Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 2.949
Filtrer
1.
Int J Mol Med ; 54(6)2024 Dec.
Article de Anglais | MEDLINE | ID: mdl-39364755

RÉSUMÉ

SS­31 is a mitochondria­targeting antioxidant that exhibits promising therapeutic potential for various diseases; however, its protective effect on diabetic cardiomyopathy (DCM) remains to be elucidated. At present, SS­31 is considered not only to mitigate cardiolipin oxidative damage, but also to alleviate ferroptosis. The present study aimed to explore SS­31 as a potential therapeutic strategy for improving DCM by alleviating mitochondria­dependent ferroptosis. In vitro, H9C2 cells were exposed to 35 mM glucose for 24 h to induce high glucose damage, then were simultaneously treated with 10, 20 or 50 µM SS­31. In addition, in vivo studies were conducted on diabeticC57BL/6J mice, which were induced to develop DCM over 4 weeks, followed by intraperitoneal injections with 2.5 mg/kg/day SS­31 for a further 4 weeks. The elevation of serum lactate dehydrogenase and creatine kinase isoenzymes, the reduction of fractional shortening and ejection fraction, the rupture of myocardial fibers and the deposition of collagen indicated the establishment of the DCM mouse model. The results of the present study indicated that SS­31 effectively alleviated these pathological changes and exhibited significant efficacy in ameliorating mitochondrial dysfunction, such as by promoting adenosine triphosphate generation, improving mitochondrial membrane potential and restoring the mitochondrial ultrastructure. Further experiments suggested that activation of the mitochondrial glutathione (mitoGSH)/mitochondrial glutathione peroxidase 4 (mitoGPX4) pathway and the elimination of mitochondrial ferrous ions may constitute the mechanisms by which SS­31 treats DCM. Therefore, the present study revealed that mitochondria­dependent ferroptosis could serve as a pathogenic mechanism of DCM and highlighted that the cardioprotective effects of SS­31 against DCM involves activation of the mitoGSH/mitoGPX4 pathway. Due to the safety profile and cardiac protective effects of SS­31, SS­31 was considered a promising strategy for treating DCM.


Sujet(s)
Cardiomyopathies diabétiques , Ferroptose , Animaux , Ferroptose/effets des médicaments et des substances chimiques , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/traitement médicamenteux , Cardiomyopathies diabétiques/anatomopathologie , Souris , Mâle , Souris de lignée C57BL , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Lignée cellulaire , Rats , Stress oxydatif/effets des médicaments et des substances chimiques , Modèles animaux de maladie humaine , Oligopeptides
2.
Cardiovasc Diabetol ; 23(1): 347, 2024 Sep 28.
Article de Anglais | MEDLINE | ID: mdl-39342271

RÉSUMÉ

BACKGROUND: N6-methyladenosine (m6A) modification of messenger RNA (mRNA) is crucial for liquid-liquid phase separation in mammals. Increasing evidence indicates that liquid-liquid phase separation in proteins and RNAs affects diabetic cardiomyopathy. However, the molecular mechanism by which m6A-mediated phase separation regulates diabetic cardiac fibrosis remains elusive. METHODS: Leptin receptor-deficient mice (db/db), cardiac fibroblast-specific Notch1 conditional knockout (POSTN-Cre × Notch1flox/flox) mice, and Cre mice were used to induce diabetic cardiac fibrosis. Adeno-associated virus 9 carrying cardiac fibroblast-specific periostin (Postn) promoter-driven small hairpin RNA targeting Alkbh5, Ythdf2, or Notch1, and the phase separation inhibitor 1,6-hexanediol were administered to investigate their roles in diabetic cardiac fibrosis. Histological and biochemical analyses were performed to determine how Alkbh5 and Ythdf2 regulate Notch1 expression in diabetic cardiac fibrosis. NOTCH1 was reconstituted in ALKBH5- and YTHDF2-deficient cardiac fibroblasts and mouse hearts to study its effects on mitochondrial fission and diabetic cardiac fibrosis. Heart tissue samples from patients with diabetic cardiomyopathy were used to validate our findings. RESULTS: In mice with diabetic cardiac fibrosis, decreased Notch1 expression was accompanied by high m6A mRNA levels and mitochondrial fission. Fibroblast-specific deletion of Notch1 enhanced mitochondrial fission and cardiac fibroblast proliferation and induced diabetic cardiac fibrosis in mice. Notch1 downregulation was associated with Alkbh5-mediated m6A demethylation in the 3'UTR of Notch1 mRNA and elevated m6A mRNA levels. These elevated m6A levels in Notch1 mRNA markedly enhanced YTHDF2 phase separation, increased the recognition of m6A residues in Notch1 mRNA by YTHDF2, and induced Notch1 degradation. Conversely, epitranscriptomic downregulation rescues Notch1 expression, resulting in the opposite effects. Human heart tissues from patients with diabetic cardiomyopathy were used to validate the findings in mice with diabetic cardiac fibrosis. CONCLUSIONS: We identified a novel epitranscriptomic mechanism by which m6A-mediated phase separation suppresses Notch1 expression, thereby promoting mitochondrial fission in diabetic cardiac fibrosis. Our findings provide new insights for the development of novel treatment approaches for patients with diabetic cardiac fibrosis.


Sujet(s)
Adénosine , AlkB Homolog 5, RNA demethylase , Cardiomyopathies diabétiques , Fibrose , Souris knockout , Dynamique mitochondriale , Protéines de liaison à l'ARN , Récepteur Notch1 , Transduction du signal , Animaux , Récepteur Notch1/métabolisme , Récepteur Notch1/génétique , Humains , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/génétique , Cardiomyopathies diabétiques/anatomopathologie , Cardiomyopathies diabétiques/étiologie , Adénosine/analogues et dérivés , Adénosine/métabolisme , Protéines de liaison à l'ARN/métabolisme , Protéines de liaison à l'ARN/génétique , Mâle , AlkB Homolog 5, RNA demethylase/métabolisme , AlkB Homolog 5, RNA demethylase/génétique , Cellules cultivées , Mitochondries du myocarde/métabolisme , Mitochondries du myocarde/anatomopathologie , Modèles animaux de maladie humaine , Souris de lignée C57BL , Fibroblastes/métabolisme , Fibroblastes/anatomopathologie , Souris , Maturation post-transcriptionnelle des ARN , Myocytes cardiaques/métabolisme , Myocytes cardiaques/anatomopathologie , Phase Separation , Molécules d'adhérence cellulaire , Récepteurs à la leptine
3.
Theranostics ; 14(15): 5926-5944, 2024.
Article de Anglais | MEDLINE | ID: mdl-39346544

RÉSUMÉ

Rationale: Diabetic cardiomyopathy is one of the major diabetic cardiovascular complications in which fibrosis plays a critical pathogenetic role. However, the precise mechanisms by which diabetes triggers cardiac fibrosis in the heart remain elusive. Small extracellular vesicles (sEVs) play an important role in the cellular communication. Nevertheless, whether and how diabetes may adversely alter sEVs-mediated cardiomyocyte-fibroblast communication, promoting diabetic cardiac fibrosis and contributing to diabetic cardiomyopathy, has not been previously investigated. Methods and results: High-fat diet (HFD)-induced and genetic (db/db) type 2 diabetic models were utilized. Cardiomyocyte sEVs (Myo-sEVs) were isolated by ultracentrifugation. Normal cardiomyocyte-derived Myo-sEVs attenuated diabetic cardiac fibrosis in vitro and in vivo and improved cardiac diastolic function. In contrast, diabetic cardiomyocyte-derived Myo-sEVs significantly exacerbated diabetic cardiac fibrosis and worsened diastolic function. Unbiased miRNA screening analysis revealed that miR-194-3p was significantly reduced in diabetic Myo-sEVs. Additional in vitro and in vivo experiments demonstrated that miR-194-3p is a novel upstream molecule inhibiting TGFßR2 expression and blocking fibroblast-myofibroblast conversion. Administration of miR-194-3p mimic or agomiR-194-3p significantly reduced diabetic cardiac fibrosis in vitro and in vivo, and attenuated diabetic cardiomyopathy. Conclusion: Our study demonstrates for the first time that cardiomyocyte-derived miR194-3p inhibits TGFß-mediated fibroblast-to-myofibroblast conversion, acting as an internal break against cardiac fibrosis. Diabetic downregulation of sEV-mediated miR-194-3p delivery from cardiomyocytes to fibroblasts contributes to diabetic cardiac fibrosis and diabetic cardiomyopathy. Pharmacological or genetic restoration of this system may be a novel therapy against diabetic cardiomyopathy.


Sujet(s)
Cardiomyopathies diabétiques , Vésicules extracellulaires , Fibrose , microARN , Myocytes cardiaques , Animaux , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/anatomopathologie , Myocytes cardiaques/métabolisme , Myocytes cardiaques/anatomopathologie , Vésicules extracellulaires/métabolisme , microARN/métabolisme , microARN/génétique , Souris , Mâle , Alimentation riche en graisse/effets indésirables , Souris de lignée C57BL , Diabète de type 2/complications , Diabète de type 2/métabolisme , Diabète expérimental/complications , Modèles animaux de maladie humaine , Myocarde/anatomopathologie , Myocarde/métabolisme , Fibroblastes/métabolisme
4.
Int J Mol Sci ; 25(18)2024 Sep 18.
Article de Anglais | MEDLINE | ID: mdl-39337515

RÉSUMÉ

Diabetic cardiomyopathy is a major etiological factor in heart failure in diabetic patients, characterized by mitochondrial oxidative metabolism dysfunction, myocardial fibrosis, and marked glycogen elevation. The aim of the present study is to evaluate the effect of endurance training and prebiotic xylooligosaccharide (XOS) on the activity of key oxidative enzymes, myocardial collagen, and glycogen distribution as well as some serum biochemical risk markers in streptozotocin-induced type 1 diabetic rats. Male Wistar rats (n = 36) were divided into four diabetic groups (n = 9): sedentary diabetic rats on a normal diet (SDN), trained diabetic rats on a normal diet (TDN), trained diabetic rats on a normal diet with an XOS supplement (TD-XOS), and sedentary diabetic rats with an XOS supplement (SD-XOS). The results show that aerobic training managed to increase the enzyme activity of respiratory Complex I and II and the lactate dehydrogenase in the cardiomyocytes of the diabetic rats. Furthermore, the combination of exercise and XOS significantly decreased the collagen and glycogen content. No significant effects on blood pressure, heart rate or markers of inflammation were detected. These results demonstrate the beneficial effects of exercise, alone or in combination with XOS, on the cardiac mitochondrial enzymology and histopathology of diabetic rats.


Sujet(s)
Diabète expérimental , Diabète de type 1 , Entrainement d'endurance , Glucuronates , Oligosaccharides , Conditionnement physique d'animal , Prébiotiques , Rat Wistar , Animaux , Rats , Mâle , Diabète expérimental/métabolisme , Diabète de type 1/métabolisme , Diabète de type 1/complications , Glucuronates/pharmacologie , Prébiotiques/administration et posologie , Entrainement d'endurance/méthodes , Glycogène/métabolisme , Maladies cardiovasculaires/étiologie , Maladies cardiovasculaires/métabolisme , Maladies cardiovasculaires/prévention et contrôle , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/étiologie
5.
Cardiovasc Diabetol ; 23(1): 343, 2024 Sep 16.
Article de Anglais | MEDLINE | ID: mdl-39285303

RÉSUMÉ

BACKGROUND: Heart failure (HF) is a serious and common condition affecting millions of people worldwide, with obesity being a major cause of metabolic disorders such as diabetes and cardiovascular disease. This study aimed to investigate the effects of fenofibrate, a peroxisome proliferator-activated receptor alpha (PPARα) agonist, on the obese- and diabetes-related cardiomyopathy. METHODS AND RESULTS: We used db/db mice and high fat diet-streptozotocin induced diabetic mice to investigate the underlying mechanisms of fenofibrate's beneficial effects on heart function. Fenofibrate reduced fibrosis, and lipid accumulation, and suppressed inflammatory and immunological responses in the heart via TNF signaling. In addition, we investigated the beneficial effects of fenofibrate on HF hospitalization. The Korean National Health Insurance database was used to identify 427,154 fenofibrate users and 427,154 non-users for comparison. During the 4.22-year follow-up, fenofibrate use significantly reduced the risk of HF hospitalization (hazard ratio, 0.907; 95% CI 0.824-0.998). CONCLUSIONS: The findings suggest that fenofibrate may be a useful therapeutic agent for obesity- and diabetes-related cardiomyopathy.


Sujet(s)
Cardiomyopathies diabétiques , Fénofibrate , Défaillance cardiaque , Hypolipémiants , Obésité , Fénofibrate/usage thérapeutique , Fénofibrate/pharmacologie , Animaux , Obésité/traitement médicamenteux , Défaillance cardiaque/traitement médicamenteux , Mâle , République de Corée/épidémiologie , Humains , Cardiomyopathies diabétiques/prévention et contrôle , Cardiomyopathies diabétiques/étiologie , Cardiomyopathies diabétiques/traitement médicamenteux , Hypolipémiants/usage thérapeutique , Souris de lignée C57BL , Diabète expérimental/traitement médicamenteux , Diabète expérimental/complications , Récepteur PPAR alpha/agonistes , Récepteur PPAR alpha/métabolisme , Facteur de nécrose tumorale alpha/métabolisme , Facteurs temps , Bases de données factuelles , Transduction du signal/effets des médicaments et des substances chimiques , Myocarde/métabolisme , Myocarde/anatomopathologie , Femelle , Hospitalisation , Adulte d'âge moyen , Sujet âgé , Médiateurs de l'inflammation/métabolisme , Médiateurs de l'inflammation/sang , Facteurs de risque , Fonction ventriculaire gauche/effets des médicaments et des substances chimiques
6.
Cardiovasc Diabetol ; 23(1): 345, 2024 Sep 19.
Article de Anglais | MEDLINE | ID: mdl-39300497

RÉSUMÉ

BACKGROUND: It remains unclear whether the association between dyslipidemia status and triglyceride-glucose (TyG) index with myocardial damage varies in the context of type 2 diabetes mellitus (T2DM). This study aimed to determine the differential effects of dyslipidemia status and TyG index on left ventricular (LV) global function and myocardial microcirculation in patients with T2DM using cardiac magnetic resonance (CMR) imaging. METHODS: A total of 226 T2DM patients and 72 controls who underwent CMR examination were included. The T2DM group was further categorized into subgroups based on the presence or absence of dyslipidemia (referred to as T2DM (DysL+) and T2DM (DysL-)) or whether the TyG index exceeded 9.06. CMR-derived LV perfusion parameters, remodeling index, and global function index (GFI) were assessed and compared among groups. A multivariable linear regression model was employed to evaluate the effects of various variables on LV myocardial microcirculation, remodeling index, and GFI. RESULTS: The LV GFI sequentially decreased in controls, T2DM (DysL-), and T2DM (DysL+) groups (p < 0.001), and was lower (p = 0.003) in T2DM with higher TyG index group than in lower TyG index group. The LV remodeling index was higher in higher TyG index group than in lower TyG index group (p = 0.002), but there was no significant difference in whether the subgroup was accompanied by dyslipidemia. Multivariable analysis revealed that the TyG index, but not dyslipidemia status, was independently associated with LV remodeling index (ß coefficient[95% confidence interval], 0.152[0.025, 0.268], p = 0.007) and LV GFI (- 0.159[- 0.281, - 0.032], p = 0.014). For LV myocardial microcirculation, perfusion index, upslope, and max signal intensity sequentially decreased in controls, T2DM (DysL-), and T2DM (DysL+) groups (all p < 0.001). Dyslipidemia status independently correlated with perfusion index (- 0.147[- 0.272, - 0.024], p = 0.02) and upslope (- 0.200[- 0.320, 0.083], p = 0.001), while TyG index was independently correlated with time to maximum signal intensity (0.141[0.019, 0.257], p = 0.023). CONCLUSIONS: Both dyslipidemia status and higher TyG index were associated with further deterioration of LV global function and myocardial microvascular function in the context of T2DM. The effects of dyslipidemia and a higher TyG index appear to be differential, which indicates that not only the amount of blood lipids and glucose but also the quality of blood lipids are therapeutic targets for preventing further myocardial damage.


Sujet(s)
Marqueurs biologiques , Glycémie , Circulation coronarienne , Diabète de type 2 , Dyslipidémies , Microcirculation , Valeur prédictive des tests , Triglycéride , Fonction ventriculaire gauche , Remodelage ventriculaire , Humains , Mâle , Femelle , Adulte d'âge moyen , Diabète de type 2/sang , Diabète de type 2/diagnostic , Diabète de type 2/physiopathologie , Diabète de type 2/complications , Dyslipidémies/sang , Dyslipidémies/diagnostic , Dyslipidémies/épidémiologie , Triglycéride/sang , Sujet âgé , Glycémie/métabolisme , Marqueurs biologiques/sang , Études cas-témoins , IRM dynamique , Dysfonction ventriculaire gauche/physiopathologie , Dysfonction ventriculaire gauche/sang , Dysfonction ventriculaire gauche/imagerie diagnostique , Cardiomyopathies diabétiques/physiopathologie , Cardiomyopathies diabétiques/sang , Cardiomyopathies diabétiques/imagerie diagnostique , Cardiomyopathies diabétiques/étiologie , Études transversales , Adulte , Facteurs de risque , Études rétrospectives
7.
Mol Med Rep ; 30(5)2024 Nov.
Article de Anglais | MEDLINE | ID: mdl-39239741

RÉSUMÉ

Diabetic cardiomyopathy (DCM), a significant complication of diabetes mellitus, is marked by myocardial structural and functional alterations due to chronic hyperglycemia. Despite its clinical significance, optimal treatment strategies are still elusive. Bariatric surgery via sleeve gastrectomy and Roux-en-Y gastric bypass have shown promise in treating morbid obesity and associated metabolic disorders including improvements in diabetes mellitus and DCM. The present study reviews the molecular mechanisms by which bariatric surgery improves DCM, offering insights into potential therapeutic targets. Future research should further investigate the mechanistic links between bariatric surgery and DCM, to evaluate the benefits and limitations of these surgical interventions for DCM treatment. The present study aims to provide a foundation for more effective DCM therapies, contributing to the advancement of patient care.


Sujet(s)
Chirurgie bariatrique , Cardiomyopathies diabétiques , Humains , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/thérapie , Cardiomyopathies diabétiques/chirurgie , Chirurgie bariatrique/méthodes , Animaux
8.
Int J Med Sci ; 21(12): 2324-2333, 2024.
Article de Anglais | MEDLINE | ID: mdl-39310254

RÉSUMÉ

Diabetic cardiomyopathy (DCM) triggers a detrimental shift in mitochondrial dynamics, characterized by increased fission and decreased fusion, contributing to cardiomyocyte apoptosis and cardiac dysfunction. This study investigated the impact of modulating mitochondrial dynamics on DCM outcomes and underlying mechanisms in a mouse model. DCM induction led to upregulation of fission genes (Drp1, Mff, Fis1) and downregulation of fusion genes (Mfn1, Mfn2, Opa1). Inhibiting fission with Mdivi-1 or promoting fusion with Ginsenoside Rg1 preserved cardiac function, as evidenced by improved left ventricular ejection fraction (LVEF), fractional shortening (FS), and E/A ratio. Both treatments also reduced infarct size and attenuated cardiomyocyte apoptosis, indicated by decreased caspase-3 activity. Mechanistically, Mdivi-1 enhanced mitochondrial function by improving mitochondrial membrane potential, reducing reactive oxygen species (ROS) production, and increasing ATP generation. Ginsenoside Rg1 also preserved mitochondrial integrity and function under hypoxic conditions in HL-1 cardiomyocytes. These findings suggest that restoring the balance of mitochondrial dynamics through pharmacological interventions targeting either fission or fusion may offer a promising therapeutic strategy for mitigating MI-induced cardiac injury and improving patient outcomes.


Sujet(s)
Apoptose , Cardiomyopathies diabétiques , Ginsénosides , Dynamique mitochondriale , Myocytes cardiaques , Dysfonction ventriculaire gauche , Animaux , Dynamique mitochondriale/effets des médicaments et des substances chimiques , Cardiomyopathies diabétiques/traitement médicamenteux , Cardiomyopathies diabétiques/anatomopathologie , Cardiomyopathies diabétiques/métabolisme , Souris , Ginsénosides/pharmacologie , Ginsénosides/usage thérapeutique , Myocytes cardiaques/effets des médicaments et des substances chimiques , Myocytes cardiaques/métabolisme , Myocytes cardiaques/anatomopathologie , Dysfonction ventriculaire gauche/traitement médicamenteux , Apoptose/effets des médicaments et des substances chimiques , Humains , Quinazolinones/pharmacologie , Quinazolinones/usage thérapeutique , Espèces réactives de l'oxygène/métabolisme , Modèles animaux de maladie humaine , Mâle , Potentiel de membrane mitochondriale/effets des médicaments et des substances chimiques
9.
J Assoc Physicians India ; 72(9): 32-36, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39291514

RÉSUMÉ

BACKGROUND: Atherosclerotic coronary artery disease, diabetic cardiomyopathy, and cardiac autonomic neuropathy (CAN) are the three categories into which the cardiovascular consequences of diabetes can be grouped. After all other potential causes have been ruled out, cardiovascular autonomic neuropathy-often referred to as CAN in the literature-is defined as the impairment of autonomic regulation of the cardiovascular system. Finding people with CAN is crucial because, if detected early enough, comprehensive therapies focusing on lifestyle, glucose management, and cardiovascular risk factors can reverse the course of CAN and delay its progression. In order to better understand CAN in individuals with diabetes mellitus (DM) and how it relates to risk factors, the current study was conducted. MATERIALS AND METHODS: Sixty consecutive diabetic patients were selected to be included in our study, diagnosed as per the American Diabetes Association (ADA) and the European Association for the Study of Diabetes. The presence of CAN was assessed with the help of Ewing's Battery, composed of five bedside tests. OBSERVATIONS: Out of 60 patients, a total of 53 patients (88.3%) with DM had CAN. Of these, 38.3% showed early CAN, 38.3% showed definite CAN, and 7% showed severe CAN. The abnormal E:I (exhalation/inhalation) ratio, noticed in 75% of patients, was the most frequently observed abnormal autonomic function test that tests the parasympathetic nervous system. The ECG's QTc interval prolongation provides good specificity for diagnosing CAN as well as assessing its severity, but the majority of cases showed low sensitivity. CONCLUSION: Since CAN has a significant association with mortality, every patient diagnosed with DM should be evaluated for CAN at the time of diagnosis as well as on an annual basis thereafter, as recommended by the ADA. Optimal glycemic management and lifestyle modification at the initial stages of diabetes may prevent CAN-related complications.


Sujet(s)
Neuropathies diabétiques , Humains , Neuropathies diabétiques/diagnostic , Neuropathies diabétiques/étiologie , Mâle , Femelle , Adulte d'âge moyen , Maladies du système nerveux autonome/étiologie , Maladies du système nerveux autonome/diagnostic , Adulte , Cardiomyopathies diabétiques/diagnostic , Cardiomyopathies diabétiques/étiologie , Sujet âgé , Diabète de type 2/complications
10.
BMC Cardiovasc Disord ; 24(1): 470, 2024 Sep 03.
Article de Anglais | MEDLINE | ID: mdl-39223509

RÉSUMÉ

BACKGROUND: Glucose fluctuations may be involved in the pathophysiological process of cardiomyocyte apoptosis, but the exact mechanism remains elusive. This study focused on exploring the mechanisms related to glucose fluctuation-induced cardiomyocyte apoptosis. METHODS: Diabetic rats established via an injection of streptozotocin were randomized to five groups: the controlled diabetic (CD) group, the uncontrolled diabetic (UD) group, the glucose fluctuated diabetic (GFD) group, the GFD group rats with the injection of 0.9% sodium chloride (NaCl) (GFD + NaCl) and the GFD group rats with the injection of N-acetyl-L-cysteine (NAC) (GFD + NAC). Twelve weeks later, cardiac function and apoptosis related protein expressions were tested. Proteomic analysis was performed to further analyze the differential protein expression pattern of CD and GFD. RESULTS: The left ventricular ejection fraction levels and fractional shortening levels were decreased in the GFD group, compared with those in the CD and UD groups. Positive cells tested by DAB-TUNEL were increased in the GFD group, compared with those in the CD group. The expression of Bcl-2 was decreased, but the expressions of Bax, cleaved caspase-3 and cleaved caspase-9 were increased in response to glucose fluctuations. Compared with CD, there were 527 upregulated and 152 downregulated proteins in GFD group. Txnip was one of the differentially expressed proteins related to oxidative stress response. The Txnip expression was increased in the GFD group, while the Akt phosphorylation level was decreased. The interaction between Txnip and Akt was enhanced when blood glucose fluctuated. Moreover, the application of NAC partially reversed glucose fluctuations-induced cardiomyocyte apoptosis. CONCLUSIONS: Glucose fluctuations lead to cardiomyocyte apoptosis by up-regulating Txnip expression and enhancing Txnip-Akt interaction.


Sujet(s)
Protéines régulatrices de l'apoptose , Apoptose , Glycémie , Protéines de transport , Diabète expérimental , Myocytes cardiaques , Protéines proto-oncogènes c-akt , Rat Sprague-Dawley , Transduction du signal , Animaux , Myocytes cardiaques/anatomopathologie , Myocytes cardiaques/métabolisme , Myocytes cardiaques/effets des médicaments et des substances chimiques , Apoptose/effets des médicaments et des substances chimiques , Protéines proto-oncogènes c-akt/métabolisme , Diabète expérimental/métabolisme , Mâle , Protéines de transport/métabolisme , Glycémie/métabolisme , Protéines régulatrices de l'apoptose/métabolisme , Phosphorylation , Fonction ventriculaire gauche/effets des médicaments et des substances chimiques , Thiorédoxines/métabolisme , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/anatomopathologie , Cardiomyopathies diabétiques/physiopathologie , Cardiomyopathies diabétiques/étiologie , Protéomique , Rats , Cartes d'interactions protéiques , Protéines du cycle cellulaire
11.
Int J Mol Sci ; 25(17)2024 Aug 31.
Article de Anglais | MEDLINE | ID: mdl-39273428

RÉSUMÉ

Diabetic cardiomyopathy (DCM) represents one of the typical complications associated with diabetes. It has been described as anomalies in heart function and structure, with consequent high morbidity and mortality. DCM development can be described by two stages; the first is characterized by left ventricular hypertrophy and diastolic dysfunction, and the second by heart failure (HF) with systolic dysfunction. The proposed mechanisms involve cardiac inflammation, advanced glycation end products (AGEs) and angiotensin II. Furthermore, different studies have focused their attention on cardiomyocyte death through the different mechanisms of programmed cell death, such as apoptosis, autophagy, necrosis, pyroptosis and ferroptosis. Exosome release, adipose epicardial tissue and aquaporins affect DCM development. This review will focus on the description of the mechanisms involved in DCM progression and development.


Sujet(s)
Tissu adipeux , Cardiomyopathies diabétiques , Exosomes , Fibrose , Péricarde , Humains , Exosomes/métabolisme , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/anatomopathologie , Tissu adipeux/métabolisme , Tissu adipeux/anatomopathologie , Animaux , Péricarde/métabolisme , Péricarde/anatomopathologie , Mort cellulaire , Myocytes cardiaques/métabolisme , Myocytes cardiaques/anatomopathologie , Epicardial Adipose Tissue
12.
Cell Commun Signal ; 22(1): 446, 2024 Sep 26.
Article de Anglais | MEDLINE | ID: mdl-39327594

RÉSUMÉ

Diabetic cardiomyopathy (DCM) represents a unique myocardial disease originating from diabetic metabolic disturbances that is characterized by myocardial fibrosis and diastolic dysfunction. While recent research regarding the pathogenesis and treatment of DCM has focused primarily on myocardial cells, nonmyocardial cells-including fibroblasts, vascular smooth muscle cells (VSMCs), endothelial cells (ECs), and immune cells-also contribute significantly to the pathogenesis of DCM. Among various therapeutic targets, fibroblast growth factor 21 (FGF21) has been identified as a promising agent because of its cardioprotective effects that extend to nonmyocardial cells. In this review, we aim to elucidate the role of nonmyocardial cells in DCM and underscore the potential of FGF21 as a therapeutic strategy for these cells.


Sujet(s)
Cardiomyopathies diabétiques , Facteurs de croissance fibroblastique , Cardiomyopathies diabétiques/anatomopathologie , Cardiomyopathies diabétiques/métabolisme , Humains , Facteurs de croissance fibroblastique/métabolisme , Animaux , Cellules endothéliales/métabolisme , Cellules endothéliales/anatomopathologie , Fibroblastes/métabolisme , Fibroblastes/anatomopathologie , Muscles lisses vasculaires/métabolisme , Muscles lisses vasculaires/anatomopathologie
13.
PLoS One ; 19(9): e0310136, 2024.
Article de Anglais | MEDLINE | ID: mdl-39250437

RÉSUMÉ

Myocardial fibrosis can trigger heart failure in diabetic cardiomyopathy (DCM), and irisin, an exercise-induced myokine, may have a beneficial effect on cardiac function. However, the specific molecular mechanism between exercise and irisin in the diabetic heart remains not fully explored. This study aimed to investigate how miR-34a mediates exercise-induced irisin to ameliorate myocardial fibrosis and its underlying mechanisms. Type 2 diabetes mellitus (T2DM) with DCM was induced in adult male rats with high-fat diet and streptozotocin injection. The DCM rats were subjected to swimming (60 min/d) and recombinant irisin (r-irisin, 500 µg/kg/d) interventions for 8 weeks, respectively. Cardiac function, cardiomyocyte structure, myocardial fibrosis and its correlated gene and protein expression were analyzed. Swimming intervention alleviated insulin resistance, myocardial fibrosis, and myocardial hypertrophy, and promoted blood glucose homeostasis in T2DM model rats. This improvement was associated with irisin upregulation and miR-34a downregulation in the myocardium, thus enhancing cardiac function. Similar efficacy was observed via intraperitoneal injection of exogenous recombinant irisin. Inhibition of miR-34a in vivo exhibited an anti-myocardial fibrotic effect by promoting irisin secretion through activating sirtuin 1 (SIRT1)/peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α)/fibronectin type III domain-containing protein 5 (FNDC5) signal pathway and downregulating myocardial fibrosis markers (collagen I, collagen III, and transforming growth factor-ß1). Therefore, swimming-induced irisin has the potential therapeutic effect on diabetic myocardial fibrosis through activating the miR-34a-mediated SIRT1/PGC-1α/FNDC5 signal pathway.


Sujet(s)
Diabète expérimental , Diabète de type 2 , Cardiomyopathies diabétiques , Fibronectines , Fibrose , microARN , Coactivateur 1-alpha du récepteur gamma activé par les proliférateurs de peroxysomes , Transduction du signal , Sirtuine-1 , Natation , Animaux , Sirtuine-1/métabolisme , Sirtuine-1/génétique , Coactivateur 1-alpha du récepteur gamma activé par les proliférateurs de peroxysomes/métabolisme , Coactivateur 1-alpha du récepteur gamma activé par les proliférateurs de peroxysomes/génétique , Fibronectines/métabolisme , microARN/génétique , microARN/métabolisme , Mâle , Rats , Diabète de type 2/métabolisme , Diabète de type 2/complications , Diabète de type 2/génétique , Diabète expérimental/métabolisme , Diabète expérimental/génétique , Diabète expérimental/complications , Diabète expérimental/anatomopathologie , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/génétique , Cardiomyopathies diabétiques/anatomopathologie , Cardiomyopathies diabétiques/étiologie , Rat Sprague-Dawley , Myocarde/métabolisme , Myocarde/anatomopathologie
14.
J Pediatr Endocrinol Metab ; 37(10): 875-884, 2024 Oct 28.
Article de Anglais | MEDLINE | ID: mdl-39242187

RÉSUMÉ

OBJECTIVES: To assess the role of Cardiotrophin-1 (CT-1) and echocardiography in early detection of subclinical Diabetic Cardiomyopathy (DCM) in children with type 1 Diabetes Mellitus (T1D). METHODS: This case-control study included two groups of children and adolescents aged between 7 and 18. Group (1) included forty patients with T1D (duration > 5 years) regularly followed at the children's hospital of Cairo University, and Group (2) included forty age and sex-matched healthy subjects as a control group. The serum level of CT-1 was measured, and conventional echocardiography, tissue Doppler imaging (TDI), and 2D speckle tracking echocardiography were performed. RESULTS: The level of CT-1 in the cases ranged from 11 to 1039.4 pg/ml with a median (IQR) of 19.4 (16.60-25.7) pg/ml, while its level in the control group ranged from 10.8 to 162.6 pg/ml with a median (IQR) of 20.2 (16.2-24.8) pg/ml. CT-1 levels showed no statistically significant difference between cases and controls. Patients had significantly higher mean left ventricle E/E' ratio (p<0.001), lower mean 2D global longitudinal strain (GLS) of the left ventricle (LV) (p<0.001), and lower mean GLS of the right ventricle (RV) (p<0.001) compared to controls. Ofpatients with diabetes, 75 % had LV diastolic dysfunction, 85 % had RV diastolic dysfunction, 97.5 % had LV systolic dysfunction, and 100 % had RV systolic dysfunction. CONCLUSIONS: Non-conventional echocardiography is important for early perception of subclinical DCM in patients with T1D. CT-1 was not specific for early detection of DCM.


Sujet(s)
Cytokines , Diabète de type 1 , Cardiomyopathies diabétiques , Diagnostic précoce , Échocardiographie , Humains , Mâle , Femelle , Diabète de type 1/complications , Diabète de type 1/sang , Diabète de type 1/imagerie diagnostique , Enfant , Adolescent , Études cas-témoins , Cardiomyopathies diabétiques/imagerie diagnostique , Cardiomyopathies diabétiques/sang , Cardiomyopathies diabétiques/étiologie , Cytokines/sang , Marqueurs biologiques/sang , Pronostic , Études de suivi
15.
Cell Signal ; 122: 111333, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39102928

RÉSUMÉ

PIWI-interacting RNAs (piRNAs) are involved in the regulation of hypertrophic cardiomyopathy, heart failure and myocardial methylation. However, their functions and the underlying molecular mechanisms in diabetic cardiomyopathy (DCM) have yet to be fully elucidated. In the present study, a pyroptosis-associated piRNA (piR112710) was identified that ameliorates cardiac remodeling through targeting the activation of inflammasomes and mitochondrial dysfunction that are mediated via the thioredoxin-interacting protein (Txnip)/NLRP3 signaling axis. Subsequently, the cardioprotective effects of piR112710 on both the myocardium from db/db mice and cardiomyocytes from neonatal mice that were incubated with a high concentration of glucose combined with palmitate were examined. piR112710 was found to significantly improve cardiac dysfunction in db/db mice, characterized by improved echocardiography, lower levels of fibrosis, attenuated expression levels of inflammatory factors and pyroptosis-associated proteins (namely, Txnip, ASC, NLRP3, caspase-1 and GSDMD-N), and enhanced myocardial mitochondrial respiratory functions. In cultured neonatal mice cardiomyocytes, piR112710 deficiency and high glucose along with palmitate treatment led to significantly upregulated expression levels of pyroptosis associated proteins and collagens, oxidative stress, mitochondrial dysfunction and increased levels of inflammatory factors. Supplementation with piR112710, however, led to a reversal of the aforementioned changes induced by high glucose and palmitate. Mechanistically, the cardioprotective effect of piR112710 appears to be dependent upon effective elimination of reactive oxygen species and inactivation of the Txnip/NLRP3 signaling axis. Taken together, the findings of the present study have revealed that the piRNA-mediated inhibitory mechanism involving the Txnip/NLRP3 axis may participate in the regulation of pyroptosis, which protects against DCM both in vivo and in vitro. piR112710 may therefore be a potential therapeutic target for the reduction of myocardial injury caused by cardiomyocyte pyroptosis in DCM.


Sujet(s)
Protéines de transport , Cardiomyopathies diabétiques , Myocytes cardiaques , Protéine-3 de la famille des NLR contenant un domaine pyrine , Pyroptose , Animaux , Protéine-3 de la famille des NLR contenant un domaine pyrine/métabolisme , Pyroptose/effets des médicaments et des substances chimiques , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/anatomopathologie , Protéines de transport/métabolisme , Souris , Myocytes cardiaques/métabolisme , Myocytes cardiaques/anatomopathologie , Myocytes cardiaques/effets des médicaments et des substances chimiques , Mâle , Petit ARN interférent/métabolisme , Souris de lignée C57BL , Thiorédoxines/métabolisme , Thiorédoxines/génétique , Transduction du signal/effets des médicaments et des substances chimiques , Inflammasomes/métabolisme
16.
Microbiome ; 12(1): 157, 2024 Aug 24.
Article de Anglais | MEDLINE | ID: mdl-39182099

RÉSUMÉ

BACKGROUND: Diabetic cardiomyopathy (DCM) is one of leading causes of diabetes-associated mortality. The gut microbiota-derived branched-chain amino acids (BCAA) have been reported to play a central role in the onset and progression of DCM, but the potential mechanisms remain elusive. RESULTS: We found the type 1 diabetes (T1D) mice had higher circulating BCAA levels due to a reduced BCAA degradation ability of the gut microbiota. Excess BCAA decreased hepatic FGF21 production by inhibiting PPARα signaling pathway and thereby resulted in a higher expression level of cardiac LAT1 via transcription factor Zbtb7c. High cardiac LAT1 increased the levels of BCAA in the heart and then caused mitochondrial damage and myocardial apoptosis through mTOR signaling pathway, leading to cardiac fibrosis and dysfunction in T1D mice. Additionally, transplant of faecal microbiota from healthy mice alleviated cardiac dysfunction in T1D mice, but this effect was abolished by FGF21 knockdown. CONCLUSIONS: Our study sheds light on BCAA-mediated crosstalk among the gut microbiota, liver and heart to promote DCM and FGF21 serves as a key mediator. Video Abstract.


Sujet(s)
Acides aminés à chaine ramifiée , Cardiomyopathies diabétiques , Facteurs de croissance fibroblastique , Microbiome gastro-intestinal , Foie , Animaux , Facteurs de croissance fibroblastique/métabolisme , Souris , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/microbiologie , Foie/métabolisme , Acides aminés à chaine ramifiée/métabolisme , Transduction du signal , Diabète de type 1/microbiologie , Diabète de type 1/métabolisme , Mâle , Myocarde/métabolisme , Myocarde/anatomopathologie , Récepteur PPAR alpha/métabolisme , Souris de lignée C57BL , Diabète expérimental/métabolisme , Diabète expérimental/microbiologie
17.
J Diabetes Complications ; 38(10): 108848, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39178624

RÉSUMÉ

Diabetes is a major risk factor for cardiovascular diseases, and myocardial damage caused by hyperglycemia is the main cause of heart failure. However, there is still a lack of systematic understanding of myocardial damage caused by diabetes. At present, we believe that the cellular inflammatory damage caused by hyperglycemia is one of the causes of diabetic cardiomyopathy. Pyroptosis, as a proinflammatory form of cell death, is closely related to the occurrence and development of diabetic cardiomyopathy. Therefore, this paper focuses on the important role of inflammation in the occurrence and development of diabetic cardiomyopathy. From the perspective of pyroptosis, we summarize the pyroptosis of different types of cells in diabetic cardiomyopathy and its related signaling pathways. It also summarizes the treatment of diabetic cardiomyopathy, hoping to provide methods for the prevention and treatment of diabetic cardiomyopathy by inhibiting pyroptosis.


Sujet(s)
Cardiomyopathies diabétiques , Pyroptose , Pyroptose/effets des médicaments et des substances chimiques , Pyroptose/physiologie , Cardiomyopathies diabétiques/thérapie , Cardiomyopathies diabétiques/prévention et contrôle , Humains , Animaux , Transduction du signal/effets des médicaments et des substances chimiques , Myocarde/anatomopathologie , Myocarde/métabolisme
18.
Life Sci ; 355: 122993, 2024 Oct 15.
Article de Anglais | MEDLINE | ID: mdl-39154810

RÉSUMÉ

Addressing insulin resistance or hyperinsulinemia might offer a viable treatment approach to stop the onset of diabetic cardiomyopathy, as these conditions independently predispose to the development of the disease, which is initially characterized by diastolic abnormalities. The development of diabetic cardiomyopathy appears to be driven mainly by insulin resistance or impaired insulin signalling and/or hyperinsulinemia. Oxidative stress, hypertrophy, fibrosis, cardiac diastolic dysfunction, and, ultimately, systolic heart failure are the outcomes of these pathophysiological alterations. Melatonin is a ubiquitous indoleamine, a widely distributed compound secreted mainly by the pineal gland, and serves a variety of purposes in almost every living creature. Melatonin is found to play a leading role by improving myocardial cell metabolism, decreasing vascular endothelial cell death, reversing micro-circulation disorders, reducing myocardial fibrosis, decreasing oxidative and endoplasmic reticulum stress, regulating cell autophagy and apoptosis, and enhancing mitochondrial function. This review highlights a relationship between insulin resistance and associated cardiomyopathy. It explores the potential therapeutic strategies offered by the neurohormone melatonin, an important antioxidant that plays a leading role in maintaining glucose homeostasis by influencing the glucose transporters independently and through its receptors. The vast distribution of melatonin receptors in the body, including beta cells of pancreatic islets, asserts the role of this indole molecule in maintaining glucose homeostasis. Melatonin controls the production of GLUT4 and/or the phosphorylation process of the receptor for insulin and its intracellular substrates, activating the insulin-signalling pathway through its G-protein-coupled membrane receptors.


Sujet(s)
Cardiomyopathies diabétiques , Insulinorésistance , Mélatonine , Mélatonine/métabolisme , Mélatonine/usage thérapeutique , Mélatonine/pharmacologie , Insulinorésistance/physiologie , Humains , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/traitement médicamenteux , Cardiomyopathies diabétiques/anatomopathologie , Animaux , Stress oxydatif/effets des médicaments et des substances chimiques , Antioxydants/métabolisme , Antioxydants/pharmacologie , Antioxydants/usage thérapeutique , Transduction du signal/effets des médicaments et des substances chimiques
19.
J Pharm Pharm Sci ; 27: 13193, 2024.
Article de Anglais | MEDLINE | ID: mdl-39206323

RÉSUMÉ

Cardiovascular disease including diabetic cardiomyopathy (DbCM) represents the leading cause of death in people with diabetes. DbCM is defined as ventricular dysfunction in the absence of underlying vascular diseases and/or hypertension. The known molecular mediators of DbCM are multifactorial, including but not limited to insulin resistance, altered energy metabolism, lipotoxicity, endothelial dysfunction, oxidative stress, apoptosis, and autophagy. FoxO1, a prominent member of forkhead box O transcription factors, is involved in regulating various cellular processes in different tissues. Altered FoxO1 expression and activity have been associated with cardiovascular diseases in diabetic subjects. Herein we provide an overview of the role of FoxO1 in various molecular mediators related to DbCM, such as altered energy metabolism, lipotoxicity, oxidative stress, and cell death. Furthermore, we provide valuable insights into its therapeutic potential by targeting these perturbations to alleviate cardiomyopathy in settings of type 1 and type 2 diabetes.


Sujet(s)
Cardiomyopathies diabétiques , Humains , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/traitement médicamenteux , Animaux , Protéine O1 à motif en tête de fourche/métabolisme , Facteurs de transcription Forkhead/métabolisme , Facteurs de transcription Forkhead/antagonistes et inhibiteurs , Facteurs de transcription Forkhead/génétique , Stress oxydatif/effets des médicaments et des substances chimiques , Diabète de type 2/traitement médicamenteux , Diabète de type 2/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE