Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 18 de 18
Filtrer
1.
Biochemistry (Mosc) ; 83(5): 562-573, 2018 May.
Article de Anglais | MEDLINE | ID: mdl-29738690

RÉSUMÉ

Voltage-gated potassium channel Kv7.1 plays an important role in the excitability of cardiac muscle. The α-subunit of Kv7.1 (KCNQ1) is the main structural element of this channel. Tetramerization of KCNQ1 in the membrane results in formation of an ion channel, which comprises a pore and four voltage-sensing domains. Mutations in the human KCNQ1 gene are one of the major causes of inherited arrhythmias, long QT syndrome in particular. The construct encoding full-length human KCNQ1 protein was synthesized in this work, and an expression system in the Pichia pastoris yeast cells was developed. The membrane fraction of the yeast cells containing the recombinant protein (rKCNQ1) was solubilized with CHAPS detergent. To better mimic the lipid environment of the channel, lipid-protein nanodiscs were formed using solubilized membrane fraction and MSP2N2 protein. The rKCNQ1/nanodisc and rKCNQ1/CHAPS samples were purified using the Rho1D4 tag introduced at the C-terminus of the protein. Protein samples were examined using transmission electron microscopy with negative staining. In both cases, homogeneous rKCNQ1 samples were observed based on image analysis. Statistical analysis of the images of individual protein particles solubilized in the detergent revealed the presence of a tetrameric structure confirming intact subunit assembly. A three-dimensional channel structure reconstructed at 2.5-nm resolution represents a compact density with diameter of the membrane part of ~9 nm and height ~11 nm. Analysis of the images of rKCNQ1 in nanodiscs revealed additional electron density corresponding to the lipid bilayer fragment and the MSP2N2 protein. These results indicate that the nanodiscs facilitate protein isolation, purification, and stabilization in solution and can be used for further structural studies of human Kv7.1.


Sujet(s)
Canal potassique KCNQ1/composition chimique , Canal potassique KCNQ1/ultrastructure , Lipides/composition chimique , Microscopie électronique à transmission , Nanostructures/composition chimique , Protéines recombinantes/biosynthèse , Humains , Canal potassique KCNQ1/biosynthèse , Canal potassique KCNQ1/génétique , Structure secondaire des protéines , Sous-unités de protéines/biosynthèse , Sous-unités de protéines/composition chimique , Sous-unités de protéines/génétique , Protéines recombinantes/composition chimique , Protéines recombinantes/génétique , Protéines recombinantes/ultrastructure
2.
Article de Anglais | MEDLINE | ID: mdl-28611207

RÉSUMÉ

BACKGROUND: KCNQ1 and KCNE1 assemble to form the slow delayed rectifier (IKs) channel critical for shortening ventricular action potentials during high ß-adrenergic tone. However, too much IKs under basal conditions poses an arrhythmogenic risk. Our objective is to understand how adult ventricular myocytes regulate the IKs amplitudes under basal conditions and in response to stress. METHODS AND RESULTS: We express fluorescently tagged KCNQ1 and KCNE1 in adult ventricular myocytes and follow their biogenesis and trafficking paths. We also study the distribution patterns of native KCNQ1 and KCNE1, and their relationship to IKs amplitudes, in chronically stressed ventricular myocytes, and use COS-7 cell expression to probe the underlying mechanism. We show that KCNQ1 and KCNE1 are both translated in the perinuclear region but traffic by different routes, independent of each other, to their separate subcellular locations. KCNQ1 mainly resides in the jSR (junctional sarcoplasmic reticulum), whereas KCNE1 resides on the cell surface. Under basal conditions, only a small portion of KCNQ1 reaches the cell surface to support the IKs function. However, in response to chronic stress, KCNQ1 traffics from jSR to the cell surface to boost the IKs amplitude in a process depending on Ca binding to CaM (calmodulin). CONCLUSIONS: In adult ventricular myocytes, KCNE1 maintains a stable presence on the cell surface, whereas KCNQ1 is dynamic in its localization. KCNQ1 is largely in an intracellular reservoir under basal conditions but can traffic to the cell surface and boost the IKs amplitude in response to stress.


Sujet(s)
Ventricules cardiaques/métabolisme , Hypertension artérielle/métabolisme , Canaux potassiques calcium-dépendants de conductance intermédiaire/métabolisme , Canal potassique KCNQ1/métabolisme , Myocytes cardiaques/métabolisme , Canaux potassiques voltage-dépendants/métabolisme , Potassium/métabolisme , Potentiels d'action , Animaux , Cellules COS , Calmoduline/métabolisme , Membrane cellulaire/métabolisme , Chlorocebus aethiops , Modèles animaux de maladie humaine , Chiens , Cochons d'Inde , Ventricules cardiaques/physiopathologie , Hypertension artérielle/physiopathologie , Canal potassique KCNQ1/biosynthèse , Canal potassique KCNQ1/génétique , Canaux potassiques voltage-dépendants/biosynthèse , Canaux potassiques voltage-dépendants/génétique , Transport des protéines , Rats de lignée SHR , Réticulum sarcoplasmique/métabolisme , Facteurs temps , Transfection
4.
J Biol Chem ; 288(52): 36841-54, 2013 Dec 27.
Article de Anglais | MEDLINE | ID: mdl-24214981

RÉSUMÉ

Epithelial cell polarization involves several kinase signaling cascades that eventually divide the surface membrane into an apical and a basolateral part. One kinase, which is activated during the polarization process, is phosphoinositide 3-kinase (PI3K). In MDCK cells, the basolateral potassium channel Kv7.1 requires PI3K activity for surface-expression during the polarization process. Here, we demonstrate that Kv7.1 surface expression requires tonic PI3K activity as PI3K inhibition triggers endocytosis of these channels in polarized MDCK. Pharmacological inhibition of SGK1 gave similar results as PI3K inhibition, whereas overexpression of constitutively active SGK1 overruled it, suggesting that SGK1 is the primary downstream target of PI3K in this process. Furthermore, knockdown of the ubiquitin ligase Nedd4-2 overruled PI3K inhibition, whereas a Nedd4-2 interaction-deficient Kv7.1 mutant was resistant to both PI3K and SGK1 inhibition. Altogether, these data suggest that a PI3K-SGK1 pathway stabilizes Kv7.1 surface expression by inhibiting Nedd4-2-dependent endocytosis and thereby demonstrates that Nedd4-2 is a key regulator of Kv7.1 localization and turnover in epithelial cells.


Sujet(s)
Endocytose/physiologie , Complexes de tri endosomique requis pour le transport/métabolisme , Régulation de l'expression des gènes/physiologie , Protéines précoces immédiates/métabolisme , Canal potassique KCNQ1/biosynthèse , Phosphatidylinositol 3-kinases/métabolisme , Protein-Serine-Threonine Kinases/métabolisme , Ubiquitin-protein ligases/métabolisme , Animaux , Chiens , Endocytose/effets des médicaments et des substances chimiques , Complexes de tri endosomique requis pour le transport/génétique , Antienzymes/pharmacologie , Régulation de l'expression des gènes/effets des médicaments et des substances chimiques , Humains , Protéines précoces immédiates/antagonistes et inhibiteurs , Protéines précoces immédiates/génétique , Canal potassique KCNQ1/génétique , Cellules rénales canines Madin-Darby , Mutation , Ubiquitine protéine ligases NEDD4 , Phosphatidylinositol 3-kinases/génétique , Inhibiteurs des phosphoinositide-3 kinases , Protein-Serine-Threonine Kinases/antagonistes et inhibiteurs , Protein-Serine-Threonine Kinases/génétique , Ubiquitin-protein ligases/génétique
5.
Nucleic Acids Res ; 40(17): 8266-75, 2012 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-22740650

RÉSUMÉ

The bHLH transcription factor MyoD, the prototypical master regulator of differentiation, directs a complex program of gene expression during skeletal myogenesis. The up-regulation of the cdk inhibitor p57kip2 plays a critical role in coordinating differentiation and growth arrest during muscle development, as well as in other tissues. p57kip2 displays a highly specific expression pattern and is subject to a complex epigenetic control driving the imprinting of the paternal allele. However, the regulatory mechanisms governing its expression during development are still poorly understood. We have identified an unexpected mechanism by which MyoD regulates p57kip2 transcription in differentiating muscle cells. We show that the induction of p57kip2 requires MyoD binding to a long-distance element located within the imprinting control region KvDMR1 and the consequent release of a chromatin loop involving p57kip2 promoter. We also show that differentiation-dependent regulation of p57kip2, while involving a region implicated in the imprinting process, is distinct and hierarchically subordinated to the imprinting control. These findings highlight a novel mechanism, involving the modification of higher order chromatin structures, by which MyoD regulates gene expression. Our results also suggest that chromatin folding mediated by KvDMR1 could account for the highly restricted expression of p57kip2 during development and, possibly, for its aberrant silencing in some pathologies.


Sujet(s)
Chromatine/composition chimique , Inhibiteur p57 de kinase cycline-dépendante/génétique , Empreinte génomique , Développement musculaire/génétique , Protéine MyoD/métabolisme , Éléments de régulation transcriptionnelle , Animaux , Cellules cultivées , Inhibiteur p57 de kinase cycline-dépendante/biosynthèse , Canal potassique KCNQ1/biosynthèse , Canal potassique KCNQ1/génétique , Souris , Régions promotrices (génétique)
6.
Traffic ; 13(1): 143-56, 2012 Jan.
Article de Anglais | MEDLINE | ID: mdl-21957902

RÉSUMÉ

The potassium channel Kv7.1 is expressed in the heart, where it contributes to the repolarization of the cardiac action potential. Additionally, Kv7.1 is expressed in epithelial tissues playing a role in salt and water transport. We recently demonstrated that surface-expressed Kv7.1 is internalized in response to polarization of the epithelial Madin-Darby canine kidney (MDCK) cell line and that this was mediated by activation of protein kinase C (PKC). In this study, the pathway downstream of PKC, which leads to internalization of Kv7.1 upon cell polarization, is elucidated. We show by confocal microscopy that Kv7.1 is endocytosed upon initiation of the polarization process and sent for degradation by the lysosomal pathway. The internalization could be mimicked by pharmacological activation of the AMP-activated protein kinase (AMPK) using three different AMPK activators. We demonstrate that the downstream effector of AMPK is the E3 ubiquitin ligase Nedd4-2. Additionally, we show that AMPK activation results in a downregulation of Kv7.1 currents in Xenopus oocytes through a Nedd4-2-dependent mechanism. In summary, surface-expressed Kv7.1 channels are endocytosed and sent for degradation in lysosomes by an AMPK-mediated activation of Nedd4-2 during the initial phase of the MDCK cell polarization process.


Sujet(s)
AMP-Activated Protein Kinases/métabolisme , Polarité de la cellule , Endocytose , Canal potassique KCNQ1/biosynthèse , Potentiels d'action , Animaux , Technique de Western , Calcium/métabolisme , Lignée cellulaire , Chiens , Régulation négative , Complexes de tri endosomique requis pour le transport/métabolisme , Technique d'immunofluorescence , Humains , Canal potassique KCNQ1/génétique , Lysosomes/métabolisme , Microscopie confocale , Ubiquitine protéine ligases NEDD4 , Ovocytes/métabolisme , Protéine kinase C/métabolisme , Transport des protéines , Transfection , Ubiquitin-protein ligases/métabolisme , Protéines de Xénope , Xenopus laevis
7.
Can J Cardiol ; 27(2): 263.e5-12, 2011.
Article de Anglais | MEDLINE | ID: mdl-21459285

RÉSUMÉ

BACKGROUND: A 43-year-old woman suffering from Steinert syndrome was admitted after experiencing multiple episodes of torsades de pointes-related syncope. OBJECTIVES: To elucidate the pathophysiology of these arrhythmic events. METHODS AND RESULTS: We obtained DNA from the patient and sequenced the coding region of KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2 genes. A single nucleotide change was identified in the KCNQ1 gene at position 608 (T608C), resulting in a substitution from leucine to proline at position 203 (L203P). CHO cells were used to express either wild-type KCNQ1, wild-type KCNQ1+L203P KCNQ1 (50:50), or L203P KCNQ1, along with KCNE1 to recapitulate the slow cardiac delayed rectifier potassium current (I(Ks)). Patch-clamp experiments showed that the variant L203P causes a dominant negative effect on I(Ks). Coexpression of wild-type KCNQ1 and L203P KCNQ1 (50:50) caused a ~75% reduction in current amplitude when compared to wild-type KCNQ1 alone (131.40 ± 23.27 vs 567.25 ± 100.65 pA/pF, P < .001). Moreover, when compared with wild-type KCNQ1 alone, the coexpression of wild-type KCNQ1 and L203P KCNQ1 (50:50) caused a 7.5-mV positive shift of midpoints of activation (from 27.5 ± 2.4 to 35.1 ± 1.2 mV, P < .05). The wild-type KCNQ1 and L203P KCNQ1 (50:50) coexpression also caused alteration of I(Ks) kinetics. The activation kinetics of the L203P variant (50:50) were slowed compared with wild-type KCNQ1, while the deactivation kinetics of L203P (50:50) were accelerated compared with wild type, all these further contributing to the "loss-of-function" phenotype of I(Ks) associated with the variant L203P. CONCLUSION: Torsades de pointes and episodes of syncope are very likely to be due to the KCNQ1 variant L203P found in this patient.


Sujet(s)
ADN/génétique , Expression des gènes , Canal potassique KCNQ1/génétique , Dystrophie myotonique/complications , Torsades de pointes/génétique , Adulte , Femelle , Humains , Canal potassique KCNQ1/biosynthèse , Dystrophie myotonique/génétique , Dystrophie myotonique/métabolisme , Réaction de polymérisation en chaîne , Torsades de pointes/complications , Torsades de pointes/métabolisme
8.
Pflugers Arch ; 461(1): 45-52, 2011 Jan.
Article de Anglais | MEDLINE | ID: mdl-20978783

RÉSUMÉ

Thyroid hormones T3/T4 participate in the fine tuning of development and performance. The formation of thyroid hormones requires the accumulation of I(-) by the electrogenic Na(+)/I(-) symporter, which depends on the electrochemical gradient across the cell membrane and thus on K(+) channel activity. The present paper explored whether Kcnq1, a widely expressed voltage-gated K(+) channel, participates in the regulation of thyroid function. To this end, Kcnq1 expression was determined by RT-PCR, confocal microscopy, and thyroid function analyzed in Kcnq1 deficient mice (Kcnq1 ( -/- )) and their wild-type littermates (Kcnq1 ( +/+ )). Moreover, Kcnq1 abundance and current were determined in the thyroid FRTL-5 cell line. Furthermore, mRNA encoding KCNQ1 and the subunits KCNE1-5 were discovered in human thyroid tissue. According to patch-clamp TSH (10 mUnits/ml) induced a voltage-gated K(+) current in FRTL-5 cells, which was inhibited by the Kcnq inhibitor chromanol (10 µM). Despite a tendency of TSH plasma concentrations to be higher in Kcnq1 ( -/- ) than in Kcnq1 ( +/+ ) mice, the T3 and T4 plasma concentrations were significantly smaller in Kcnq1 ( -/- ) than in Kcnq1 ( +/+ ) mice. Moreover, body temperature was significantly lower in Kcnq1 ( -/- ) than in Kcnq1 ( +/+ ) mice. In conclusion, Kcnq1 is required for proper function of thyroid glands.


Sujet(s)
Hypothyroïdie/génétique , Canal potassique KCNQ1/génétique , Animaux , Température du corps/effets des médicaments et des substances chimiques , Température du corps/physiologie , Chromanes/pharmacologie , Femelle , Humains , Hypothyroïdie/physiopathologie , Immunohistochimie , Canal potassique KCNQ1/biosynthèse , Canal potassique KCNQ1/déficit , Mâle , Souris , ARN messager/métabolisme , Glande thyroide/métabolisme , Thyréostimuline/sang , Thyroxine/sang , Tri-iodothyronine/sang
9.
J Biol Chem ; 286(6): 4141-9, 2011 Feb 11.
Article de Anglais | MEDLINE | ID: mdl-21118809

RÉSUMÉ

Voltage-gated potassium (K(V)) channels, such as KCNQ1 (K(V)7.1), are modulated by accessory subunits and regulated by intracellular second messengers. Accessory subunits belonging to the KCNE family exert diverse functional effects on KCNQ1, have been implicated in the pathogenesis of various genetic disorders of heart rhythm, and contribute to transducing intracellular signaling events into changes in K(V) channel activity. We investigated the interactions between calmodulin (CaM), the ubiquitous Ca(2+)-transducing protein that binds and confers Ca(2+) sensitivity to the biophysical properties of KCNQ1, and KCNE4. These studies were motivated by the observed similarities between the suppression of KCNQ1 function by pharmacological disruption of KCNQ1-CaM interactions and the effects of KCNE4 co-expression on the channel. We determined that KCNE4, but not KCNE1, can biochemically interact with CaM and that this interaction is Ca(2+)-dependent and requires a tetraleucine motif in the juxtamembrane region of the KCNE4 C terminus. Furthermore, disruption of the KCNE4-CaM interaction either by mutagenesis of the tetraleucine motif or by acute Ca(2+) chelation impairs the ability of KCNE4 to inhibit KCNQ1. Our findings have potential relevance to KCNQ1 regulation both by KCNE accessory subunits and by an important intracellular signaling molecule.


Sujet(s)
Calcium/métabolisme , Calmoduline/métabolisme , Régulation de l'expression des gènes/physiologie , Canal potassique KCNQ1/biosynthèse , Canaux potassiques voltage-dépendants/métabolisme , Motifs d'acides aminés , Animaux , Cellules CHO , Calmoduline/génétique , Cricetinae , Cricetulus , Humains , Canal potassique KCNQ1/génétique , Canaux potassiques voltage-dépendants/génétique
10.
Channels (Austin) ; 4(2): 108-14, 2010.
Article de Anglais | MEDLINE | ID: mdl-20139709

RÉSUMÉ

Voltage-gated potassium channels are often assembled with accessory proteins that increase their functional diversity. KCNE proteins are small accessory proteins that modulate voltage-gated potassium (K(V)) channels. Although the functional effects of various KCNE proteins have been described, many questions remain regarding their assembly with the pore-forming subunits. For example, while previous experiments with some K(V) channels suggest that the association of the pore-subunit with the accessory subunits occurs co-translationally in the endoplasmic reticulum, it is not known whether KCNQ1 assembly with KCNE1 occurs in a similar manner to generate the medically important cardiac slow delayed rectifier current (I(Ks)). In this study we used a novel approach to demonstrate that purified recombinant human KCNE1 protein (prKCNE1) modulates KCNQ1 channels heterologously expressed in Xenopus oocytes resulting in generation of I(Ks). Incubation of KCNQ1-expressing oocytes with cycloheximide did not prevent I(Ks) expression following prKCNE1 injection. By contrast, incubation with brefeldin A prevented KCNQ1 modulation by prKCNE1. Moreover, injection of the trafficking-deficient KCNE1-L51H reduced KCNQ1 currents. Together, these observations indicate that while assembly of KCNE1 with KCNQ1 does not require co-translation, functional KCNQ1-prKCNE1 channels assemble early in the secretory pathway and reach the plasma membrane via vesicular trafficking.


Sujet(s)
Ouverture et fermeture des portes des canaux ioniques , Canal potassique KCNQ1/métabolisme , Canaux potassiques voltage-dépendants/métabolisme , Potassium/métabolisme , Animaux , Bréfeldine A/pharmacologie , Membrane cellulaire/métabolisme , Cycloheximide/pharmacologie , Réticulum endoplasmique , Humains , Ouverture et fermeture des portes des canaux ioniques/effets des médicaments et des substances chimiques , Canal potassique KCNQ1/biosynthèse , Canal potassique KCNQ1/effets des médicaments et des substances chimiques , Canal potassique KCNQ1/génétique , Cinétique , Potentiels de membrane , Canaux potassiques voltage-dépendants/biosynthèse , Canaux potassiques voltage-dépendants/effets des médicaments et des substances chimiques , Canaux potassiques voltage-dépendants/génétique , Inhibiteurs de la synthèse protéique/pharmacologie , Transport des protéines , Protéines recombinantes/métabolisme , Xenopus laevis
11.
J Pharmacol Exp Ther ; 332(3): 811-20, 2010 Mar.
Article de Anglais | MEDLINE | ID: mdl-20040580

RÉSUMÉ

Changes in the expression of potassium channels regulate skeletal muscle development. The purpose of this study was to investigate the expression profile and pharmacological role of K(v)7 voltage-gated potassium channels in skeletal muscle differentiation, proliferation, and survival after myotoxic insults. Transcripts for all K(v)7 genes (K(v)7.1-K(v)7.5) were detected by polymerase chain reaction (PCR) and/or real-time PCR in murine C(2)C(12) myoblasts; K(v)7.1, K(v)7.3, and K(v)7.4 transcripts were up-regulated after myotube formation. Western blot experiments confirmed K(v)7.2, K(v)7.3, and K(v)7.4 subunit expression, and the up-regulation of K(v)7.3 and K(v)7.4 subunits during in vitro differentiation. In adult skeletal muscles from mice and humans, K(v)7.2 and K(v)7.3 immunoreactivity was mainly localized at the level of intracellular striations positioned between ankyrinG-positive triads, whereas that of K(v)7.4 subunits was largely restricted to the sarcolemmal membrane. In C(2)C(12) cells, retigabine (10 microM), a specific activator of neuronally expressed K(v)7.2 to K(v)7.5 subunits, reduced proliferation, accelerated myogenin expression, and inhibited the myotoxic effect of mevastatin (IC(50) approximately 7 microM); all these effects of retigabine were prevented by the K(v)7 channel blocker 10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone (XE-991) (10 muM). These data collectively highlight neural K(v)7 channels as significant pharmacological targets to regulate skeletal muscle proliferation, differentiation, and myotoxic effects of drugs.


Sujet(s)
Inhibiteurs de l'hydroxyméthylglutaryl-CoA réductase/toxicité , Canaux potassiques KNCQ/biosynthèse , Lovastatine/analogues et dérivés , Muscles squelettiques/cytologie , Muscles squelettiques/effets des médicaments et des substances chimiques , Adulte , Animaux , Anthracènes/pharmacologie , Carbamates/pharmacologie , Différenciation cellulaire , Lignée cellulaire , Prolifération cellulaire , Survie cellulaire , Cricetinae , Cricetulus , Humains , Techniques in vitro , Canaux potassiques KNCQ/antagonistes et inhibiteurs , Canaux potassiques KNCQ/génétique , Canal potassique KCNQ1/antagonistes et inhibiteurs , Canal potassique KCNQ1/biosynthèse , Canal potassique KCNQ1/génétique , Canal potassique KCNQ2/antagonistes et inhibiteurs , Canal potassique KCNQ2/biosynthèse , Canal potassique KCNQ2/génétique , Canal potassique KCNQ3/antagonistes et inhibiteurs , Canal potassique KCNQ3/biosynthèse , Canal potassique KCNQ3/génétique , Lovastatine/toxicité , Mâle , Souris , Souris de lignée C57BL , Muscles squelettiques/métabolisme , Myoblastes squelettiques/cytologie , Myoblastes squelettiques/effets des médicaments et des substances chimiques , Myoblastes squelettiques/métabolisme , Phénylènediamines/pharmacologie , Sous-unités de protéines/biosynthèse , ARN messager/biosynthèse , Régulation positive
12.
Pflugers Arch ; 457(5): 1111-20, 2009 Mar.
Article de Anglais | MEDLINE | ID: mdl-18709386

RÉSUMÉ

This study represents an extensive characterisation of the expression and functional impact of KCNQ and KCNE accessory subunits in a murine uterus using a combination of quantitative reverse transcription polymerase chain reaction, Western blot analysis, patch clamp electrophysiology and isometric tension recording. The use of uterine tissue throughout the oestrous cycle provided a physiological model with which to assess hormonal regulation of these genes. Messenger ribonucleic acid for all KCNQ genes were detected throughout the oestrous cycle with the KCNQ1 message predominant. KCNE isoforms were detected at each stage of the cycle. KCNE4 was the most abundant (p < 0.0001), and KCNQ1, KCNQ5 and KCNE1 were up-regulated in metestrous (p < 0.0001). The K(v)7 channel inhibitor XE991 reduced outward K(+) currents and significantly increased spontaneous myometrial contractions (p < 0.05), whereas retigabine (K(v)7 activator) significantly relaxed uterine tissues (p < 0.001). These data are the first to characterise KCNQ and KCNE gene expression in a cell type outside of neurons and the cardiovascular system.


Sujet(s)
Cycle oestral/physiologie , Canal potassique KCNQ1/physiologie , Myomètre/physiologie , Canaux potassiques voltage-dépendants/physiologie , Animaux , Anthracènes/pharmacologie , Carbamates/pharmacologie , Chromanes/pharmacologie , Femelle , Canal potassique KCNQ1/biosynthèse , Canal potassique KCNQ1/effets des médicaments et des substances chimiques , Souris , Souris de lignée C57BL , Phénylènediamines/pharmacologie , Inhibiteurs des canaux potassiques/pharmacologie , Canaux potassiques voltage-dépendants/biosynthèse , Sulfonamides/pharmacologie , Contraction utérine/effets des médicaments et des substances chimiques
14.
Circulation ; 118(10): 983-92, 2008 Sep 02.
Article de Anglais | MEDLINE | ID: mdl-18711016

RÉSUMÉ

BACKGROUND: Inhibition of individual K(+) currents causes functionally based compensatory increases in other K(+) currents that minimize changes in action potential duration, a phenomenon known as repolarization reserve. The possibility that sustained K(+) channel inhibition may induce remodeling of ion current expression has not been tested. Accordingly, we assessed the effects of sustained inhibition of one K(+) current on various other cardiac ionic currents. METHODS AND RESULTS: Adult canine left ventricular cardiomyocytes were incubated in primary culture and paced at a physiological rate (1 Hz) for 24 hours in the presence or absence of the highly selective rapid delayed-rectifier K(+) current (I(Kr)) blocker dofetilide (5 nmol/L). Sustained dofetilide exposure led to shortened action potential duration and increased repolarization reserve (manifested as a reduced action potential duration-prolonging response to I(Kr) blockade). These repolarization changes were accompanied by increased slow delayed-rectifier (I(Ks)) density, whereas I(Kr), transient-outward (I(to)), inward-rectifier (I(K1)), L-type Ca(2+) (I(CaL)), and late Na(+) current remained unchanged. The mRNA expression corresponding to KvLQT1 and minK (real-time polymerase chain reaction) was unchanged, but their protein expression (Western blot) was increased, suggesting posttranscriptional regulation. To analyze possible mechanisms, we quantified the muscle-specific microRNA subtypes miR-133a and miR-133b, which can posttranscriptionally regulate and repress KvLQT1 protein expression without affecting mRNA expression. The expression levels of miR-133a and miR-133b were significantly decreased in cells cultured in dofetilide compared with control, possibly accounting for KvLQT1 protein upregulation. CONCLUSIONS: Sustained reductions in I(Kr) may lead to compensatory upregulation of I(Ks) through posttranscriptional upregulation of underlying subunits, likely mediated (at least partly) by microRNA changes. These results suggest that feedback control of ion channel expression may influence repolarization reserve.


Sujet(s)
Canal potassique KCNQ1/biosynthèse , Myocarde/métabolisme , Myocytes cardiaques/métabolisme , Phénéthylamines/pharmacologie , Inhibiteurs des canaux potassiques/pharmacologie , Sulfonamides/pharmacologie , Régulation positive/effets des médicaments et des substances chimiques , Animaux , Entraînement électrosystolique , Cellules cultivées , Chiens , Ventricules cardiaques/cytologie , Ventricules cardiaques/métabolisme , Humains , microARN/métabolisme , Myocarde/cytologie , Myocytes cardiaques/cytologie , Potassium/métabolisme , ARN messager/biosynthèse , Sodium/métabolisme
15.
Pflugers Arch ; 455(3): 493-503, 2007 Dec.
Article de Anglais | MEDLINE | ID: mdl-17618452

RÉSUMÉ

Glucocorticoids stimulate gastric acid secretion, an effect favoring the development of peptic ulcers. Putative mechanisms involved include the serum- and glucocorticoid-inducible kinase (SGK1), which stimulates a variety of epithelial channels and transporters. The present study explored the contribution of SGK1 to effects of glucocorticoids on gastric acid secretion. In isolated gastric glands from gene-targeted mice lacking functional SGK1 (sgk1 (-/-)) and their wild-type littermates (sgk1 (+/+)), H(+)-secretion (DeltapH/min) was determined utilizing 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF)-fluorescence, SGK1 transcript levels by in situ hybdridization, and expression of KCNQ1 channels by immunohistochemistry and real-time polymerase chain reaction. SGK1 transcript levels were enhanced by a 4-day treatment with 10 mug/g body weight (BW)/day dexamethasone (DEX). Before treatment, DeltapH/min was similar in sgk1 (-/-) and sgk1 (+/+)mice. DEX increased DeltapH/min approximately fourfold in sgk1 (+/+)mice and approximately twofold in sgk1 (-/-)mice, effects abolished in the presence of K(+)/H(+)ATPase-inhibitor omeprazole (50 microM). Increase in local K(+) concentrations to 35 mM (replacing Na(+)) enhanced DeltapH/min, which could not be further stimulated by DEX and was not significantly different between sgk1 (-/-) and sgk1 (+/+)mice. Carbachol (100 microM) and forskolin (5 microM) stimulated gastric acid secretion to a similar extent in sgk1 (-/-) and sgk1 (+/+)mice. In conclusion, SGK1 is not required for basal and cyclic AMP-stimulated gastric H(+) secretion but participates in the stimulation of gastric H(+) secretion by glucocorticoids. The effects of glucocorticoids and SGK1 are not additive to an increase in extracellular K(+) concentration and may thus involve stimulation of K(+) channels.


Sujet(s)
Acide gastrique/métabolisme , Protéines précoces immédiates/physiologie , Cellules pariétales gastriques/physiologie , Protein-Serine-Threonine Kinases/physiologie , Animaux , Carbachol/pharmacologie , Colforsine/pharmacologie , Corticostérone/sang , Dexaméthasone/pharmacologie , Concentration en ions d'hydrogène , Canal potassique KCNQ1/biosynthèse , Souris , Cellules pariétales gastriques/effets des médicaments et des substances chimiques
16.
Circ Res ; 99(10): 1076-83, 2006 Nov 10.
Article de Anglais | MEDLINE | ID: mdl-17053194

RÉSUMÉ

N-terminal mutations in the KCNQ1 channel are frequently linked to fatal arrhythmias in newborn children and adolescents but the cellular mechanisms involved in this dramatic issue remain, however, to be discovered. Here, we analyzed the trafficking of a series of N-terminal truncation mutants and identified a critical trafficking motif of KCNQ1. This determinant is located in the juxtamembranous region preceding the first transmembrane domain of the protein. Three mutations (Y111C, L114P and P117L) implicated in inherited Romano-Ward LQT1 syndrome, are embedded within this domain. Reexpression studies in both COS-7 cells and cardiomyocytes showed that the mutant proteins fail to exit the endoplasmic reticulum. KCNQ1 subunits harboring Y111C or L114P exert a dominant negative effect on the wild-type KCNQ1 subunit by preventing plasma membrane trafficking of heteromultimeric channels. The P117L mutation had a less pronounced effect on the trafficking of heteromultimeric channels but altered the kinetics of the current. Furthermore, we showed that the trafficking determinant in KCNQ1 is structurally and functionally conserved in other KCNQ channels and constitutes a critical trafficking determinant of the KCNQ channel family. Computed structural predictions correlated the potential structural changes introduced by the mutations with impaired protein trafficking. In conclusion, our studies unveiled a new role of the N-terminus of KCNQ channels in their trafficking and its implication in severe forms of LQT1 syndrome.


Sujet(s)
Canal potassique KCNQ1/génétique , Canal potassique KCNQ1/métabolisme , Syndrome du QT long/génétique , Syndrome du QT long/métabolisme , Adulte , Séquence d'acides aminés , Animaux , Cellules CHO , Cellules COS , Membrane cellulaire/métabolisme , Enfant , Chlorocebus aethiops , Cricetinae , Réticulum endoplasmique/métabolisme , Femelle , Hémagglutinines/génétique , Hémagglutinines/métabolisme , Humains , Canal potassique KCNQ1/biosynthèse , Souris , Données de séquences moléculaires , Mutagenèse , Myocytes cardiaques/métabolisme , Myocytes cardiaques/physiologie , Isoformes de protéines , Structure tertiaire des protéines , Protéines de fusion recombinantes/génétique , Protéines de fusion recombinantes/métabolisme , Relation structure-activité , Transfection
17.
J Biol Chem ; 281(33): 23740-7, 2006 Aug 18.
Article de Anglais | MEDLINE | ID: mdl-16754665

RÉSUMÉ

Genes in the KCNE family encode single transmembrane domain ancillary subunits that co-assemble with voltage-gated potassium (Kv) channel alpha subunits to alter their function. KCNE2 (also known as MiRP1) is expressed in the heart, is associated with human cardiac arrhythmia, and modulates cardiac Kv alpha subunits hERG and KCNQ1 in vitro. KCNE2 and KCNQ1 are also expressed in parietal cells, leading to speculation they form a native channel complex there. Here, we disrupted the murine kcne2 gene and found that kcne2 (-/-) mice have a severe gastric phenotype with profoundly reduced parietal cell proton secretion, abnormal parietal cell morphology, achlorhydria, hypergastrinemia, and striking gastric glandular hyperplasia arising from an increase in the number of non-acid secretory cells. KCNQ1 exhibited abnormal distribution in gastric glands from kcne2 (-/-) mice, with increased expression in non-acid secretory cells. Parietal cells from kcne2 (+/-) mice exhibited normal architecture but reduced proton secretion, and kcne2 (+/-) mice were hypochlorhydric, indicating a gene-dose effect and a primary defect in gastric acid secretion. These data demonstrate that KCNE2 is essential for gastric acid secretion, the first genetic evidence that a member of the KCNE gene family is required for normal gastrointestinal function.


Sujet(s)
Acide gastrique/métabolisme , Canaux potassiques voltage-dépendants/physiologie , Sous-unités de protéines/physiologie , Achlorhydrie/génétique , Animaux , Cellules cultivées , Femelle , Muqueuse gastrique/métabolisme , Muqueuse gastrique/anatomopathologie , Muqueuse gastrique/ultrastructure , Gastrines/antagonistes et inhibiteurs , Gastrines/biosynthèse , Ciblage de gène , Hyperplasie/génétique , Hypertrophie/génétique , Canal potassique KCNQ1/biosynthèse , Canal potassique KCNQ1/génétique , Souris , Souris de lignée C57BL , Souris knockout , Cellules pariétales gastriques/métabolisme , Cellules pariétales gastriques/anatomopathologie , Cellules pariétales gastriques/ultrastructure , Canaux potassiques voltage-dépendants/déficit , Canaux potassiques voltage-dépendants/génétique , Sous-unités de protéines/déficit , Sous-unités de protéines/génétique , Estomac/anatomopathologie , Estomac/ultrastructure , Régulation positive/génétique
18.
Physiol Genomics ; 21(1): 81-91, 2005 Mar 21.
Article de Anglais | MEDLINE | ID: mdl-15613615

RÉSUMÉ

Genomic microarray analysis of genes specifically expressed in a pure cell isolate from a heterocellular organ identified the likely K efflux channel associated with the gastric H-K-ATPase. The function of this channel is to supply K to the luminal surface of the pump to allow H for K exchange. KCNQ1-KCNE2 was the most highly expressed and significantly enriched member of the large variety of K channels expressed in the gastric epithelium. The function of this K channel in acid secretion was then shown by inhibition of secretion in isolated gastric glands with specific KCNQ inhibitors and by colocalization of the channel with the H-K-ATPase in the secretory canaliculus of the parietal cell. KCNQ1-KCNE2 appears to be the K efflux channel that is essential for gastric acid secretion.


Sujet(s)
Adenosine triphosphatases/composition chimique , Épithélium/métabolisme , Muqueuse gastrique/métabolisme , Canal potassique KCNQ1/biosynthèse , Canaux potassiques voltage-dépendants/biosynthèse , Canaux potassiques/composition chimique , Orange acridine/pharmacologie , Aminophénazone/composition chimique , Animaux , Séparation cellulaire , Amorces ADN/composition chimique , Relation dose-effet des médicaments , Cytométrie en flux , Acide gastrique/composition chimique , Immunohistochimie , Mâle , Microscopie confocale , Séquençage par oligonucléotides en batterie , Oligonucléotides/composition chimique , Potassium/composition chimique , Canaux potassiques voltage-dépendants/composition chimique , ARN complémentaire/métabolisme , ARN messager/métabolisme , Lapins , Rats , Rat Sprague-Dawley , RT-PCR
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...