitis and periodontitis are primarily caused by dental plaque. Several antiplaque and anti-microbial agents have been successfully incorporated into toothpastes and mouthwashes to control plaque biofilms and to prevent and treat gingivitis and periodontitis. The aim of this article was to review recent developments in the antiplaque, anti-gingivitis, and anti-periodontitis properties of some common compounds in toothpastes and mouthwashes by evaluating basic and clinical studies, especially the ones published in the past five years. The common active ingredients in toothpastes and mouthwashes included in this review are chlorhexidine, cetylpyridinium chloride, sodium fluoride, stannous fluoride, stannous chloride, zinc oxide, zinc chloride, and two herbs-licorice and curcumin. We believe this comprehensive review will provide useful up-to-date information for dental care professionals and the general public regarding the major oral care products on the market that are in daily use.


Sujet(s)
Bains de bouche/analyse , Bains de bouche/composition chimique , Maladies parodontales/prévention et contrôle , Pâtes dentifrices/analyse , Pâtes dentifrices/composition chimique , Anti-infectieux locaux/composition chimique , Anti-infectieux locaux/pharmacologie , Cétylpyridinium/composition chimique , Cétylpyridinium/pharmacologie , Chlorures/composition chimique , Chlorures/pharmacologie , Humains , Maladies parodontales/étiologie , Maladies parodontales/anatomopathologie , Extraits de plantes/composition chimique , Extraits de plantes/pharmacologie , Fluorure de sodium/composition chimique , Fluorure de sodium/pharmacologie , Fluorures d'étain/analyse , Fluorures d'étain/composition chimique , Fluorures d'étain/pharmacologie , Composés du zinc/composition chimique , Composés du zinc/pharmacologie
8.
Molecules ; 26(4)2021 Feb 06.
Article de Anglais | MEDLINE | ID: mdl-33562133

RÉSUMÉ

Bymeans of spectrophotometric titration and NMR spectroscopy, the selective binding ability ofthe Co(III)-5,15-bis-(3-hydroxyphenyl)-10,20-bis-(4-sulfophenyl)porphyrin (Со(III)Р1) andCo(III)-5,15-bis-(2-hydroxyphenyl)-10,20-bis-(4-sulfophenyl)porphyrin (Со(III)Р2) towards imidazole derivatives of various nature (imidazole (L1), metronidazole (L2), and histamine (L3)) in phosphate buffer (pH 7.4) has been studied. It was found that in the case of L2, L3 the binding of the "first" ligand molecule by porphyrinatesCo(III)P1 and Co(III)P2 occurs with the formation of complexes with two binding sites (donor-acceptor bond at the center and hydrogen bond at the periphery of the macrocycle), while the "second" ligand molecule is added to the metalloporphyrin only due to the formation of the donor-acceptor bond at the macrocycle coordination center. The formation of stable complexes with two binding sites has been confirmed by density functional theory method (DFT) quantum chemical calculations and two-dimensional NMR experiments. It was shown that among the studied porphyrinates, Co(III)P2 is more selective towards to L1-L3 ligands, and localization of cobalt porphyrinates in cetylpyridinium chloride (CPC) micelles does not prevent the studied imidazole derivatives reversible binding. The obtained materials can be used to develop effective receptors for recognition, delivery, and prolonged release of drug compounds to the sites of their functioning. Considering that cetylpyridinium chloride is a widely used cationic biocide as a disinfectant, the designed materials may also prove to be effective antimicrobial agents.


Sujet(s)
Cétylpyridinium/composition chimique , Cobalt/composition chimique , Imidazoles/composition chimique , Métalloporphyrines/composition chimique , Phosphates/composition chimique , Substances tampon , Concentration en ions d'hydrogène , Modèles moléculaires , Conformation moléculaire , Solutions
9.
Molecules ; 26(4)2021 Feb 04.
Article de Anglais | MEDLINE | ID: mdl-33557189

RÉSUMÉ

The physical and mechanical properties of nitrile-butadiene rubber (NBR) composites with N-cetylpyridinium bromide-carbon black (CPB-CB) were investigated. Addition of 5 parts per hundred rubber (phr) of CPB-CB into NBR improved the tensile strength by 124%, vulcanization rate by 41%, shore hardness by 15%, and decreased the volumetric wear by 7% compared to those of the base rubber-CB composite.


Sujet(s)
Butadiènes/composition chimique , Cétylpyridinium/composition chimique , Phénomènes mécaniques , Nitriles/composition chimique , Phénomènes physiques , Caoutchouc/composition chimique , Suie/composition chimique
10.
J Mater Chem B ; 8(40): 9304-9313, 2020 10 21.
Article de Anglais | MEDLINE | ID: mdl-32966540

RÉSUMÉ

Currently, bacterial infection due to multi-drug-resistant bacteria is one of the foremost problems in public health. Photodynamic therapy plays a significant role against bacterial infection, without causing any side effects. But the photosensitizers are associated with many drawbacks, which lessen their photodynamic efficiency. In this context, the current study describes the synthesis of new metallocatanionic vesicles and employs them in photodynamic therapy. These vesicles were synthesized by using a single-chain cationic metallosurfactant (CuCPC I) and sodium oleate (NaOl) as an anionic component. These vesicles were characterized from conductivity, dynamic light scattering, zeta potential, field emission scanning electron microscopy, and confocal microscopy measurements. Methylene blue (MB) was used as a photosensitizer and its singlet oxygen quantum yield in the presence of these vesicles was determined by irradiating with 650 nm wavelength laser light. These vesicles play a dual-functional role, one helping in delivering the photosensitizer and the second doubling their singlet oxygen production capability due to the presence of metal ions. Antibacterial photodynamic therapy (aPDT) was studied against E. coli bacteria (Gram-negative bacteria). These vesicles also inherit their antibacterial activity and MB-encapsulated metallocatanionic vesicles on irradiation have shown 100% killing efficiency. In summary, we offer metallocatanionic vesicles prepared via a facile approach, which encapsulate a photosensitizer and can be used to combat E. coli infection through photodynamic therapy. We envisage that these synthesized metallocatanionic vesicles will provide a new modification to the catanionic mixture family and could be used for various applications in the future.


Sujet(s)
Antibactériens/pharmacologie , Escherichia coli/effets des médicaments et des substances chimiques , Liposomes/composition chimique , Bleu de méthylène/pharmacologie , Photosensibilisants/pharmacologie , Tensioactifs/composition chimique , Antibactériens/effets des radiations , Cétylpyridinium/composition chimique , Cuivre/composition chimique , Escherichia coli/métabolisme , Lumière , Bleu de méthylène/effets des radiations , Tests de sensibilité microbienne , Acide oléique/composition chimique , Photothérapie dynamique , Photosensibilisants/effets des radiations , Oxygène singulet/métabolisme
11.
PLoS One ; 15(8): e0236700, 2020.
Article de Anglais | MEDLINE | ID: mdl-32750088

RÉSUMÉ

Mycobacterial culture remains the gold standard for the diagnosis of tuberculosis. However, an appropriate digestion and decontamination method (DDM) is essential for the effective recovery of tubercle bacilli in culture. Therefore, the current study was designed to compare the performance of papain-cetylpyridinium chloride [papain-CPC] and pepsin-cetylpyridinium chloride [pepsin-CPC] DDMs against N-acetyl L-Cysteine-sodium hydroxide (NALC-NaOH) DDM for recovery of mycobacteria from clinically suspected pulmonary tuberculosis cases. To evaluate papain-CPC, pepsin-CPC and NALC-NaOH DDMs, sputum samples (N = 1381) were cultured on Löwenstein-Jensen medium and the results were compared. The papain-CPC DDM showed sensitivity, specificity, positive predictive value, and negative predictive value of 100%, 93.27%, 71.7%, and 100%, respectively as compared to NALC-NaOH DDM. Similarly, pepsin-CPC DDM demonstrated sensitivity, specificity, positive predictive value and negative predictive value of 98.94%, 94.7%, 76.11%, and 99.81%, respectively. In summary, both papain-CPC and pepsin-CPC DDMs are highly sensitive and specific techniques for recovery of mycobacteria as compared to NALC-NaOH DDM. However, when the overall performances of all DDMs compared, papain-CPC DDM isolated increased number of mycobacterial isolates with comparatively higher numbers of colonies on LJ media than both pepsin-CPC and NALC-NaOH DDMs, indicating its potential to replace the NALC-NaOH DDM for recovery of mycobacteria from sputum samples.


Sujet(s)
Techniques bactériologiques/méthodes , Milieux de culture/composition chimique , Mycobacterium tuberculosis/isolement et purification , Expectoration/microbiologie , Tuberculose pulmonaire/microbiologie , Acétylcystéine/composition chimique , Cétylpyridinium/composition chimique , Humains , Papaïne/composition chimique , Pepsine A/composition chimique , Sensibilité et spécificité , Manipulation d'échantillons
12.
J Microbiol Methods ; 175: 105968, 2020 08.
Article de Anglais | MEDLINE | ID: mdl-32479871

RÉSUMÉ

The standard procedure for the improved cultural recovery of viable Mycobacterium spp. from diverse samples mainly depends on reducing the viability of background microbiota using different chemical compounds. This study was designed to i) evaluate the efficacy and comparison between N-Acetyl-l-Cysteine-Sodium hydroxide (NALC-2% NaOH) and hexadecylpyridinium chloride (0.75% HPC) treatment and exposure time on reducing the viability of undesirable microorganisms with minimal impact on colostrum consistency; and ii) assess the impact of NALC-2% NaOH on improved and enhanced recovery of Mycobacterium avium subsp. paratuberculosis (MAP) in spiked postpartum colostrum samples and consistency of colostrum. A total of 40 samples, each treated with NALC-2% NaOH for 15 min or 0.75% HPC for 5 h, were investigated for total mesophilic aerobic bacteria (MAB) and enterobacteria (EB) (CFU mL-1). The results showed that treatment of colostrum samples with NALC-2% NaOH completely eliminated EB and significantly reduced MAB (3.6 log10 CFU mL-1). Conversely, samples treated with 0.75% HPC produced a complex mixture following interaction with the colostrum protein and showed non-significant and variable results. In addition, the spiked colostrum treated with NALC-2% NaOH for 15 min revealed recovery of viable MAP cells with a minimum limit of detection of 1.36 log10 CFU 10 mL-1 where no change in the consistency of colostrum was observed. In conclusion, 15-min NALC-2% NaOH treatment of colostrum may significantly reduce the viability of undesirable microorganisms and help to enhance the efficient recovery of MAP without impacting the consistency of high quality postpartum colostrum. This rapid procedure is suitable for efficient recovery and early detection of MAP as well as preventing its transmission to neonates and young calves in MAP infected herds.


Sujet(s)
Maladies des bovins , Colostrum/microbiologie , Décontamination/méthodes , Mycobacterium avium ssp. paratuberculosis/isolement et purification , Paratuberculose , Acétylcystéine/composition chimique , Animaux , Bovins , Maladies des bovins/diagnostic , Maladies des bovins/microbiologie , Cétylpyridinium/composition chimique , Femelle , Viabilité microbienne , Paratuberculose/diagnostic , Paratuberculose/microbiologie , Grossesse , Hydroxyde de sodium/composition chimique
13.
Int J Pharm ; 580: 119199, 2020 Apr 30.
Article de Anglais | MEDLINE | ID: mdl-32147494

RÉSUMÉ

Previously, we reported on the surfactant cetylpyridinium chloride (CPC) as a crosslinker of alginate for the formation of stable polyelectrolyte-surfactant-complex nanoparticles. Here, we evaluate this system for increased solubility of a poorly soluble drug. The aim was to use CPC for solubilisation of ibuprofen and to use the micellar associates formed for alginate complexation and nanoparticle formation. We acquired deeper insights into the entropy led interactions between alginate, CPC and ibuprofen. Stable nanoparticles were formed across limited surfactant-to-polyelectrolyte molar ratios, with ~150 nm hydrodynamic diameter, monodispersed distribution, and negative zeta potential (-40 mV), with 34% ibuprofen loading. Their structure was obtained using small-angle X-ray scattering, which indicated disordered micellar associates when ibuprofen was incorporated. This resulted in nanoparticles with a complex nanostructured composition, as shown by transmission electron microscopy. Drug release from ibuprofen-cetylpyridinium-alginate nanoparticles was not hindered by alginate, and was similar to the release kinetics from ibuprofen-CPC solubilisates. These innovative carriers developed as polyelectrolyte-surfactant complexes can be used for solubilisation of poorly soluble drugs, where the surfactant simultaneously increases the solubility of the drug at concentrations below its critical micellar concentration and crosslinks the polyelectrolyte to form nanoparticles.


Sujet(s)
Alginates/métabolisme , Cétylpyridinium/métabolisme , Ibuprofène/métabolisme , Nanoparticules/métabolisme , Polyélectrolytes/métabolisme , Tensioactifs/métabolisme , Alginates/administration et posologie , Alginates/composition chimique , Cétylpyridinium/administration et posologie , Cétylpyridinium/composition chimique , Systèmes de délivrance de médicaments/méthodes , Libération de médicament , Ibuprofène/administration et posologie , Ibuprofène/composition chimique , Nanoparticules/administration et posologie , Nanoparticules/composition chimique , Polyélectrolytes/administration et posologie , Polyélectrolytes/composition chimique , Diffusion aux petits angles , Solubilité , Tensioactifs/administration et posologie , Tensioactifs/composition chimique , Thermodynamique
14.
Biomed Mater ; 15(5): 055002, 2020 07 01.
Article de Anglais | MEDLINE | ID: mdl-32217814

RÉSUMÉ

In this study, a cetylpyridinium bromide (CPB)/montmorillonite-graphene oxide (GM) composite (GM-CPB) was prepared by loading CPB in a carrier of GM. The chemical structure, elemental composition, morphology, thermogravimetric analysis, antibacterial activity, sustained release property and cytotoxicity were analyzed. The loading rate of CPB in a GM carrier was higher than that of the graphene oxide (GO) carrier under the same loading condition. The antibacterial activity and sustained release performance of GM-CPB were also better than that of GO-CPB; furthermore, GM-CPB showed lower cytotoxicity than CPB.


Sujet(s)
Antibactériens/composition chimique , Bentonite/composition chimique , Matériaux biocompatibles/composition chimique , Bromures/composition chimique , Cétylpyridinium/composition chimique , Graphite/composition chimique , Adsorption , Animaux , Chimie pharmaceutique , Escherichia coli , Test de matériaux , Souris , Cellules NIH 3T3 , Poudres , Staphylococcus aureus , Thermogravimétrie , Diffraction des rayons X
15.
Colloids Surf B Biointerfaces ; 188: 110791, 2020 Apr.
Article de Anglais | MEDLINE | ID: mdl-31955019

RÉSUMÉ

The main objective of the present study was the preparation and characterization of new cationic/anionic surfactants and Cu2+/Zn2+ modified montmorillonites and the evaluation of their potential applicability as antibacterial agents for topical applications. To evaluate the antibacterial activity of Cu2+ and Zn2+ by synergistic effect, as well as to reduce the well-known toxicity of these metal cations; cetylpyridinium (CP) and N-lauroylsarcosinate (SR) intercalated montmorillonite (Mt-CP-SR) was used as the host material. In addition to their role to capture the metal cations and inhibit their release in any contact medium, these surfactants also increase the efficacy of the material due to their antibacterial properties. The effect of surfactant loading on the adsorption behavior of the metal cations onto the Mt-CP was investigated using SR in two different concentrations, namely 0.7 and 1.0 CEC of sodium montmorillonite (Mt-Na). The samples prepared were characterized using SEM, ATR-FTIR, zeta potential, and XRD analyses and they were subjected to antibacterial tests using the "Standard Method Under Dynamic Contact Conditions" on the Gram positive S. aureus, and Gram negative E. coli. As confirmed with desorption and characterization studies, the addition of Cu2+/Zn2+ onto the Mt-CP-SR yielded double adsorbed amounts compared to that of the Mt-CP, which indicated that Cu2+/Zn2+ bound to SR- interacted with the Mt surface. In contrary of Zn2+ caused no considerable change in the antibacterial effect of the host, Cu2+ addition enhanced the antibacterial activity. The produced antibacterial agents have the potential use in dyes, polymer composites, personal care products, and topical medicinal applications.


Sujet(s)
Antibactériens/pharmacologie , Bentonite/pharmacologie , Cétylpyridinium/pharmacologie , Cuivre/pharmacologie , Sarcosine/analogues et dérivés , Zinc/pharmacologie , Adsorption , Antibactériens/synthèse chimique , Antibactériens/composition chimique , Bentonite/composition chimique , Cétylpyridinium/composition chimique , Cuivre/composition chimique , Escherichia coli/effets des médicaments et des substances chimiques , Tests de sensibilité microbienne , Taille de particule , Sarcosine/composition chimique , Sarcosine/pharmacologie , Staphylococcus aureus/effets des médicaments et des substances chimiques , Propriétés de surface , Zinc/composition chimique
16.
Chem Biol Interact ; 317: 108962, 2020 Feb 01.
Article de Anglais | MEDLINE | ID: mdl-31982400

RÉSUMÉ

Quaternary ammonium compounds (e.g., benzalkonium chloride (BAC) and cetylpyridinium chloride (CPC)) constitute a group of cationic surfactants are widely used for personal hygiene and medical care despite the potential pulmonary toxicity. To examine whether BAC and CPC aerosols deposited in the alveolar region alter pulmonary function, we studied the effects on pulmonary surfactant using two-step in vitro models; cytotoxicity using A549 alveolar epithelial cell and changes in surface activity of the pulmonary surfactant monolayer using both Surfacten® and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). Cell viability was decreased with BAC and CPC dose-dependently. A comparison of cytotoxicity among BAC homologues with different length of alkyl chain showed that C16-BAC, which has the longest alkyl chain, was more cytotoxic than C12- or C14-BAC. Caspase-3/7 activity and cleaved form of caspase-3 and PARP were increased in BAC- and CPC-exposed cells. The elevated caspase-3/7 activity and their cleaved active forms were abolished by caspase-3-inhibitor. Furthermore, we examined the features of the surface pressure/trough area (π-A) isotherm by the Langmuir-Wilhelmy method and atomic force microscopy (AFM) images of lipid monolayers on a subphase containing BAC, CPC, or pyridinium chloride (PC, as a control). The π-A isotherms showed that addition of BAC or CPC yielded dose-dependent increases in surface pressure without compression, indicating that BAC and CPC expand the isotherm to larger areas at lower pressure. The collapse pressure diminished with increasing concentration of CPC. Topographic images indicated that BAC and CPC resulted in smaller condensed lipid domains compared to the control. Conversely, PC without hydrocarbon tail group, showed no cytotoxicity and did not change the isotherms and AFM images. These results indicate that BAC and CPC cause cell death via caspase-3-dependent apoptotic pathway in A549 cells and alter the alveolar surfactant activity. These effects can be attributed to the long alkyl chain of BAC and CPC.


Sujet(s)
Apoptose/effets des médicaments et des substances chimiques , Composés de benzalkonium/pharmacologie , Cétylpyridinium/pharmacologie , Cellules épithéliales/effets des médicaments et des substances chimiques , Poumon/cytologie , Muqueuse respiratoire/cytologie , Cellules A549 , Composés de benzalkonium/composition chimique , Survie cellulaire/effets des médicaments et des substances chimiques , Cétylpyridinium/composition chimique , Humains , Tensioactifs/métabolisme
17.
Toxins (Basel) ; 11(11)2019 11 18.
Article de Anglais | MEDLINE | ID: mdl-31752226

RÉSUMÉ

Zearalenone (ZEN) is a non-steroidal estrogenic mycotoxin and constitutes a potential health threat to humans and livestock. This study aimed to explore the potential of albite modified by the cationic surfactant cetylpyridinium chloride (CPC) as ZEN adsorbent. The organoalbite (OA) was characterized by SEM analysis, XRD analysis, FTIR spectroscopy, thermal analysis, and BET gas sorption measurement. In vitro adsorption of ZEN by OA was carried out by simulating the pH conditions of the gastrointestinal tract. The characterization results showed that the surface of OA changed from hydrophilic to hydrophobic after modification. Adsorption kinetic studies showed that ZEN adsorption behavior of OA occurred by chemisorption. The equilibrium adsorption data fitted well with the Langmuir isotherm, indicating that the adsorption process of ZEN by OA was monolayer. The maximum adsorption capacity (qm) values of OA for ZEN were 10.580 and 9.287 mg/g at pH 7 and pH 3, respectively. In addition, OA had a low desorption rate (about 2%), and co-existing amino acids (i.e., Lys and Met), vitamins (i.e., VB1 and VE), and minerals (i.e., Fe2+ and Ca2+) did not affect the removal of ZEN. These results demonstrate that OA could be a promising mycotoxin adsorbent for removing the hydrophobic, weakly polar ZEN.


Sujet(s)
Cétylpyridinium/composition chimique , Oestrogènes nonstéroïdiens/composition chimique , Zéaralénone/composition chimique , Adsorption , Oestrogènes nonstéroïdiens/isolement et purification , Cinétique , Microscopie électronique à balayage , Spectroscopie infrarouge à transformée de Fourier , Diffraction des rayons X , Zéaralénone/isolement et purification
18.
J Clin Microbiol ; 57(7)2019 07.
Article de Anglais | MEDLINE | ID: mdl-31092592

RÉSUMÉ

We compared cetylpyridinium chloride (CPC), ethanol (ETOH), and OMNIgene.SPUTUM (OMNI) for 28-day storage of sputum at ambient temperature before molecular tuberculosis diagnostics. Three sputum samples were collected from each of 133 smear-positive tuberculosis (TB) patients (399 sputum samples). Each patient's sputum was stored with either CPC, ETOH, or OMNI for 28 days at ambient temperature, with subsequent rpoB amplification targeting a short fragment (81 bp, GeneXpert MTB/RIF [Xpert]) or a long fragment (1,764 bp, in-house nested PCR). For 36 patients, Xpert was also performed at baseline on all 108 fresh sputum samples. After the 28-day storage (D28), Xpert positivity did not significantly differ between storage methods. In contrast, higher positivity for rpoB nested PCR was obtained with OMNI (n = 125, 94%) than with ETOH (n = 114, 85.7%; P = 0.001). Smears with scanty acid-fast bacilli (AFB) had lower rpoB PCR positivity with ETOH storage (n = 10, 41.7%) than with CPC (n = 16, 66.7%; difference, 25%; 95% confidence interval [CI], 3.5 to 46.5; P = 0.031) or OMNI (n = 16, 69.6%; difference, 26.1%; 95% CI, 3.8 to 48.4; P = 0.031), with no difference between CPC and OMNI. Poststorage, the threshold cycle (CT ) values significantly decreased compared to those prestorage with ETOH (difference, -1.1; 95% CI, -1.6 to -0.6; P = 0.0001) but not with CPC (P = 0.915) or OMNI (P = 0.33). For one patient's ETOH- and CPC-stored specimens with a CT of <10, Xpert gave results of rifampin false resistant at D28, which was resolved by repeating Xpert on a 1/100 diluted specimen. In conclusion, 28-day storage of sputum in OMNI, CPC, or ETOH at ambient temperature does not impact short-fragment PCR (Xpert), including for low smear grades. However, for long-fragment PCR, ETOH yielded a lower PCR positivity for low smear grades, while the performance of OMNI and CPC was excellent for all smear grades. (The study has been registered at ClinicalTrials.gov under registration number NCT02744469.).


Sujet(s)
Mycobacterium tuberculosis/isolement et purification , Manipulation d'échantillons/méthodes , Expectoration/microbiologie , Tuberculose/diagnostic , Cétylpyridinium/composition chimique , Éthanol/composition chimique , Humains , Techniques de diagnostic moléculaire/méthodes , Mycobacterium tuberculosis/génétique , Facteurs temps
19.
Colloids Surf B Biointerfaces ; 180: 177-185, 2019 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-31048243

RÉSUMÉ

One of the main toxicities associated to intravenous administration of amphiphilic drugs is pronounced hemolytic activity. To overcome this limitation, we investigated the anti-hemolytic properties of polymeric micelles of Pluronics, triblock copolymers of poly(ethylene oxide) and poly(propylene oxide). We studied the encapsulation of the amphiphilic compound miltefosine (HePC) into polymeric micelles of Pluronics F108, F68, F127, L44, and L64. In vitro hemolysis indicated that, among the five copolymers studied, only F127 completely inhibited hemolytic effect of HePC at 50 µg/mL, this effect was also observed for other two amphiphilic molecules (cetyltrimethylammonium bromide and cethylpyridinium chloride). To better understand this interaction, we analyzed the HC50 (concentration causing 50% of hemolysis) for HePC free and loaded into F127 micelles. Copolymer concentration influenced the hemolytic profile of encapsulated HePC; for F127 the HC50 increased relative to free HePC (40 µg/mL) up to 184, 441, 736 and 964 µg/mL, for 1, 3, 6 and 9% F127, respectively. Interestingly, a linear relationship was found between HC50-HePC and F127 concentration. At 3% of F127, it is possible to load up to 300 µg/mL of HePC with no hemolytic effect. By achieving this level of hemolysis protection, a promising application is on the view, bringing the parenteral use of HePC and other amphiphilic drugs. Additionally, small-angle X-ray scattering (SAXS) was used to asses structural information on the interactions between HePC and F127 micelles.


Sujet(s)
Antifongiques/pharmacologie , Vecteurs de médicaments , Hémolyse/effets des médicaments et des substances chimiques , Phosphoryl-choline/analogues et dérivés , Tensioactifs/pharmacologie , Animaux , Antifongiques/composition chimique , Bromure de cétrimonium/composition chimique , Bromure de cétrimonium/pharmacologie , Cétylpyridinium/composition chimique , Cétylpyridinium/pharmacologie , Relation dose-effet des médicaments , Préparation de médicament/méthodes , Érythrocytes/effets des médicaments et des substances chimiques , Micelles , Phosphoryl-choline/composition chimique , Phosphoryl-choline/pharmacologie , Poloxamère/composition chimique , Poloxamère/pharmacologie , Ovis , Tensioactifs/composition chimique
20.
Soft Matter ; 15(11): 2348-2358, 2019 Mar 13.
Article de Anglais | MEDLINE | ID: mdl-30810157

RÉSUMÉ

A series of water-soluble metal functionalized surfactants have been prepared using commercially available surfactant cetyl pyridinium chloride and transition metal salts. These complexes were characterized in the solid state by elemental analysis, FTIR, 1H NMR and thermogravimetric analysis. The interfacial surface activity and aggregation behaviour of the metallosurfactants were analysed through conductivity, surface tension and small angle neutron scattering measurements. Our results show that the presence of metal ions as co-ions along with counter ions favours micellization at a low critical micellization concentration (CMC). Small angle neutron scattering revealed that the metallomicelles are of a prolate ellipsoidal shape and exhibit strong counterion binding. This article further describes the interaction of the metallosurfactants with transport protein Bovine Serum Albumin (BSA) using different spectroscopic techniques. A spectroscopic study was used to study the binding, interaction and quenching mechanism of BSA with the metallosurfactants. Gel electrophoresis (SDS-PAGE) and circular dichroism (CD) investigated the structural and conformational changes produced in BSA due to the metallosurfactants. The results indicate that there is an alteration in the secondary structure of BSA due to the electrostatic interaction between positive head groups and metal co-ions of the metallosurfactants and negatively charged amino acids of BSA. As the concentration increases, the α-helicity of BSA decreases and all the three studied metallosurfactants gave comparable results. Finally, the in vitro cytotoxicity and antimicrobial activity of the metallosurfactants were evaluated against erythrocytes and microorganisms, which showed prominent effects related to the presence of a metal ion in metallomicelles of the hybrid surfactants.


Sujet(s)
Cétylpyridinium/composition chimique , Métaux lourds/composition chimique , Tensioactifs/composition chimique , Bacillus/effets des médicaments et des substances chimiques , Bacillus/croissance et développement , Cétylpyridinium/pharmacologie , Érythrocytes/effets des médicaments et des substances chimiques , Klebsiella pneumoniae/effets des médicaments et des substances chimiques , Klebsiella pneumoniae/croissance et développement , Métaux lourds/pharmacologie , Pseudomonas aeruginosa/effets des médicaments et des substances chimiques , Pseudomonas aeruginosa/croissance et développement , Sérumalbumine bovine/composition chimique , Propriétés de surface , Tensioactifs/pharmacologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE