Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 731
Filtrer
1.
Int J Mol Med ; 54(6)2024 Dec.
Article de Anglais | MEDLINE | ID: mdl-39364755

RÉSUMÉ

SS­31 is a mitochondria­targeting antioxidant that exhibits promising therapeutic potential for various diseases; however, its protective effect on diabetic cardiomyopathy (DCM) remains to be elucidated. At present, SS­31 is considered not only to mitigate cardiolipin oxidative damage, but also to alleviate ferroptosis. The present study aimed to explore SS­31 as a potential therapeutic strategy for improving DCM by alleviating mitochondria­dependent ferroptosis. In vitro, H9C2 cells were exposed to 35 mM glucose for 24 h to induce high glucose damage, then were simultaneously treated with 10, 20 or 50 µM SS­31. In addition, in vivo studies were conducted on diabeticC57BL/6J mice, which were induced to develop DCM over 4 weeks, followed by intraperitoneal injections with 2.5 mg/kg/day SS­31 for a further 4 weeks. The elevation of serum lactate dehydrogenase and creatine kinase isoenzymes, the reduction of fractional shortening and ejection fraction, the rupture of myocardial fibers and the deposition of collagen indicated the establishment of the DCM mouse model. The results of the present study indicated that SS­31 effectively alleviated these pathological changes and exhibited significant efficacy in ameliorating mitochondrial dysfunction, such as by promoting adenosine triphosphate generation, improving mitochondrial membrane potential and restoring the mitochondrial ultrastructure. Further experiments suggested that activation of the mitochondrial glutathione (mitoGSH)/mitochondrial glutathione peroxidase 4 (mitoGPX4) pathway and the elimination of mitochondrial ferrous ions may constitute the mechanisms by which SS­31 treats DCM. Therefore, the present study revealed that mitochondria­dependent ferroptosis could serve as a pathogenic mechanism of DCM and highlighted that the cardioprotective effects of SS­31 against DCM involves activation of the mitoGSH/mitoGPX4 pathway. Due to the safety profile and cardiac protective effects of SS­31, SS­31 was considered a promising strategy for treating DCM.


Sujet(s)
Cardiomyopathies diabétiques , Ferroptose , Animaux , Ferroptose/effets des médicaments et des substances chimiques , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/traitement médicamenteux , Cardiomyopathies diabétiques/anatomopathologie , Souris , Mâle , Souris de lignée C57BL , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Lignée cellulaire , Rats , Stress oxydatif/effets des médicaments et des substances chimiques , Modèles animaux de maladie humaine , Oligopeptides
2.
Cardiovasc Diabetol ; 23(1): 347, 2024 Sep 28.
Article de Anglais | MEDLINE | ID: mdl-39342271

RÉSUMÉ

BACKGROUND: N6-methyladenosine (m6A) modification of messenger RNA (mRNA) is crucial for liquid-liquid phase separation in mammals. Increasing evidence indicates that liquid-liquid phase separation in proteins and RNAs affects diabetic cardiomyopathy. However, the molecular mechanism by which m6A-mediated phase separation regulates diabetic cardiac fibrosis remains elusive. METHODS: Leptin receptor-deficient mice (db/db), cardiac fibroblast-specific Notch1 conditional knockout (POSTN-Cre × Notch1flox/flox) mice, and Cre mice were used to induce diabetic cardiac fibrosis. Adeno-associated virus 9 carrying cardiac fibroblast-specific periostin (Postn) promoter-driven small hairpin RNA targeting Alkbh5, Ythdf2, or Notch1, and the phase separation inhibitor 1,6-hexanediol were administered to investigate their roles in diabetic cardiac fibrosis. Histological and biochemical analyses were performed to determine how Alkbh5 and Ythdf2 regulate Notch1 expression in diabetic cardiac fibrosis. NOTCH1 was reconstituted in ALKBH5- and YTHDF2-deficient cardiac fibroblasts and mouse hearts to study its effects on mitochondrial fission and diabetic cardiac fibrosis. Heart tissue samples from patients with diabetic cardiomyopathy were used to validate our findings. RESULTS: In mice with diabetic cardiac fibrosis, decreased Notch1 expression was accompanied by high m6A mRNA levels and mitochondrial fission. Fibroblast-specific deletion of Notch1 enhanced mitochondrial fission and cardiac fibroblast proliferation and induced diabetic cardiac fibrosis in mice. Notch1 downregulation was associated with Alkbh5-mediated m6A demethylation in the 3'UTR of Notch1 mRNA and elevated m6A mRNA levels. These elevated m6A levels in Notch1 mRNA markedly enhanced YTHDF2 phase separation, increased the recognition of m6A residues in Notch1 mRNA by YTHDF2, and induced Notch1 degradation. Conversely, epitranscriptomic downregulation rescues Notch1 expression, resulting in the opposite effects. Human heart tissues from patients with diabetic cardiomyopathy were used to validate the findings in mice with diabetic cardiac fibrosis. CONCLUSIONS: We identified a novel epitranscriptomic mechanism by which m6A-mediated phase separation suppresses Notch1 expression, thereby promoting mitochondrial fission in diabetic cardiac fibrosis. Our findings provide new insights for the development of novel treatment approaches for patients with diabetic cardiac fibrosis.


Sujet(s)
Adénosine , AlkB Homolog 5, RNA demethylase , Cardiomyopathies diabétiques , Fibrose , Souris knockout , Dynamique mitochondriale , Protéines de liaison à l'ARN , Récepteur Notch1 , Transduction du signal , Animaux , Récepteur Notch1/métabolisme , Récepteur Notch1/génétique , Humains , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/génétique , Cardiomyopathies diabétiques/anatomopathologie , Cardiomyopathies diabétiques/étiologie , Adénosine/analogues et dérivés , Adénosine/métabolisme , Protéines de liaison à l'ARN/métabolisme , Protéines de liaison à l'ARN/génétique , Mâle , AlkB Homolog 5, RNA demethylase/métabolisme , AlkB Homolog 5, RNA demethylase/génétique , Cellules cultivées , Mitochondries du myocarde/métabolisme , Mitochondries du myocarde/anatomopathologie , Modèles animaux de maladie humaine , Souris de lignée C57BL , Fibroblastes/métabolisme , Fibroblastes/anatomopathologie , Souris , Maturation post-transcriptionnelle des ARN , Myocytes cardiaques/métabolisme , Myocytes cardiaques/anatomopathologie , Phase Separation , Molécules d'adhérence cellulaire , Récepteurs à la leptine
3.
Theranostics ; 14(15): 5926-5944, 2024.
Article de Anglais | MEDLINE | ID: mdl-39346544

RÉSUMÉ

Rationale: Diabetic cardiomyopathy is one of the major diabetic cardiovascular complications in which fibrosis plays a critical pathogenetic role. However, the precise mechanisms by which diabetes triggers cardiac fibrosis in the heart remain elusive. Small extracellular vesicles (sEVs) play an important role in the cellular communication. Nevertheless, whether and how diabetes may adversely alter sEVs-mediated cardiomyocyte-fibroblast communication, promoting diabetic cardiac fibrosis and contributing to diabetic cardiomyopathy, has not been previously investigated. Methods and results: High-fat diet (HFD)-induced and genetic (db/db) type 2 diabetic models were utilized. Cardiomyocyte sEVs (Myo-sEVs) were isolated by ultracentrifugation. Normal cardiomyocyte-derived Myo-sEVs attenuated diabetic cardiac fibrosis in vitro and in vivo and improved cardiac diastolic function. In contrast, diabetic cardiomyocyte-derived Myo-sEVs significantly exacerbated diabetic cardiac fibrosis and worsened diastolic function. Unbiased miRNA screening analysis revealed that miR-194-3p was significantly reduced in diabetic Myo-sEVs. Additional in vitro and in vivo experiments demonstrated that miR-194-3p is a novel upstream molecule inhibiting TGFßR2 expression and blocking fibroblast-myofibroblast conversion. Administration of miR-194-3p mimic or agomiR-194-3p significantly reduced diabetic cardiac fibrosis in vitro and in vivo, and attenuated diabetic cardiomyopathy. Conclusion: Our study demonstrates for the first time that cardiomyocyte-derived miR194-3p inhibits TGFß-mediated fibroblast-to-myofibroblast conversion, acting as an internal break against cardiac fibrosis. Diabetic downregulation of sEV-mediated miR-194-3p delivery from cardiomyocytes to fibroblasts contributes to diabetic cardiac fibrosis and diabetic cardiomyopathy. Pharmacological or genetic restoration of this system may be a novel therapy against diabetic cardiomyopathy.


Sujet(s)
Cardiomyopathies diabétiques , Vésicules extracellulaires , Fibrose , microARN , Myocytes cardiaques , Animaux , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/anatomopathologie , Myocytes cardiaques/métabolisme , Myocytes cardiaques/anatomopathologie , Vésicules extracellulaires/métabolisme , microARN/métabolisme , microARN/génétique , Souris , Mâle , Alimentation riche en graisse/effets indésirables , Souris de lignée C57BL , Diabète de type 2/complications , Diabète de type 2/métabolisme , Diabète expérimental/complications , Modèles animaux de maladie humaine , Myocarde/anatomopathologie , Myocarde/métabolisme , Fibroblastes/métabolisme
4.
Int J Med Sci ; 21(12): 2324-2333, 2024.
Article de Anglais | MEDLINE | ID: mdl-39310254

RÉSUMÉ

Diabetic cardiomyopathy (DCM) triggers a detrimental shift in mitochondrial dynamics, characterized by increased fission and decreased fusion, contributing to cardiomyocyte apoptosis and cardiac dysfunction. This study investigated the impact of modulating mitochondrial dynamics on DCM outcomes and underlying mechanisms in a mouse model. DCM induction led to upregulation of fission genes (Drp1, Mff, Fis1) and downregulation of fusion genes (Mfn1, Mfn2, Opa1). Inhibiting fission with Mdivi-1 or promoting fusion with Ginsenoside Rg1 preserved cardiac function, as evidenced by improved left ventricular ejection fraction (LVEF), fractional shortening (FS), and E/A ratio. Both treatments also reduced infarct size and attenuated cardiomyocyte apoptosis, indicated by decreased caspase-3 activity. Mechanistically, Mdivi-1 enhanced mitochondrial function by improving mitochondrial membrane potential, reducing reactive oxygen species (ROS) production, and increasing ATP generation. Ginsenoside Rg1 also preserved mitochondrial integrity and function under hypoxic conditions in HL-1 cardiomyocytes. These findings suggest that restoring the balance of mitochondrial dynamics through pharmacological interventions targeting either fission or fusion may offer a promising therapeutic strategy for mitigating MI-induced cardiac injury and improving patient outcomes.


Sujet(s)
Apoptose , Cardiomyopathies diabétiques , Ginsénosides , Dynamique mitochondriale , Myocytes cardiaques , Dysfonction ventriculaire gauche , Animaux , Dynamique mitochondriale/effets des médicaments et des substances chimiques , Cardiomyopathies diabétiques/traitement médicamenteux , Cardiomyopathies diabétiques/anatomopathologie , Cardiomyopathies diabétiques/métabolisme , Souris , Ginsénosides/pharmacologie , Ginsénosides/usage thérapeutique , Myocytes cardiaques/effets des médicaments et des substances chimiques , Myocytes cardiaques/métabolisme , Myocytes cardiaques/anatomopathologie , Dysfonction ventriculaire gauche/traitement médicamenteux , Apoptose/effets des médicaments et des substances chimiques , Humains , Quinazolinones/pharmacologie , Quinazolinones/usage thérapeutique , Espèces réactives de l'oxygène/métabolisme , Modèles animaux de maladie humaine , Mâle , Potentiel de membrane mitochondriale/effets des médicaments et des substances chimiques
5.
BMC Cardiovasc Disord ; 24(1): 470, 2024 Sep 03.
Article de Anglais | MEDLINE | ID: mdl-39223509

RÉSUMÉ

BACKGROUND: Glucose fluctuations may be involved in the pathophysiological process of cardiomyocyte apoptosis, but the exact mechanism remains elusive. This study focused on exploring the mechanisms related to glucose fluctuation-induced cardiomyocyte apoptosis. METHODS: Diabetic rats established via an injection of streptozotocin were randomized to five groups: the controlled diabetic (CD) group, the uncontrolled diabetic (UD) group, the glucose fluctuated diabetic (GFD) group, the GFD group rats with the injection of 0.9% sodium chloride (NaCl) (GFD + NaCl) and the GFD group rats with the injection of N-acetyl-L-cysteine (NAC) (GFD + NAC). Twelve weeks later, cardiac function and apoptosis related protein expressions were tested. Proteomic analysis was performed to further analyze the differential protein expression pattern of CD and GFD. RESULTS: The left ventricular ejection fraction levels and fractional shortening levels were decreased in the GFD group, compared with those in the CD and UD groups. Positive cells tested by DAB-TUNEL were increased in the GFD group, compared with those in the CD group. The expression of Bcl-2 was decreased, but the expressions of Bax, cleaved caspase-3 and cleaved caspase-9 were increased in response to glucose fluctuations. Compared with CD, there were 527 upregulated and 152 downregulated proteins in GFD group. Txnip was one of the differentially expressed proteins related to oxidative stress response. The Txnip expression was increased in the GFD group, while the Akt phosphorylation level was decreased. The interaction between Txnip and Akt was enhanced when blood glucose fluctuated. Moreover, the application of NAC partially reversed glucose fluctuations-induced cardiomyocyte apoptosis. CONCLUSIONS: Glucose fluctuations lead to cardiomyocyte apoptosis by up-regulating Txnip expression and enhancing Txnip-Akt interaction.


Sujet(s)
Protéines régulatrices de l'apoptose , Apoptose , Glycémie , Protéines de transport , Diabète expérimental , Myocytes cardiaques , Protéines proto-oncogènes c-akt , Rat Sprague-Dawley , Transduction du signal , Animaux , Myocytes cardiaques/anatomopathologie , Myocytes cardiaques/métabolisme , Myocytes cardiaques/effets des médicaments et des substances chimiques , Apoptose/effets des médicaments et des substances chimiques , Protéines proto-oncogènes c-akt/métabolisme , Diabète expérimental/métabolisme , Mâle , Protéines de transport/métabolisme , Glycémie/métabolisme , Protéines régulatrices de l'apoptose/métabolisme , Phosphorylation , Fonction ventriculaire gauche/effets des médicaments et des substances chimiques , Thiorédoxines/métabolisme , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/anatomopathologie , Cardiomyopathies diabétiques/physiopathologie , Cardiomyopathies diabétiques/étiologie , Protéomique , Rats , Cartes d'interactions protéiques , Protéines du cycle cellulaire
6.
Int J Mol Sci ; 25(17)2024 Aug 31.
Article de Anglais | MEDLINE | ID: mdl-39273428

RÉSUMÉ

Diabetic cardiomyopathy (DCM) represents one of the typical complications associated with diabetes. It has been described as anomalies in heart function and structure, with consequent high morbidity and mortality. DCM development can be described by two stages; the first is characterized by left ventricular hypertrophy and diastolic dysfunction, and the second by heart failure (HF) with systolic dysfunction. The proposed mechanisms involve cardiac inflammation, advanced glycation end products (AGEs) and angiotensin II. Furthermore, different studies have focused their attention on cardiomyocyte death through the different mechanisms of programmed cell death, such as apoptosis, autophagy, necrosis, pyroptosis and ferroptosis. Exosome release, adipose epicardial tissue and aquaporins affect DCM development. This review will focus on the description of the mechanisms involved in DCM progression and development.


Sujet(s)
Tissu adipeux , Cardiomyopathies diabétiques , Exosomes , Fibrose , Péricarde , Humains , Exosomes/métabolisme , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/anatomopathologie , Tissu adipeux/métabolisme , Tissu adipeux/anatomopathologie , Animaux , Péricarde/métabolisme , Péricarde/anatomopathologie , Mort cellulaire , Myocytes cardiaques/métabolisme , Myocytes cardiaques/anatomopathologie , Epicardial Adipose Tissue
7.
Cell Commun Signal ; 22(1): 446, 2024 Sep 26.
Article de Anglais | MEDLINE | ID: mdl-39327594

RÉSUMÉ

Diabetic cardiomyopathy (DCM) represents a unique myocardial disease originating from diabetic metabolic disturbances that is characterized by myocardial fibrosis and diastolic dysfunction. While recent research regarding the pathogenesis and treatment of DCM has focused primarily on myocardial cells, nonmyocardial cells-including fibroblasts, vascular smooth muscle cells (VSMCs), endothelial cells (ECs), and immune cells-also contribute significantly to the pathogenesis of DCM. Among various therapeutic targets, fibroblast growth factor 21 (FGF21) has been identified as a promising agent because of its cardioprotective effects that extend to nonmyocardial cells. In this review, we aim to elucidate the role of nonmyocardial cells in DCM and underscore the potential of FGF21 as a therapeutic strategy for these cells.


Sujet(s)
Cardiomyopathies diabétiques , Facteurs de croissance fibroblastique , Cardiomyopathies diabétiques/anatomopathologie , Cardiomyopathies diabétiques/métabolisme , Humains , Facteurs de croissance fibroblastique/métabolisme , Animaux , Cellules endothéliales/métabolisme , Cellules endothéliales/anatomopathologie , Fibroblastes/métabolisme , Fibroblastes/anatomopathologie , Muscles lisses vasculaires/métabolisme , Muscles lisses vasculaires/anatomopathologie
8.
PLoS One ; 19(9): e0310136, 2024.
Article de Anglais | MEDLINE | ID: mdl-39250437

RÉSUMÉ

Myocardial fibrosis can trigger heart failure in diabetic cardiomyopathy (DCM), and irisin, an exercise-induced myokine, may have a beneficial effect on cardiac function. However, the specific molecular mechanism between exercise and irisin in the diabetic heart remains not fully explored. This study aimed to investigate how miR-34a mediates exercise-induced irisin to ameliorate myocardial fibrosis and its underlying mechanisms. Type 2 diabetes mellitus (T2DM) with DCM was induced in adult male rats with high-fat diet and streptozotocin injection. The DCM rats were subjected to swimming (60 min/d) and recombinant irisin (r-irisin, 500 µg/kg/d) interventions for 8 weeks, respectively. Cardiac function, cardiomyocyte structure, myocardial fibrosis and its correlated gene and protein expression were analyzed. Swimming intervention alleviated insulin resistance, myocardial fibrosis, and myocardial hypertrophy, and promoted blood glucose homeostasis in T2DM model rats. This improvement was associated with irisin upregulation and miR-34a downregulation in the myocardium, thus enhancing cardiac function. Similar efficacy was observed via intraperitoneal injection of exogenous recombinant irisin. Inhibition of miR-34a in vivo exhibited an anti-myocardial fibrotic effect by promoting irisin secretion through activating sirtuin 1 (SIRT1)/peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α)/fibronectin type III domain-containing protein 5 (FNDC5) signal pathway and downregulating myocardial fibrosis markers (collagen I, collagen III, and transforming growth factor-ß1). Therefore, swimming-induced irisin has the potential therapeutic effect on diabetic myocardial fibrosis through activating the miR-34a-mediated SIRT1/PGC-1α/FNDC5 signal pathway.


Sujet(s)
Diabète expérimental , Diabète de type 2 , Cardiomyopathies diabétiques , Fibronectines , Fibrose , microARN , Coactivateur 1-alpha du récepteur gamma activé par les proliférateurs de peroxysomes , Transduction du signal , Sirtuine-1 , Natation , Animaux , Sirtuine-1/métabolisme , Sirtuine-1/génétique , Coactivateur 1-alpha du récepteur gamma activé par les proliférateurs de peroxysomes/métabolisme , Coactivateur 1-alpha du récepteur gamma activé par les proliférateurs de peroxysomes/génétique , Fibronectines/métabolisme , microARN/génétique , microARN/métabolisme , Mâle , Rats , Diabète de type 2/métabolisme , Diabète de type 2/complications , Diabète de type 2/génétique , Diabète expérimental/métabolisme , Diabète expérimental/génétique , Diabète expérimental/complications , Diabète expérimental/anatomopathologie , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/génétique , Cardiomyopathies diabétiques/anatomopathologie , Cardiomyopathies diabétiques/étiologie , Rat Sprague-Dawley , Myocarde/métabolisme , Myocarde/anatomopathologie
9.
Cell Signal ; 122: 111333, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39102928

RÉSUMÉ

PIWI-interacting RNAs (piRNAs) are involved in the regulation of hypertrophic cardiomyopathy, heart failure and myocardial methylation. However, their functions and the underlying molecular mechanisms in diabetic cardiomyopathy (DCM) have yet to be fully elucidated. In the present study, a pyroptosis-associated piRNA (piR112710) was identified that ameliorates cardiac remodeling through targeting the activation of inflammasomes and mitochondrial dysfunction that are mediated via the thioredoxin-interacting protein (Txnip)/NLRP3 signaling axis. Subsequently, the cardioprotective effects of piR112710 on both the myocardium from db/db mice and cardiomyocytes from neonatal mice that were incubated with a high concentration of glucose combined with palmitate were examined. piR112710 was found to significantly improve cardiac dysfunction in db/db mice, characterized by improved echocardiography, lower levels of fibrosis, attenuated expression levels of inflammatory factors and pyroptosis-associated proteins (namely, Txnip, ASC, NLRP3, caspase-1 and GSDMD-N), and enhanced myocardial mitochondrial respiratory functions. In cultured neonatal mice cardiomyocytes, piR112710 deficiency and high glucose along with palmitate treatment led to significantly upregulated expression levels of pyroptosis associated proteins and collagens, oxidative stress, mitochondrial dysfunction and increased levels of inflammatory factors. Supplementation with piR112710, however, led to a reversal of the aforementioned changes induced by high glucose and palmitate. Mechanistically, the cardioprotective effect of piR112710 appears to be dependent upon effective elimination of reactive oxygen species and inactivation of the Txnip/NLRP3 signaling axis. Taken together, the findings of the present study have revealed that the piRNA-mediated inhibitory mechanism involving the Txnip/NLRP3 axis may participate in the regulation of pyroptosis, which protects against DCM both in vivo and in vitro. piR112710 may therefore be a potential therapeutic target for the reduction of myocardial injury caused by cardiomyocyte pyroptosis in DCM.


Sujet(s)
Protéines de transport , Cardiomyopathies diabétiques , Myocytes cardiaques , Protéine-3 de la famille des NLR contenant un domaine pyrine , Pyroptose , Animaux , Protéine-3 de la famille des NLR contenant un domaine pyrine/métabolisme , Pyroptose/effets des médicaments et des substances chimiques , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/anatomopathologie , Protéines de transport/métabolisme , Souris , Myocytes cardiaques/métabolisme , Myocytes cardiaques/anatomopathologie , Myocytes cardiaques/effets des médicaments et des substances chimiques , Mâle , Petit ARN interférent/métabolisme , Souris de lignée C57BL , Thiorédoxines/métabolisme , Thiorédoxines/génétique , Transduction du signal/effets des médicaments et des substances chimiques , Inflammasomes/métabolisme
10.
Life Sci ; 355: 122993, 2024 Oct 15.
Article de Anglais | MEDLINE | ID: mdl-39154810

RÉSUMÉ

Addressing insulin resistance or hyperinsulinemia might offer a viable treatment approach to stop the onset of diabetic cardiomyopathy, as these conditions independently predispose to the development of the disease, which is initially characterized by diastolic abnormalities. The development of diabetic cardiomyopathy appears to be driven mainly by insulin resistance or impaired insulin signalling and/or hyperinsulinemia. Oxidative stress, hypertrophy, fibrosis, cardiac diastolic dysfunction, and, ultimately, systolic heart failure are the outcomes of these pathophysiological alterations. Melatonin is a ubiquitous indoleamine, a widely distributed compound secreted mainly by the pineal gland, and serves a variety of purposes in almost every living creature. Melatonin is found to play a leading role by improving myocardial cell metabolism, decreasing vascular endothelial cell death, reversing micro-circulation disorders, reducing myocardial fibrosis, decreasing oxidative and endoplasmic reticulum stress, regulating cell autophagy and apoptosis, and enhancing mitochondrial function. This review highlights a relationship between insulin resistance and associated cardiomyopathy. It explores the potential therapeutic strategies offered by the neurohormone melatonin, an important antioxidant that plays a leading role in maintaining glucose homeostasis by influencing the glucose transporters independently and through its receptors. The vast distribution of melatonin receptors in the body, including beta cells of pancreatic islets, asserts the role of this indole molecule in maintaining glucose homeostasis. Melatonin controls the production of GLUT4 and/or the phosphorylation process of the receptor for insulin and its intracellular substrates, activating the insulin-signalling pathway through its G-protein-coupled membrane receptors.


Sujet(s)
Cardiomyopathies diabétiques , Insulinorésistance , Mélatonine , Mélatonine/métabolisme , Mélatonine/usage thérapeutique , Mélatonine/pharmacologie , Insulinorésistance/physiologie , Humains , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/traitement médicamenteux , Cardiomyopathies diabétiques/anatomopathologie , Animaux , Stress oxydatif/effets des médicaments et des substances chimiques , Antioxydants/métabolisme , Antioxydants/pharmacologie , Antioxydants/usage thérapeutique , Transduction du signal/effets des médicaments et des substances chimiques
11.
Cell Rep ; 43(8): 114573, 2024 Aug 27.
Article de Anglais | MEDLINE | ID: mdl-39093701

RÉSUMÉ

Growth differentiation factor 15 (GDF15) is a peptide with utility in obesity, as it decreases appetite and promotes weight loss. Because obesity increases the risk for type 2 diabetes (T2D) and cardiovascular disease, it is imperative to understand the cardiovascular actions of GDF15, especially since elevated GDF15 levels are an established biomarker for heart failure. As weight loss should be encouraged in the early stages of obesity-related prediabetes/T2D, where diabetic cardiomyopathy is often present, we assessed whether treatment with GDF15 influences its pathology. We observed that GDF15 treatment alleviates diastolic dysfunction in mice with T2D independent of weight loss. This cardioprotection was associated with a reduction in cardiac inflammation, which was likely mediated via indirect actions, as direct treatment of adult mouse cardiomyocytes and differentiated THP-1 human macrophages with GDF15 failed to alleviate lipopolysaccharide-induced inflammation. Therapeutic manipulation of GDF15 action may thus have utility for both obesity and diabetic cardiomyopathy.


Sujet(s)
Cardiomyopathies diabétiques , Facteur-15 de croissance et de différenciation , Myocytes cardiaques , Facteur-15 de croissance et de différenciation/métabolisme , Animaux , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/anatomopathologie , Cardiomyopathies diabétiques/traitement médicamenteux , Souris , Humains , Myocytes cardiaques/métabolisme , Myocytes cardiaques/effets des médicaments et des substances chimiques , Myocytes cardiaques/anatomopathologie , Souris de lignée C57BL , Mâle , Diastole/effets des médicaments et des substances chimiques , Diabète de type 2/métabolisme , Diabète de type 2/complications , Inflammation/anatomopathologie , Inflammation/métabolisme , Macrophages/métabolisme , Macrophages/effets des médicaments et des substances chimiques , Cellules THP-1 , Obésité/métabolisme , Lipopolysaccharides/pharmacologie
12.
EBioMedicine ; 106: 105268, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39098108

RÉSUMÉ

BACKGROUND: Atrial cardiomyopathy (ACM) is responsible for atrial fibrillation (AF) and thromboembolic events. Diabetes mellitus (DM) is an important risk factor for ACM. However, the potential mechanism between ACM and DM remains elusive. METHODS: Atrial tissue samples were obtained from patients diagnosed with AF or sinus rhythm (SR) to assess alterations in NR4A3 expression, and then two distinct animal models were generated by subjecting Nr4a3-/- mice and WT mice to a high-fat diet (HFD) and Streptozotocin (STZ), while db/db mice were administered AAV9-Nr4a3 or AAV9-ctrl. Subsequently, in vivo and in vitro experiments were conducted to assess the impact of NR4A3 on diabetes-induced atrial remodeling through electrophysiological, biological, and histological analyses. RNA sequencing (RNA-seq) and metabolomics analysis were employed to unravel the downstream mechanisms. FINDINGS: The expression of NR4A3 was significantly decreased in atrial tissues of both AF patients and diabetic mice compared to their respective control groups. NR4A3 deficiency exacerbated atrial hypertrophy and atrial fibrosis, and increased susceptibility to pacing-induced AF. Conversely, overexpression of NR4A3 alleviated atrial structural remodeling and reduced AF induction rate. Mechanistically, we confirmed that NR4A3 improves mitochondrial energy metabolism and reduces oxidative stress injury by preserving the transcriptional expression of Sdha, thereby exerting a protective influence on atrial remodeling induced by diabetes. INTERPRETATION: Our data confirm that NR4A3 plays a protective role in atrial remodeling caused by diabetes, so it may be a new target for treating ACM. FUNDING: This study was supported by the major research program of National Natural Science Foundation of China (NSFC) No: 82370316 (to Q-S. W.), No. 81974041 (to Y-P. W.), and No. 82270447 (to Y-P. W.) and Fundation of Shanghai Hospital Development Center (No. SHDC2022CRD044 to Q-S. W.).


Sujet(s)
Diabète expérimental , Métabolisme énergétique , Stress oxydatif , Animaux , Souris , Humains , Diabète expérimental/métabolisme , Diabète expérimental/complications , Mâle , Souris knockout , Récepteurs des hormones thyroïdiennes/métabolisme , Récepteurs des hormones thyroïdiennes/génétique , Atrium du coeur/métabolisme , Atrium du coeur/anatomopathologie , Fibrillation auriculaire/métabolisme , Fibrillation auriculaire/étiologie , Fibrillation auriculaire/prévention et contrôle , Modèles animaux de maladie humaine , Mitochondries/métabolisme , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/étiologie , Cardiomyopathies diabétiques/génétique , Cardiomyopathies diabétiques/anatomopathologie , Cardiomyopathies diabétiques/prévention et contrôle , Cardiomyopathies/étiologie , Cardiomyopathies/métabolisme , Remodelage auriculaire , Protéines de liaison à l'ADN , Récepteurs aux stéroïdes
13.
Int J Mol Sci ; 25(15)2024 Jul 29.
Article de Anglais | MEDLINE | ID: mdl-39125850

RÉSUMÉ

Diabetic cardiomyopathy (DbCM) is a common complication in individuals with type 2 diabetes mellitus (T2DM), and its exact pathogenesis is still debated. It was hypothesized that chronic hyperglycemia and insulin resistance activate critical cellular pathways that are responsible for numerous functional and anatomical perturbations in the heart. Interstitial inflammation, oxidative stress, myocardial apoptosis, mitochondria dysfunction, defective cardiac metabolism, cardiac remodeling, hypertrophy and fibrosis with consequent impaired contractility are the most common mechanisms implicated. Epigenetic changes also have an emerging role in the regulation of these crucial pathways. The aim of this review was to highlight the increasing knowledge on the molecular mechanisms of DbCM and the new therapies targeting specific pathways.


Sujet(s)
Diabète de type 2 , Cardiomyopathies diabétiques , Stress oxydatif , Humains , Diabète de type 2/métabolisme , Diabète de type 2/génétique , Diabète de type 2/anatomopathologie , Diabète de type 2/complications , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/anatomopathologie , Cardiomyopathies diabétiques/génétique , Cardiomyopathies diabétiques/étiologie , Animaux , Insulinorésistance , Épigenèse génétique , Myocarde/métabolisme , Myocarde/anatomopathologie , Apoptose/génétique
14.
Metabolism ; 158: 155977, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39053690

RÉSUMÉ

BACKGROUND: Although metabolic disturbance is a characteristic of diabetic cardiomyopathy (DbCM), the detailed pathogenesis of DbCM remains unknown. METHODS: We used a heart transplantation (HTx) cohort to explore the effect of diabetes mellitus on heart failure (HF) progression dependent of myocardium. Microscopic and ultramicroscopic pathology were used to depict the pathological features of human myocardium of DbCM. We performed targeted metabolomics to characterize the metabolic phenotype of human DbCM. Transcriptomics data were analyzed and weighted gene co-expression network analysis was performed to explore the potential upstream regulator for metabolic remodeling of DbCM. In vivo and in vitro experiments were further conducted to demonstrate the therapeutic effects and molecular mechanisms. RESULTS: DbCM promoted the progression of HF and increased death or HF-rehospitalization after HTx. Lipid accumulation and mitochondrial fission were the obvious pathological features of DbCM myocardium. The concentrations of C14:0-CoA and C16:1-CoA were significantly increased in the myocardium, and they were positively correlated with the accelerated HF progression and RCAN1 expression in DbCM patients. Knockdown of RCAN1 improved cardiac dysfunction, lipid accumulation, and mitochondrial fission in db/db mice. In vitro studies showed that RCAN1 knockdown improved mitochondrial dysfunction in DbCM cardiomyocytes via the RCAN1-p-Drp1 Ser616 axis. CONCLUSIONS: Diabetes is associated with faster progression of HF and causes poor prognosis after HTx, accompanied by metabolic remodeling in the myocardium. Accumulation of long chain acyl-CoA in the myocardium is the metabolic hallmark of human DbCM and is associated with more rapid disease progression for DbCM patients. Upregulation of RCAN1 in the myocardium is associated with the metabolic signatures of DbCM and RCAN1 is a potential therapeutic target for DbCM.


Sujet(s)
Cardiomyopathies diabétiques , Métabolisme lipidique , Dynamique mitochondriale , Animaux , Femelle , Humains , Mâle , Souris , Adulte d'âge moyen , Protéines de liaison au calcium/métabolisme , Protéines de liaison au calcium/génétique , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/anatomopathologie , Défaillance cardiaque/métabolisme , Défaillance cardiaque/étiologie , Transplantation cardiaque , Protéines et peptides de signalisation intracellulaire/métabolisme , Protéines et peptides de signalisation intracellulaire/génétique , Métabolisme lipidique/physiologie , Souris de lignée C57BL , Dynamique mitochondriale/physiologie , Protéines du muscle/métabolisme , Protéines du muscle/génétique , Myocarde/métabolisme , Myocarde/anatomopathologie , Myocytes cardiaques/métabolisme , Myocytes cardiaques/anatomopathologie
15.
Tissue Cell ; 90: 102478, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39053131

RÉSUMÉ

Nimbolide has been demonstrated to possess protective properties against gestational diabetes mellitus and diabetic retinopathy. However, the role and molecular mechanism of nimbolide in diabetic cardiomyopathy (DCM) remain unknown. Diabetes was induced in rats via a single injection of streptozotocin (STZ) and then the diabetic rats were administered nimbolide (5 mg/kg and 20 mg/kg) or dimethyl sulfoxide daily for 12 weeks. H9c2 cardiomyocytes were exposed to high glucose (25 mM glucose) to mimic DCM in vitro. The protective effects of nimbolide against DCM were evaluated in vivo and in vitro. The potential molecular mechanism of nimbolide in DCM was further explored. We found that nimbolide dose-dependently decreased blood glucose and improved body weight of diabetic rats. Additionally, nimbolide dose-dependently improved cardiac function, alleviated myocardial injury/fibrosis, and inhibited endoplasmic reticulum (ER) stress and apoptosis in diabetic rats. Moreover, nimbolide dose-dependently improved mitochondrial function and activated the Akt/mTOR signaling. We consistently demonstrated the cardioprotective effects of nimbolide in an in vitro model of DCM. The involvement of ER stress and mitochondrial pathways were further confirmed by using inhibitors of ER stress and mitochondrial division. By applying a specific Akt inhibitor SC66, the cardioprotective effects of nimbolide were partially blocked. Our study indicated that nimbolide alleviated DCM by activating Akt/mTOR pathway. Nimbolide may be a novel therapeutic agent for DCM treatment.


Sujet(s)
Diabète expérimental , Cardiomyopathies diabétiques , Stress du réticulum endoplasmique , Limonines , Mitochondries , Protéines proto-oncogènes c-akt , Transduction du signal , Sérine-thréonine kinases TOR , Animaux , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/traitement médicamenteux , Cardiomyopathies diabétiques/anatomopathologie , Cardiomyopathies diabétiques/prévention et contrôle , Stress du réticulum endoplasmique/effets des médicaments et des substances chimiques , Protéines proto-oncogènes c-akt/métabolisme , Rats , Diabète expérimental/métabolisme , Diabète expérimental/traitement médicamenteux , Diabète expérimental/anatomopathologie , Sérine-thréonine kinases TOR/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Limonines/pharmacologie , Mâle , Myocytes cardiaques/effets des médicaments et des substances chimiques , Myocytes cardiaques/métabolisme , Myocytes cardiaques/anatomopathologie , Rat Sprague-Dawley , Lignée cellulaire , Apoptose/effets des médicaments et des substances chimiques , Cardiotoniques/pharmacologie
16.
Cardiovasc Toxicol ; 24(9): 942-954, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39023814

RÉSUMÉ

Diabetic cardiomyopathy (DCM) is one of the serious complications of type 2 diabetes mellitus. Vasant Kusumakar Rasa (VKR) is a Herbo-metallic formulation reported in Ayurveda, an Indian system of medicine. The present work was designed to study the effect of VKR in cardiomyopathy in type 2 diabetic rats. Diabetes was induced by feeding a high-fat diet (HFD) for 2 weeks followed by streptozotocin (STZ) administration (35 mg/kg i.p.). VKR was administered orally at dose of 28 and 56 mg/kg once a day for 16 weeks. The results of the study indicated that VKR treatment significantly improved the glycemic and lipid profile, serum insulin, CK-MB, LDH, and cardiac troponin-I when compared to diabetic control animals. VKR treatment in rats significantly improved the hemodynamic parameters and cardiac tissue levels of TNF-α, IL-1ß, and IL- 6 were also reduced. Antioxidant enzymes such as GSH, SOD, and catalase were improved in all treatment groups. Heart sections stained with H & E and Masson's trichome showed decreased damage to histoarchitecture of the myocardium. Expression of PI3K, Akt, and GLUT4 in the myocardium was upregulated after 16 weeks of VKR treatment. The study data suggested the cardioprotective capability of VKR in the management of diabetic cardiomyopathy in rats.


Sujet(s)
Diabète expérimental , Diabète de type 2 , Cardiomyopathies diabétiques , Stress oxydatif , Animaux , Cardiomyopathies diabétiques/prévention et contrôle , Cardiomyopathies diabétiques/physiopathologie , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/étiologie , Cardiomyopathies diabétiques/anatomopathologie , Cardiomyopathies diabétiques/traitement médicamenteux , Diabète expérimental/traitement médicamenteux , Diabète expérimental/complications , Mâle , Diabète de type 2/traitement médicamenteux , Diabète de type 2/complications , Stress oxydatif/effets des médicaments et des substances chimiques , Rat Wistar , Myocarde/anatomopathologie , Myocarde/métabolisme , Antioxydants/pharmacologie , Glycémie/métabolisme , Glycémie/effets des médicaments et des substances chimiques , Marqueurs biologiques/sang , Médecine ayurvédique , Rats , Médiateurs de l'inflammation/métabolisme , Transporteur de glucose de type 4/métabolisme , Protéines proto-oncogènes c-akt/métabolisme , Cytokines/métabolisme , Transduction du signal
17.
Mol Metab ; 86: 101978, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38950776

RÉSUMÉ

OBJECTIVE: Aberrant glucolipid metabolism in the heart is a characteristic factor in diabetic cardiomyopathy (DbCM). Super-enhancers-driven noncoding RNAs (seRNAs) are emerging as powerful regulators in the progression of cardiac diseases. However, the functions of seRNAs in DbCM have not been fully elucidated. METHODS: Super enhancers and their associated seRNAs were screened and identified by H3K27ac ChIP-seq data in the Encyclopedia of DNA Elements (ENCODE) dataset. A dual-luciferase reporter assay was performed to analyze the function of super-enhancers on the transcription of peroxisome proliferator-activated receptor α-related seRNA (PPARα-seRNA). A DbCM mouse model was established using db/db leptin receptor-deficient mice. Adeno-associated virus serotype 9-seRNA (AAV9-seRNA) was injected via the tail vein to evaluate the role of seRNA in DbCM. The underlying mechanism was explored through RNA pull-down, RNA and chromatin immunoprecipitation, and chromatin isolation by RNA purification. RESULTS: PPARα-seRNA was regulated by super-enhancers and its levels were increased in response to high glucose and palmitic acid stimulation in cardiomyocytes. Functionally, PPARα-seRNA overexpression aggravated lipid deposition, reduced glucose uptake, and repressed energy production. In contrast, PPARα-seRNA knockdown ameliorated metabolic disorder in vitro. In vivo, overexpression of PPARα-seRNA exacerbated cardiac metabolic disorder and deteriorated cardiac dysfunction, myocardial fibrosis, and hypertrophy in DbCM. Mechanistically, PPARα-seRNA bound to the histone demethylase KDM4B (Lysine-specific demethylase 4B) and decreased H3K9me3 levels in the promoter region of PPARα, ultimately enhancing its transcription. CONCLUSIONS: Our study revealed the pivotal function of a super-enhancer-driven long noncoding RNA (lncRNA), PPARα-seRNA, in the deterioration of cardiac function and the exacerbation of metabolic abnormalities in diabetic cardiomyopathy, which recruited KDM4B to the promoter region of PPARα and repression of its transcription. This suggests a promising therapeutic strategy for the treatment of DbCM.


Sujet(s)
Cardiomyopathies diabétiques , Métabolisme lipidique , Récepteur PPAR alpha , ARN long non codant , Animaux , Mâle , Souris , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/génétique , Cardiomyopathies diabétiques/anatomopathologie , Éléments activateurs (génétique)/génétique , Glucose/métabolisme , Métabolisme lipidique/génétique , Souris de lignée C57BL , Myocytes cardiaques/métabolisme , Récepteur PPAR alpha/métabolisme , Récepteur PPAR alpha/génétique , ARN long non codant/génétique , ARN long non codant/métabolisme
18.
Cardiovasc Diabetol ; 23(1): 261, 2024 Jul 18.
Article de Anglais | MEDLINE | ID: mdl-39026280

RÉSUMÉ

Mitochondria play a central role in cellular energy metabolism, and their dysfunction is increasingly recognized as a critical factor in the pathogenesis of diabetes-related cardiac pathophysiology, including vulnerability to ischemic events that culminate in myocardial infarction on the one hand and ventricular arrhythmias on the other. In diabetes, hyperglycemia and altered metabolic substrates lead to excessive production of reactive oxygen species (ROS) by mitochondria, initiating a cascade of oxidative stress that damages mitochondrial DNA, proteins, and lipids. This mitochondrial injury compromises the efficiency of oxidative phosphorylation, leading to impaired ATP production. The resulting energy deficit and oxidative damage contribute to functional abnormalities in cardiac cells, placing the heart at an increased risk of electromechanical dysfunction and irreversible cell death in response to ischemic insults. While cardiac mitochondria are often considered to be relatively autonomous entities in their capacity to produce energy and ROS, their highly dynamic nature within an elaborate network of closely-coupled organelles that occupies 30-40% of the cardiomyocyte volume is fundamental to their ability to exert intricate regulation over global cardiac function. In this article, we review evidence linking the dynamic properties of the mitochondrial network to overall cardiac function and its response to injury. We then highlight select studies linking mitochondrial ultrastructural alterations driven by changes in mitochondrial fission, fusion and mitophagy in promoting cardiac ischemic injury to the diabetic heart.


Sujet(s)
Cardiomyopathies diabétiques , Métabolisme énergétique , Mitochondries du myocarde , Ischémie myocardique , Stress oxydatif , Humains , Mitochondries du myocarde/métabolisme , Mitochondries du myocarde/anatomopathologie , Animaux , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/physiopathologie , Cardiomyopathies diabétiques/anatomopathologie , Cardiomyopathies diabétiques/étiologie , Ischémie myocardique/métabolisme , Ischémie myocardique/physiopathologie , Ischémie myocardique/anatomopathologie , Dynamique mitochondriale , Mitophagie , Espèces réactives de l'oxygène/métabolisme , Myocytes cardiaques/métabolisme , Myocytes cardiaques/anatomopathologie , Transduction du signal
19.
PLoS One ; 19(7): e0302772, 2024.
Article de Anglais | MEDLINE | ID: mdl-39042659

RÉSUMÉ

Noncoding RNAs play a part in many chronic diseases and interact with each other to regulate gene expression. MicroRNA-9-5p (miR9) has been thought to be a potential inhibitor of diabetic cardiomyopathy. Here we examined the role of miR9 in regulating cardiac fibrosis in the context of diabetic cardiomyopathy. We further expanded our studies through investigation of a regulatory circularRNA, circRNA_012164, on the action of miR9. We showed at both the in vivo and in vitro level that glucose induced downregulation of miR9 and upregulation of circRNA_012164 resulted in the subsequent upregulation of downstream fibrotic genes. Further, knockdown of circRNA_012164 shows protective effects in cardiac endothelial cells and reverses increased transcription of genes associated with fibrosis and fibroblast proliferation through a regulatory axis with miR9. This study presents a novel regulatory axis involving noncoding RNA that is evidently important in the development of cardiac fibrosis in diabetic cardiomyopathy.


Sujet(s)
Cardiomyopathies diabétiques , Fibrose , microARN , ARN circulaire , microARN/génétique , microARN/métabolisme , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/génétique , Cardiomyopathies diabétiques/anatomopathologie , Animaux , ARN circulaire/génétique , ARN circulaire/métabolisme , Souris , Mâle , Myocarde/métabolisme , Myocarde/anatomopathologie , ARN/génétique , ARN/métabolisme , Glucose/métabolisme , Régulation de l'expression des gènes , Prolifération cellulaire/génétique , Cellules endothéliales/métabolisme , Cellules endothéliales/anatomopathologie , Rats , Souris de lignée C57BL
20.
BMC Cardiovasc Disord ; 24(1): 333, 2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38961333

RÉSUMÉ

BACKGROUND: Oxidative stress may contribute to cardiac ryanodine receptor (RyR2) dysfunction in diabetic cardiomyopathy. Ginsenoside Rb1 (Rb1) is a major pharmacologically active component of ginseng to treat cardiovascular diseases. Whether Rb1 treat diabetes injured heart remains unknown. This study was to investigate the effect of Rb1 on diabetes injured cardiac muscle tissue and to further investigate its possible molecular pharmacology mechanisms. METHODS: Male Sprague-Dawley rats were injected streptozotocin solution for 2 weeks, followed 6 weeks Rb1 or insulin treatment. The activity of SOD, CAT, Gpx, and the levels of MDA was measured; histological and ultrastructure analyses, RyR2 activity and phosphorylated RyR2(Ser2808) protein expression analyses; and Tunel assay were performed. RESULTS: There was decreased activity of SOD, CAT, Gpx and increased levels of MDA in the diabetic group from control. Rb1 treatment increased activity of SOD, CAT, Gpx and decreased the levels of MDA as compared with diabetic rats. Neutralizing the RyR2 activity significantly decreased in diabetes from control, and increased in Rb1 treatment group from diabetic group. The expression of phosphorylation of RyR2 Ser2808 was increased in diabetic rats from control, and were attenuated with insulin and Rb1 treatment. Diabetes increased the apoptosis rate, and Rb1 treatment decreased the apoptosis rate. Rb1 and insulin ameliorated myocardial injury in diabetic rats. CONCLUSIONS: These data indicate that Rb1 could be useful for mitigating oxidative damage, reduced phosphorylation of RyR2 Ser2808 and decreased the apoptosis rate of cardiomyocytes in diabetic cardiomyopathy.


Sujet(s)
Antioxydants , Apoptose , Diabète expérimental , Cardiomyopathies diabétiques , Ginsénosides , Myocytes cardiaques , Stress oxydatif , Rat Sprague-Dawley , Canal de libération du calcium du récepteur à la ryanodine , Streptozocine , Animaux , Diabète expérimental/traitement médicamenteux , Mâle , Stress oxydatif/effets des médicaments et des substances chimiques , Canal de libération du calcium du récepteur à la ryanodine/métabolisme , Canal de libération du calcium du récepteur à la ryanodine/effets des médicaments et des substances chimiques , Ginsénosides/pharmacologie , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/traitement médicamenteux , Cardiomyopathies diabétiques/anatomopathologie , Cardiomyopathies diabétiques/physiopathologie , Cardiomyopathies diabétiques/étiologie , Apoptose/effets des médicaments et des substances chimiques , Antioxydants/pharmacologie , Phosphorylation , Myocytes cardiaques/effets des médicaments et des substances chimiques , Myocytes cardiaques/anatomopathologie , Myocytes cardiaques/métabolisme , Myocarde/anatomopathologie , Myocarde/métabolisme , Insuline , Malonaldéhyde/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE