Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 648
Filtrer
1.
Nat Commun ; 15(1): 5120, 2024 Jun 15.
Article de Anglais | MEDLINE | ID: mdl-38879623

RÉSUMÉ

Calmodulin transduces [Ca2+] information regulating the rhythmic Ca2+ cycling between the sarcoplasmic reticulum and cytoplasm during contraction and relaxation in cardiac and skeletal muscle. However, the structural dynamics by which calmodulin modulates the sarcoplasmic reticulum Ca2+ release channel, the ryanodine receptor, at physiologically relevant [Ca2+] is unknown. Using fluorescence lifetime FRET, we resolve different structural states of calmodulin and Ca2+-driven shifts in the conformation of calmodulin bound to ryanodine receptor. Skeletal and cardiac ryanodine receptor isoforms show different calmodulin-ryanodine receptor conformations, as well as binding and structural kinetics with 0.2-ms resolution, which reflect different functional roles of calmodulin. These FRET methods provide insight into the physiological calmodulin-ryanodine receptor structural states, revealing additional distinct structural states that complement cryo-EM models that are based on less physiological conditions. This technology will drive future studies on pathological calmodulin-ryanodine receptor interactions and dynamics with other important ryanodine receptor bound modulators.


Sujet(s)
Calcium , Calmoduline , Transfert d'énergie par résonance de fluorescence , Muscles squelettiques , Myocarde , Canal de libération du calcium du récepteur à la ryanodine , Canal de libération du calcium du récepteur à la ryanodine/métabolisme , Canal de libération du calcium du récepteur à la ryanodine/composition chimique , Calmoduline/métabolisme , Calmoduline/composition chimique , Calcium/métabolisme , Myocarde/métabolisme , Cinétique , Animaux , Muscles squelettiques/métabolisme , Humains , Conformation des protéines , Liaison aux protéines , Réticulum sarcoplasmique/métabolisme
2.
J Phys Chem B ; 128(25): 6097-6111, 2024 Jun 27.
Article de Anglais | MEDLINE | ID: mdl-38870543

RÉSUMÉ

Defects in the binding of the calcium sensing protein calmodulin (CaM) to the L-type calcium channel (CaV1.2) or to the ryanodine receptor type 2 (RyR2) can lead to dangerous cardiac arrhythmias with distinct phenotypes, such as long-QT syndrome (LQTS) and catecholaminergic ventricular tachycardia (CPVT). Certain CaM mutations lead to LQTS while other mutations lead to CPVT, but the mechanisms by which a specific mutation can lead to each disease phenotype are not well-understood. In this study, we use long, 2 µs molecular dynamics simulations and a multitrajectory approach to identify the key binding interactions between the IQ domain of CaV1.2 and CaM. Five key interactions are found between CaV1.2 and CaM in the C-lobe, 1 in the central linker, and 2 in the N-lobe. In addition, while 5 key interactions appear between residues 120-149 in the C-lobe of CaM when it interacts with CaV1.2, only 1 key interaction is found within this region of CaM when it interacts with the RyR2. We show that this difference in the distribution of key interactions correlates with the known distribution of CaM mutations that lead to LQTS or CPVT. This correlation suggests that a disruption of key binding interactions is a plausible mechanism that can lead to these two different disease phenotypes.


Sujet(s)
Canaux calciques de type L , Calmoduline , Simulation de dynamique moléculaire , Liaison aux protéines , Calmoduline/métabolisme , Calmoduline/composition chimique , Canaux calciques de type L/métabolisme , Canaux calciques de type L/composition chimique , Humains , Sites de fixation , Canal de libération du calcium du récepteur à la ryanodine/métabolisme , Canal de libération du calcium du récepteur à la ryanodine/composition chimique
3.
Proc Natl Acad Sci U S A ; 121(27): e2400497121, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38917010

RÉSUMÉ

S100A1, a small homodimeric EF-hand Ca2+-binding protein (~21 kDa), plays an important regulatory role in Ca2+ signaling pathways involved in various biological functions including Ca2+ cycling and contractile performance in skeletal and cardiac myocytes. One key target of the S100A1 interactome is the ryanodine receptor (RyR), a huge homotetrameric Ca2+ release channel (~2.3 MDa) of the sarcoplasmic reticulum. Here, we report cryoelectron microscopy structures of S100A1 bound to RyR1, the skeletal muscle isoform, in absence and presence of Ca2+. Ca2+-free apo-S100A1 binds beneath the bridging solenoid (BSol) and forms contacts with the junctional solenoid and the shell-core linker of RyR1. Upon Ca2+-binding, S100A1 undergoes a conformational change resulting in the exposure of the hydrophobic pocket known to serve as a major interaction site of S100A1. Through interactions of the hydrophobic pocket with RyR1, Ca2+-bound S100A1 intrudes deeper into the RyR1 structure beneath BSol than the apo-form and induces sideways motions of the C-terminal BSol region toward the adjacent RyR1 protomer resulting in tighter interprotomer contacts. Interestingly, the second hydrophobic pocket of the S100A1-dimer is largely exposed at the hydrophilic surface making it prone to interactions with the local environment, suggesting that S100A1 could be involved in forming larger heterocomplexes of RyRs with other protein partners. Since S100A1 interactions stabilizing BSol are implicated in the regulation of RyR-mediated Ca2+ release, the characterization of the S100A1 binding site conserved between RyR isoforms may provide the structural basis for the development of therapeutic strategies regarding treatments of RyR-related disorders.


Sujet(s)
Calcium , Cryomicroscopie électronique , Canal de libération du calcium du récepteur à la ryanodine , Protéines S100 , Canal de libération du calcium du récepteur à la ryanodine/métabolisme , Canal de libération du calcium du récepteur à la ryanodine/composition chimique , Protéines S100/métabolisme , Protéines S100/composition chimique , Calcium/métabolisme , Animaux , Liaison aux protéines , Sites de fixation , Modèles moléculaires , Conformation des protéines , Humains
4.
Nat Commun ; 15(1): 4115, 2024 May 15.
Article de Anglais | MEDLINE | ID: mdl-38750013

RÉSUMÉ

RyR1 is an intracellular Ca2+ channel important in excitable cells such as neurons and muscle fibers. Ca2+ activates it at low concentrations and inhibits it at high concentrations. Mg2+ is the main physiological RyR1 inhibitor, an effect that is overridden upon activation. Despite the significance of Mg2+-mediated inhibition, the molecular-level mechanisms remain unclear. In this work we determined two cryo-EM structures of RyR1 with Mg2+ up to 2.8 Å resolution, identifying multiple Mg2+ binding sites. Mg2+ inhibits at the known Ca2+ activating site and we propose that the EF hand domain is an inhibitory divalent cation sensor. Both divalent cations bind to ATP within a crevice, contributing to the precise transmission of allosteric changes within the enormous channel protein. Notably, Mg2+ inhibits RyR1 by interacting with the gating helices as validated by molecular dynamics. This structural insight enhances our understanding of how Mg2+ inhibition is overcome during excitation.


Sujet(s)
Calcium , Cryomicroscopie électronique , Magnésium , Canal de libération du calcium du récepteur à la ryanodine , Canal de libération du calcium du récepteur à la ryanodine/métabolisme , Canal de libération du calcium du récepteur à la ryanodine/composition chimique , Magnésium/métabolisme , Calcium/métabolisme , Sites de fixation , Animaux , Simulation de dynamique moléculaire , Adénosine triphosphate/métabolisme , Humains , Lapins
5.
J Phys Chem B ; 128(19): 4670-4684, 2024 May 16.
Article de Anglais | MEDLINE | ID: mdl-38717304

RÉSUMÉ

Ryanodine receptor type 1 (RyR1) is a Ca2+-release channel central to skeletal muscle excitation-contraction (EC) coupling. RyR1's cryo-EM structures reveal a zinc-finger motif positioned within the cytoplasmic C-terminal domain (CTD). Yet, owing to limitations in cryo-EM resolution, RyR1 structures lack precision in detailing the metal coordination structure, prompting the need for an accurate model. In this study, we employed molecular dynamics (MD) simulations and the density functional theory (DFT) method to refine the binding characteristics of Zn2+ in the zinc-finger site of the RyR1 channel. Our findings also highlight substantial conformational changes in simulations conducted in the absence of Zn2+. Notably, we observed a loss of contact at the interface between protein domains proximal to the zinc-finger site, indicating a crucial role of Zn2+ in maintaining structural integrity and interdomain interactions within RyR1. Furthermore, this study provides valuable insights into the modulation of ATP, Ca2+, and caffeine binding, shedding light on the intricate relationship between Zn2+ coordination and the dynamic behavior of RyR1. Our integrative approach combining MD simulations and DFT calculations enhances our understanding of the molecular mechanisms governing ligand binding in RyR1.


Sujet(s)
Simulation de dynamique moléculaire , Canal de libération du calcium du récepteur à la ryanodine , Zinc , Canal de libération du calcium du récepteur à la ryanodine/composition chimique , Canal de libération du calcium du récepteur à la ryanodine/métabolisme , Zinc/composition chimique , Zinc/métabolisme , Ligands , Calcium/composition chimique , Calcium/métabolisme , Théorie de la fonctionnelle de la densité , Sites de fixation , Liaison aux protéines , Doigts de zinc , Caféine/composition chimique , Caféine/métabolisme , Adénosine triphosphate/composition chimique , Adénosine triphosphate/métabolisme , Humains
6.
J Gen Physiol ; 156(4)2024 Apr 01.
Article de Anglais | MEDLINE | ID: mdl-38451203

RÉSUMÉ

JGP study (Asghari et al. 2024. J. Gen. Physiol.https://doi.org/10.1085/jgp.202213108) indicates that ß-adrenergic signaling enlarges dyads and reorganizes RyR2 tetramers in cardiomyocytes.


Sujet(s)
Myocytes cardiaques , Canal de libération du calcium du récepteur à la ryanodine , Phosphorylation , Canal de libération du calcium du récepteur à la ryanodine/composition chimique , Transduction du signal
7.
Sci Adv ; 10(12): eadl1126, 2024 Mar 22.
Article de Anglais | MEDLINE | ID: mdl-38507485

RÉSUMÉ

Excitation-contraction coupling (ECC) is a fundamental mechanism in control of skeletal muscle contraction and occurs at triad junctions, where dihydropyridine receptors (DHPRs) on transverse tubules sense excitation signals and then cause calcium release from the sarcoplasmic reticulum via coupling to type 1 ryanodine receptors (RyR1s), inducing the subsequent contraction of muscle filaments. However, the molecular mechanism remains unclear due to the lack of structural details. Here, we explored the architecture of triad junction by cryo-electron tomography, solved the in situ structure of RyR1 in complex with FKBP12 and calmodulin with the resolution of 16.7 Angstrom, and found the intact RyR1-DHPR supercomplex. RyR1s arrange into two rows on the terminal cisternae membrane by forming right-hand corner-to-corner contacts, and tetrads of DHPRs bind to RyR1s in an alternating manner, forming another two rows on the transverse tubule membrane. This unique arrangement is important for synergistic calcium release and provides direct evidence of physical coupling in ECC.


Sujet(s)
Calcium , Canal de libération du calcium du récepteur à la ryanodine , Canal de libération du calcium du récepteur à la ryanodine/composition chimique , Canal de libération du calcium du récepteur à la ryanodine/métabolisme , Calcium/métabolisme , Muscles squelettiques/métabolisme , Canaux calciques de type L/analyse , Canaux calciques de type L/métabolisme , Réticulum sarcoplasmique/métabolisme , Contraction musculaire/physiologie
8.
J Gen Physiol ; 156(4)2024 Apr 01.
Article de Anglais | MEDLINE | ID: mdl-38385988

RÉSUMÉ

We have previously demonstrated that type II ryanodine receptors (RyR2) tetramers can be rapidly rearranged in response to a phosphorylation cocktail. The cocktail modified downstream targets indiscriminately, making it impossible to determine whether phosphorylation of RyR2 was an essential element of the response. Here, we used the ß-agonist isoproterenol and mice homozygous for one of the following clinically relevant mutations: S2030A, S2808A, S2814A, or S2814D. We measured the length of the dyad using transmission electron microscopy (TEM) and directly visualized RyR2 distribution using dual-tilt electron tomography. We found that the S2814D mutation, by itself, significantly expanded the dyad and reorganized the tetramers, suggesting a direct link between the phosphorylation state of the tetramer and its microarchitecture. S2808A and S2814A mutant mice, as well as wild types, had significant expansions of their dyads in response to isoproterenol, while S2030A mutants did not. In agreement with functional data from these mutants, S2030 and S2808 were necessary for a complete ß-adrenergic response, unlike S2814 mutants. Additionally, all mutants had unique effects on the organization of their tetramer arrays. Lastly, the correlation of structural with functional changes suggests that tetramer-tetramer contacts play an important functional role. We thus conclude that both the size of the dyad and the arrangement of the tetramers are linked to the state of the channel tetramer and can be dynamically altered by a ß-adrenergic receptor agonist.


Sujet(s)
Canal de libération du calcium du récepteur à la ryanodine , Animaux , Souris , Isoprénaline/pharmacologie , Mutation , Phosphorylation , Canal de libération du calcium du récepteur à la ryanodine/composition chimique
9.
Int J Biol Macromol ; 260(Pt 1): 129424, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38219929

RÉSUMÉ

Calcins are a group of scorpion toxin peptides specifically binding to ryanodine receptors (RyRs) with high affinity, and have the ability to activate and stabilize RyR in a long-lasting subconductance state. Five newly calcins synthesized compounds exhibit typical structural characteristics of a specific family through chemical synthesis and virtual analysis. As the calcins from the same species, Petersiicalcin1 and Petersiicalcin2, Jendekicalcin2 and Jendekicalcin3, have only one residue difference. Both Petersiicalcin1 and Petersiicalcin2 exhibited different affinities in stimulating [3H]ryanodine binding, but the residue mutation resulted in a 2.7 folds difference. Other calcins also exhibited a stimulatory effect on [3H]ryanodine binding to RyR1, however, their affinities were significantly lower than that of Petersiiicalcin1 and Petersiiicalcin2. The channel domain of RyR1 was found to be capable of binding with the basic residues of these calcins, which also exhibited interactions with the S6 helices on RyR1. Dynamic simulations were conducted for Petersiicalcin1 and Petersiicalcin2, which demonstrated their ability to form a highly stable conformation and resulting in an asymmetric tetramer structure of RyR1. The discovery of five newly calcins further enriches the diversity of the natural calcin family, which provides more native peptides for the structure-function analysis between calcin and RyRs.


Sujet(s)
Peptides , Canal de libération du calcium du récepteur à la ryanodine , Canal de libération du calcium du récepteur à la ryanodine/génétique , Canal de libération du calcium du récepteur à la ryanodine/composition chimique , Canal de libération du calcium du récepteur à la ryanodine/métabolisme , Séquence d'acides aminés , Ryanodine/métabolisme , Ryanodine/pharmacologie , Peptides/composition chimique , Structure secondaire des protéines , Calcium/métabolisme , Muscles squelettiques
10.
J Biol Chem ; 300(2): 105606, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38159862

RÉSUMÉ

Previous cryo-electron micrographs suggested that the skeletal muscle Ca2+ release channel, ryanodine receptor (RyR)1, is regulated by intricate interactions between the EF hand Ca2+ binding domain and the cytosolic loop (S2-S3 loop). However, the precise molecular details of these interactions and functional consequences of the interactions remain elusive. Here, we used molecular dynamics simulations to explore the specific amino acid pairs involved in hydrogen bond interactions within the EF hand-S2-S3 loop interface. Our simulations unveiled two key interactions: (1) K4101 (EF hand) with D4730 (S2-S3 loop) and (2) E4075, Q4078, and D4079 (EF hand) with R4736 (S2-S3 loop). To probe the functional significance of these interactions, we constructed mutant RyR1 complementary DNAs and expressed them in HEK293 cells for [3H]ryanodine binding assays. Our results demonstrated that mutations in the EF hand, specifically K4101E and K4101M, resulted in reduced affinities for Ca2+/Mg2+-dependent inhibitions. Interestingly, the K4101E mutation increased the affinity for Ca2+-dependent activation. Conversely, mutations in the S2-S3 loop, D4730K and D4730N, did not significantly change the affinities for Ca2+/Mg2+-dependent inhibitions. Our previous finding that skeletal disease-associated RyR1 mutations, R4736Q and R4736W, impaired Ca2+-dependent inhibition, is consistent with the current results. In silico mutagenesis analysis aligned with our functional data, indicating altered hydrogen bonding patterns upon mutations. Taken together, our findings emphasize the critical role of the EF hand-S2-S3 loop interaction in Ca2+/Mg2+-dependent inhibition of RyR1 and provide insights into potential therapeutic strategies targeting this domain interaction for the treatment of skeletal myopathies.


Sujet(s)
Motifs EF Hands , Canal de libération du calcium du récepteur à la ryanodine , Humains , Calcium/métabolisme , Cellules HEK293 , Muscles squelettiques/métabolisme , Mutation , Ryanodine/métabolisme , Canal de libération du calcium du récepteur à la ryanodine/composition chimique , Canal de libération du calcium du récepteur à la ryanodine/métabolisme
11.
J Nat Prod ; 87(1): 104-112, 2024 01 26.
Article de Anglais | MEDLINE | ID: mdl-38128916

RÉSUMÉ

Calcin is a group ligand with high affinity and specificity for the ryanodine receptors (RyRs). Little is known about the effect of its acidic residues on the spacial structure as well as the interaction with RyRs. We screened the opicalcin1 acidic mutants and investigated the effect of mutation on activity. The results indicated that all acidic mutants maintained the structural features, but their surface charge distribution underwent significant changes. Molecular docking and dynamics simulations were used to analyze the interaction between opicalcin1 mutants and RyRs, which demonstrated that all opicalcin1 mutants effectively bound to the channel domain of RyR1. This stable binding induced a pronounced asymmetry in the structure of the RyR tetramer, exhibiting a high degree of structural dissimilarity. [3H]Ryanodine binding to RyR1 was enhanced in D2A and D15A, which was similar to opicalcin1, but that effect was suppressed in E12A and E29A and reversed for the DE-4A, thereby inhibiting ryanodine binding. Opicalcin1 and DE-4A also exhibited the ability to form stable docking structures with RyR2. Acidic residues play a crucial role in the structure of calcin and its functional interaction with RyRs that is beneficial for the calcin optimization to develop more active peptide lead compounds for RyR-related diseases.


Sujet(s)
Signalisation calcique , Canal de libération du calcium du récepteur à la ryanodine , Ryanodine/métabolisme , Canal de libération du calcium du récepteur à la ryanodine/composition chimique , Canal de libération du calcium du récepteur à la ryanodine/génétique , Canal de libération du calcium du récepteur à la ryanodine/métabolisme , Simulation de docking moléculaire , Mutation , Calcium/métabolisme
12.
ACS Chem Biol ; 18(10): 2290-2299, 2023 10 20.
Article de Anglais | MEDLINE | ID: mdl-37769131

RÉSUMÉ

Hyperactivity of cardiac sarcoplasmic reticulum (SR) ryanodine receptor (RyR2) Ca2+-release channels contributes to heart failure and arrhythmias. Reducing the RyR2 activity, particularly during cardiac relaxation (diastole), is a desirable therapeutic goal. We previously reported that the unnatural enantiomer (ent) of an insect-RyR activator, verticilide, inhibits porcine and mouse RyR2 at diastolic (nanomolar) Ca2+ and has in vivo efficacy against atrial and ventricular arrhythmia. To determine the ent-verticilide structural mode of action on RyR2 and guide its further development via medicinal chemistry structure-activity relationship studies, here, we used fluorescence lifetime (FLT)-measurements of Förster resonance energy transfer (FRET) in HEK293 cells expressing human RyR2. For these studies, we used an RyR-specific FRET molecular-toolkit and computational methods for trilateration (i.e., using distances to locate a point of interest). Multiexponential analysis of FLT-FRET measurements between four donor-labeled FKBP12.6 variants and acceptor-labeled ent-verticilide yielded distance relationships placing the acceptor probe at two candidate loci within the RyR2 cryo-EM map. One locus is within the Ry12 domain (at the corner periphery of the RyR2 tetrameric complex). The other locus is sandwiched at the interface between helical domain 1 and the SPRY3 domain. These findings document RyR2-target engagement by ent-verticilide, reveal new insight into the mechanism of action of this new class of RyR2-targeting drug candidate, and can serve as input in future computational determinations of the ent-verticilide binding site on RyR2 that will inform structure-activity studies for lead optimization.


Sujet(s)
Depsipeptides , Canal de libération du calcium du récepteur à la ryanodine , Souris , Suidae , Humains , Animaux , Ryanodine/composition chimique , Ryanodine/métabolisme , Ryanodine/usage thérapeutique , Canal de libération du calcium du récepteur à la ryanodine/composition chimique , Canal de libération du calcium du récepteur à la ryanodine/métabolisme , Transfert d'énergie par résonance de fluorescence/méthodes , Cellules HEK293 , Troubles du rythme cardiaque/traitement médicamenteux , Troubles du rythme cardiaque/métabolisme , Depsipeptides/métabolisme , Calcium/métabolisme , Myocytes cardiaques/métabolisme
13.
Structure ; 31(7): 790-800.e4, 2023 07 06.
Article de Anglais | MEDLINE | ID: mdl-37192614

RÉSUMÉ

The coordinated release of Ca2+ from the sarcoplasmic reticulum (SR) is critical for excitation-contraction coupling. This release is facilitated by ryanodine receptors (RyRs) that are embedded in the SR membrane. In skeletal muscle, activity of RyR1 is regulated by metabolites such as ATP, which upon binding increase channel open probability (Po). To obtain structural insights into the mechanism of RyR1 priming by ATP, we determined several cryo-EM structures of RyR1 bound individually to ATP-γ-S, ADP, AMP, adenosine, adenine, and cAMP. We demonstrate that adenine and adenosine bind RyR1, but AMP is the smallest ATP derivative capable of inducing long-range (>170 Å) structural rearrangements associated with channel activation, establishing a structural basis for key binding site interactions that are the threshold for triggering quaternary structural changes. Our finding that cAMP also induces these structural changes and results in increased channel opening suggests its potential role as an endogenous modulator of RyR1 conductance.


Sujet(s)
Nucléotides , Canal de libération du calcium du récepteur à la ryanodine , Adénine/métabolisme , Adénosine/métabolisme , AMP/métabolisme , Adénosine triphosphate/métabolisme , Calcium/métabolisme , Muscles squelettiques/métabolisme , Nucléotides/métabolisme , Canal de libération du calcium du récepteur à la ryanodine/composition chimique , Humains , Animaux , Lapins
14.
Philos Trans R Soc Lond B Biol Sci ; 378(1879): 20220162, 2023 06 19.
Article de Anglais | MEDLINE | ID: mdl-37122213

RÉSUMÉ

Skeletal and cardiac muscle excitation-contraction coupling commences with Nav1.4/Nav1.5-mediated, surface and transverse (T-) tubular, action potential generation. This initiates feedforward, allosteric or Ca2+-mediated, T-sarcoplasmic reticular (SR) junctional, voltage sensor-Cav1.1/Cav1.2 and ryanodine receptor-RyR1/RyR2 interaction. We review recent structural, physiological and translational studies on possible feedback actions of the resulting SR Ca2+ release on Nav1.4/Nav1.5 function in native muscle. Finite-element modelling predicted potentially regulatory T-SR junctional [Ca2+]TSR domains. Nav1.4/Nav1.5, III-IV linker and C-terminal domain structures included Ca2+ and/or calmodulin-binding sites whose mutations corresponded to specific clinical conditions. Loose-patch-clamped native murine skeletal muscle fibres and cardiomyocytes showed reduced Na+ currents (INa) following SR Ca2+ release induced by the Epac and direct RyR1/RyR2 activators, 8-(4-chlorophenylthio)adenosine-3',5'-cyclic monophosphate and caffeine, abrogated by the RyR inhibitor dantrolene. Conversely, dantrolene and the Ca2+-ATPase inhibitor cyclopiazonic acid increased INa. Experimental, catecholaminergic polymorphic ventricular tachycardic RyR2-P2328S and metabolically deficient Pgc1ß-/- cardiomyocytes also showed reduced INa accompanying [Ca2+]i abnormalities rescued by dantrolene- and flecainide-mediated RyR block. Finally, hydroxychloroquine challenge implicated action potential (AP) prolongation in slowing AP conduction through modifying Ca2+ transients. The corresponding tissue/organ preparations each showed pro-arrhythmic, slowed AP upstrokes and conduction velocities. We finally extend discussion of possible Ca2+-mediated effects to further, Ca2+, K+ and Cl-, channel types. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.


Sujet(s)
Dantrolène , Canal de libération du calcium du récepteur à la ryanodine , Animaux , Souris , Canal de libération du calcium du récepteur à la ryanodine/composition chimique , Canal de libération du calcium du récepteur à la ryanodine/génétique , Dantrolène/pharmacologie , Rétroaction , Muscles squelettiques , Potentiels d'action , Calcium/métabolisme
15.
Philos Trans R Soc Lond B Biol Sci ; 378(1879): 20220169, 2023 06 19.
Article de Anglais | MEDLINE | ID: mdl-37122219

RÉSUMÉ

Cardiac ryanodine receptors (RyR2) release the Ca2+ from intracellular stores that is essential for cardiac myocyte contraction. The ion channel opening is tightly regulated by intracellular factors, including the FK506 binding proteins, FKBP12 and FKBP12.6. The impact of these proteins on RyR2 activity and cardiac contraction is debated, with often apparently contradictory experimental results, particularly for FKBP12. The isoform that regulates RyR2 has generally been considered to be FKBP12.6, despite the fact that FKBP12 is the major isoform associated with RyR2 in some species and is bound in similar proportions to FKBP12.6 in others, including sheep and humans. Here, we show time- and concentration-dependent effects of adding FKBP12 to RyR2 channels that were partly depleted of FKBP12/12.6 during isolation. The added FKBP12 displaced most remaining endogenous FKBP12/12.6. The results suggest that FKBP12 activates RyR2 with high affinity and inhibits RyR2 with lower affinity, consistent with a model of negative cooperativity in FKBP12 binding to each of the four subunits in the RyR tetramer. The easy dissociation of some FKBP12/12.6 could dynamically alter RyR2 activity in response to changes in in vivo regulatory factors, indicating a significant role for FKBP12/12.6 in Ca2+ signalling and cardiac function in healthy and diseased hearts. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.


Sujet(s)
Canal de libération du calcium du récepteur à la ryanodine , Protéine 1A de liaison au tacrolimus , Humains , Animaux , Ovis , Protéine 1A de liaison au tacrolimus/métabolisme , Protéine 1A de liaison au tacrolimus/pharmacologie , Canal de libération du calcium du récepteur à la ryanodine/composition chimique , Canal de libération du calcium du récepteur à la ryanodine/métabolisme , Myocarde/métabolisme , Signalisation calcique , Isoformes de protéines/métabolisme , Isoformes de protéines/pharmacologie , Calcium/métabolisme
16.
J Agric Food Chem ; 71(8): 3620-3638, 2023 Mar 01.
Article de Anglais | MEDLINE | ID: mdl-36791236

RÉSUMÉ

The world's hunger is continuously rising due to conflicts, climate change, pandemics (such as the recent COVID-19), and crop pests and diseases. It is widely accepted that zero hunger is impossible without using agrochemicals to control crop pests and diseases. Diamide insecticides are one of the widely used green insecticides developed in recent years and play important roles in controlling lepidopteran pests. Currently, eight diamine insecticides have been commercialized, which target the insect ryanodine receptors. This review summarizes the development and optimization processes of diamide derivatives acting as ryanodine receptor activators. The review also discusses pest resistance to diamide derivatives and possible solutions to overcome the limitations posed by the resistance. Thus, with reference to structural biology, this study provides an impetus for designing and developing diamide insecticides with improved insecticidal activities.


Sujet(s)
COVID-19 , Insecticides , Papillons de nuit , Animaux , Insecticides/pharmacologie , Insecticides/composition chimique , Canal de libération du calcium du récepteur à la ryanodine/composition chimique , Tétraméthyl-diazènedicarboxamide/pharmacologie , Tétraméthyl-diazènedicarboxamide/composition chimique , ortho-Aminobenzoates/composition chimique
17.
Bioorg Chem ; 133: 106432, 2023 04.
Article de Anglais | MEDLINE | ID: mdl-36841050

RÉSUMÉ

Alzheimer's disease (AD) implicates neuronal loss, plaque and neurofibrillary tangle formation, and disturbed neuronal Ca2+ homeostasis, which leads to severe dementia, memory loss, as well as thinking and behavioral perturbations that could ultimately lead to death. Calcium dysregulation and low acetylcholine levels are two main mechanisms implicated in Alzheimer's disease progression. Simultaneous inhibition of calcium oscillations (store overload-induced Ca2+ release [SOICR]) and acetylcholinesterase (AChE) by a single molecule may bring a new breath of hope for AD treatment. Here, we described some dantrolene derivatives as dual inhibitors of the ryanodine receptor and AChE. Two series of acylhydrazone/sulfonylhydrazone derivatives with aromaticgroup were designed and synthesized. In this study, the target compounds were evaluated for their ability to inhibit SOICR and AChE in vitro, using dantrolene and donepezil as positive controls. Compound 22a exhibited excellent and balanced inhibitory potency against SOICR (inhibition (%) = 90.1, IC50 = 0.162 µM) and AChE (inhibition (%) = 93.5, IC50 = 0.372 µM). Docking simulations showed that several preferred compounds could bind to the active sites of both the proteins, further validating the rationality of the design strategy. Potential therapeutic effects in AD were evaluated using the Barnes maze and Morris water maze tests, which demonstrated that compound 22a significantly improved memory and cognitive behavior in AD model mice. Moreover, it was also found that compound 22a could enhance synaptic strength by measuring hippocampal long-term potentiation (LTP) in brain slices. These results suggested that the introduction of a sulfonyl-hydrazone scaffold and aromatic substitution to dantrolene derivatives provided a useful template for the development of potential chemical entities against AD.


Sujet(s)
Maladie d'Alzheimer , Hydrazones , Animaux , Souris , Acetylcholinesterase/métabolisme , Maladie d'Alzheimer/traitement médicamenteux , Maladie d'Alzheimer/métabolisme , Anticholinestérasiques/pharmacologie , Anticholinestérasiques/usage thérapeutique , Anticholinestérasiques/composition chimique , Dantrolène/pharmacologie , Dantrolène/usage thérapeutique , Hydrazones/composition chimique , Hydrazones/pharmacologie , Simulation de docking moléculaire , Canal de libération du calcium du récepteur à la ryanodine/composition chimique , Canal de libération du calcium du récepteur à la ryanodine/métabolisme , Relation structure-activité
18.
Curr Opin Pharmacol ; 68: 102327, 2023 02.
Article de Anglais | MEDLINE | ID: mdl-36516687

RÉSUMÉ

Mutations in RyR alter the cell's Ca2+ homeostasis and can cause serious health problems for which few effective therapies are available. Until recently, there was little structural context for the hundreds of mutations linked to muscular disorders reported for this large channel. Growing knowledge of the three-dimensional structure of RyR starts to illustrate the fine control of Ca2+ release. Current efforts directed towards understanding how disease mutations impinge in such processes will be crucial for future design of novel therapies. In this review article we discuss the up-to-date information about mutations according to their role in the 3D structure, and classified them to provide context from a structural perspective.


Sujet(s)
Signalisation calcique , Canal de libération du calcium du récepteur à la ryanodine , Humains , Canal de libération du calcium du récepteur à la ryanodine/génétique , Canal de libération du calcium du récepteur à la ryanodine/composition chimique , Canal de libération du calcium du récepteur à la ryanodine/métabolisme , Mutation , Myocarde/métabolisme , Homéostasie , Calcium/métabolisme , Muscles squelettiques/métabolisme
19.
J Phys Chem B ; 126(47): 9790-9809, 2022 12 01.
Article de Anglais | MEDLINE | ID: mdl-36384028

RÉSUMÉ

Mutations in the cardiac ryanodine receptor type 2 (RyR2) have been linked to fatal cardiac arrhythmias such as catecholaminergic polymorphic ventricular tachycardia (CPVT). While many CPVT mutations are associated with an increase in Ca2+ leak from the sarcoplasmic reticulum, the mechanistic details of RyR2 channel gating are not well understood, and this poses a barrier in the development of new pharmacological treatments. To address this, we explore the gating mechanism of the RyR2 using molecular dynamics (MD) simulations. We test the effect of changing the conformation of certain structural elements by constructing chimera RyR2 structures that are derived from the currently available closed and open cryo-electron microscopy (cryo-EM) structures, and we then use MD simulations to relax the system. Our key finding is that the position of the S4-S5 linker (S4S5L) on a single subunit can determine whether the channel as a whole is open or closed. Our analysis reveals that the position of the S4S5L is regulated by interactions with the U-motif on the same subunit and with the S6 helix on an adjacent subunit. We find that, in general, channel gating is crucially dependent on high percent occupancy interactions between adjacent subunits. We compare our interaction analysis to 49 CPVT1 mutations in the literature and find that 73% appear near a high percent occupancy interaction between adjacent subunits. This suggests that disruption of cooperative, high percent occupancy interactions between adjacent subunits is a primary cause of channel leak and CPVT in mutant RyR2 channels.


Sujet(s)
Simulation de dynamique moléculaire , Canal de libération du calcium du récepteur à la ryanodine , Canal de libération du calcium du récepteur à la ryanodine/génétique , Canal de libération du calcium du récepteur à la ryanodine/composition chimique , Canal de libération du calcium du récepteur à la ryanodine/métabolisme , Cryomicroscopie électronique , Myocytes cardiaques/métabolisme , Calcium/métabolisme , Mutation
20.
Structure ; 30(7): 919-921, 2022 07 07.
Article de Anglais | MEDLINE | ID: mdl-35803239

RÉSUMÉ

In this issue of Structure, Melville and colleagues used cryo-EM to study the binding of ryanodine receptors to Rycals, compounds with the potential to treat skeletal and cardiac muscle disorders. Unexpectedly, they found that Rycal packs against an ATP in a peripheral pocket, which stabilizes the closed channel state.


Sujet(s)
Calcium , Canal de libération du calcium du récepteur à la ryanodine , Adénosine triphosphate/métabolisme , Calcium/métabolisme , Muscles squelettiques/métabolisme , Canal de libération du calcium du récepteur à la ryanodine/composition chimique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...