Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 666
Filtrer
1.
Life Sci ; 355: 122993, 2024 Oct 15.
Article de Anglais | MEDLINE | ID: mdl-39154810

RÉSUMÉ

Addressing insulin resistance or hyperinsulinemia might offer a viable treatment approach to stop the onset of diabetic cardiomyopathy, as these conditions independently predispose to the development of the disease, which is initially characterized by diastolic abnormalities. The development of diabetic cardiomyopathy appears to be driven mainly by insulin resistance or impaired insulin signalling and/or hyperinsulinemia. Oxidative stress, hypertrophy, fibrosis, cardiac diastolic dysfunction, and, ultimately, systolic heart failure are the outcomes of these pathophysiological alterations. Melatonin is a ubiquitous indoleamine, a widely distributed compound secreted mainly by the pineal gland, and serves a variety of purposes in almost every living creature. Melatonin is found to play a leading role by improving myocardial cell metabolism, decreasing vascular endothelial cell death, reversing micro-circulation disorders, reducing myocardial fibrosis, decreasing oxidative and endoplasmic reticulum stress, regulating cell autophagy and apoptosis, and enhancing mitochondrial function. This review highlights a relationship between insulin resistance and associated cardiomyopathy. It explores the potential therapeutic strategies offered by the neurohormone melatonin, an important antioxidant that plays a leading role in maintaining glucose homeostasis by influencing the glucose transporters independently and through its receptors. The vast distribution of melatonin receptors in the body, including beta cells of pancreatic islets, asserts the role of this indole molecule in maintaining glucose homeostasis. Melatonin controls the production of GLUT4 and/or the phosphorylation process of the receptor for insulin and its intracellular substrates, activating the insulin-signalling pathway through its G-protein-coupled membrane receptors.


Sujet(s)
Cardiomyopathies diabétiques , Insulinorésistance , Mélatonine , Mélatonine/métabolisme , Mélatonine/usage thérapeutique , Mélatonine/pharmacologie , Insulinorésistance/physiologie , Humains , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/traitement médicamenteux , Cardiomyopathies diabétiques/anatomopathologie , Animaux , Stress oxydatif/effets des médicaments et des substances chimiques , Antioxydants/métabolisme , Antioxydants/pharmacologie , Antioxydants/usage thérapeutique , Transduction du signal/effets des médicaments et des substances chimiques
2.
J Pharm Pharm Sci ; 27: 13193, 2024.
Article de Anglais | MEDLINE | ID: mdl-39206323

RÉSUMÉ

Cardiovascular disease including diabetic cardiomyopathy (DbCM) represents the leading cause of death in people with diabetes. DbCM is defined as ventricular dysfunction in the absence of underlying vascular diseases and/or hypertension. The known molecular mediators of DbCM are multifactorial, including but not limited to insulin resistance, altered energy metabolism, lipotoxicity, endothelial dysfunction, oxidative stress, apoptosis, and autophagy. FoxO1, a prominent member of forkhead box O transcription factors, is involved in regulating various cellular processes in different tissues. Altered FoxO1 expression and activity have been associated with cardiovascular diseases in diabetic subjects. Herein we provide an overview of the role of FoxO1 in various molecular mediators related to DbCM, such as altered energy metabolism, lipotoxicity, oxidative stress, and cell death. Furthermore, we provide valuable insights into its therapeutic potential by targeting these perturbations to alleviate cardiomyopathy in settings of type 1 and type 2 diabetes.


Sujet(s)
Cardiomyopathies diabétiques , Humains , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/traitement médicamenteux , Animaux , Protéine O1 à motif en tête de fourche/métabolisme , Facteurs de transcription Forkhead/métabolisme , Facteurs de transcription Forkhead/antagonistes et inhibiteurs , Facteurs de transcription Forkhead/génétique , Stress oxydatif/effets des médicaments et des substances chimiques , Diabète de type 2/traitement médicamenteux , Diabète de type 2/métabolisme
3.
Cell Rep ; 43(8): 114573, 2024 Aug 27.
Article de Anglais | MEDLINE | ID: mdl-39093701

RÉSUMÉ

Growth differentiation factor 15 (GDF15) is a peptide with utility in obesity, as it decreases appetite and promotes weight loss. Because obesity increases the risk for type 2 diabetes (T2D) and cardiovascular disease, it is imperative to understand the cardiovascular actions of GDF15, especially since elevated GDF15 levels are an established biomarker for heart failure. As weight loss should be encouraged in the early stages of obesity-related prediabetes/T2D, where diabetic cardiomyopathy is often present, we assessed whether treatment with GDF15 influences its pathology. We observed that GDF15 treatment alleviates diastolic dysfunction in mice with T2D independent of weight loss. This cardioprotection was associated with a reduction in cardiac inflammation, which was likely mediated via indirect actions, as direct treatment of adult mouse cardiomyocytes and differentiated THP-1 human macrophages with GDF15 failed to alleviate lipopolysaccharide-induced inflammation. Therapeutic manipulation of GDF15 action may thus have utility for both obesity and diabetic cardiomyopathy.


Sujet(s)
Cardiomyopathies diabétiques , Facteur-15 de croissance et de différenciation , Myocytes cardiaques , Facteur-15 de croissance et de différenciation/métabolisme , Animaux , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/anatomopathologie , Cardiomyopathies diabétiques/traitement médicamenteux , Souris , Humains , Myocytes cardiaques/métabolisme , Myocytes cardiaques/effets des médicaments et des substances chimiques , Myocytes cardiaques/anatomopathologie , Souris de lignée C57BL , Mâle , Diastole/effets des médicaments et des substances chimiques , Diabète de type 2/métabolisme , Diabète de type 2/complications , Inflammation/anatomopathologie , Inflammation/métabolisme , Macrophages/métabolisme , Macrophages/effets des médicaments et des substances chimiques , Cellules THP-1 , Obésité/métabolisme , Lipopolysaccharides/pharmacologie
4.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3714-3724, 2024 Jul.
Article de Chinois | MEDLINE | ID: mdl-39099346

RÉSUMÉ

Diabetic cardiomyopathy(DCM) is a chronic complication of diabetes mellitus that leads to cardiac damage in the later stages of the disease, and its pathogenesis is complex, involving metabolic disorders brought about by a variety of aberrant alterations such as endoplasmic reticulum stress, oxidative stress, inflammation, and apoptosis, defects in cardiomyocyte Ca~(2+) transporter, and myocardial fibrosis. Currently, there is a lack of specific diagnosis and treatment in the clinic. Autophagy is a highly conserved scavenging mechanism that removes proteins, damaged organelles or foreign contaminants and converts them into energy and amino acids to maintain the stability of the intracellular environment. Inhibition of autophagy can cause harmful metabolites to accumulate in the cell, while over-activation of autophagy can disrupt normal cellular structures and cause cell death. Prolonged high glucose levels disrupt cardiomyocyte autophagy levels and exacerbate the development of DCM. The protective or detrimental effects of autophagy on cells ring true with the traditional Chinese medicine theory of healthy Qi and pathogenic Qi. Autophagy in the physiological state of the removal of intracellular substances and the generation of substances beneficial to the survival of cells is the inhibition of pathogenic Qi to help the performance of healthy Qi, so the organism is healthy. In the early stages of the disease, when autophagy is impaired and incapable of removing waste substances, pathogenic Qi is prevalent; In the later stages of the disease, excessive activation of autophagy can destroy normal cells, leading to a weakening of healthy Qi. Traditional Chinese medicine has the advantage of targeting multiple sites and pathways. Studies in recent years have confirmed that traditional Chinese medicine monomers or formulas can target autophagy, promote the restoration of autophagy levels, maintain mitochondrial and endoplasmic reticulum homeostasis, and reduce oxidative stress, endoplasmic reticulum stress, inflammation, and apoptosis in order to prevent and control DCM. This study provides a review of the relationship between autophagy and DCM and the intervention of traditional Chinese medicine in autophagy for the treatment of DCM, with a view to providing new clinical ideas and methods for the treatment of DCM with traditional Chinese medicine.


Sujet(s)
Autophagie , Cardiomyopathies diabétiques , Médicaments issus de plantes chinoises , Médecine traditionnelle chinoise , Autophagie/effets des médicaments et des substances chimiques , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/traitement médicamenteux , Cardiomyopathies diabétiques/physiopathologie , Humains , Animaux , Médicaments issus de plantes chinoises/pharmacologie , Stress du réticulum endoplasmique/effets des médicaments et des substances chimiques
6.
BMC Cardiovasc Disord ; 24(1): 333, 2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38961333

RÉSUMÉ

BACKGROUND: Oxidative stress may contribute to cardiac ryanodine receptor (RyR2) dysfunction in diabetic cardiomyopathy. Ginsenoside Rb1 (Rb1) is a major pharmacologically active component of ginseng to treat cardiovascular diseases. Whether Rb1 treat diabetes injured heart remains unknown. This study was to investigate the effect of Rb1 on diabetes injured cardiac muscle tissue and to further investigate its possible molecular pharmacology mechanisms. METHODS: Male Sprague-Dawley rats were injected streptozotocin solution for 2 weeks, followed 6 weeks Rb1 or insulin treatment. The activity of SOD, CAT, Gpx, and the levels of MDA was measured; histological and ultrastructure analyses, RyR2 activity and phosphorylated RyR2(Ser2808) protein expression analyses; and Tunel assay were performed. RESULTS: There was decreased activity of SOD, CAT, Gpx and increased levels of MDA in the diabetic group from control. Rb1 treatment increased activity of SOD, CAT, Gpx and decreased the levels of MDA as compared with diabetic rats. Neutralizing the RyR2 activity significantly decreased in diabetes from control, and increased in Rb1 treatment group from diabetic group. The expression of phosphorylation of RyR2 Ser2808 was increased in diabetic rats from control, and were attenuated with insulin and Rb1 treatment. Diabetes increased the apoptosis rate, and Rb1 treatment decreased the apoptosis rate. Rb1 and insulin ameliorated myocardial injury in diabetic rats. CONCLUSIONS: These data indicate that Rb1 could be useful for mitigating oxidative damage, reduced phosphorylation of RyR2 Ser2808 and decreased the apoptosis rate of cardiomyocytes in diabetic cardiomyopathy.


Sujet(s)
Antioxydants , Apoptose , Diabète expérimental , Cardiomyopathies diabétiques , Ginsénosides , Myocytes cardiaques , Stress oxydatif , Rat Sprague-Dawley , Canal de libération du calcium du récepteur à la ryanodine , Streptozocine , Animaux , Diabète expérimental/traitement médicamenteux , Mâle , Stress oxydatif/effets des médicaments et des substances chimiques , Canal de libération du calcium du récepteur à la ryanodine/métabolisme , Canal de libération du calcium du récepteur à la ryanodine/effets des médicaments et des substances chimiques , Ginsénosides/pharmacologie , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/traitement médicamenteux , Cardiomyopathies diabétiques/anatomopathologie , Cardiomyopathies diabétiques/physiopathologie , Cardiomyopathies diabétiques/étiologie , Apoptose/effets des médicaments et des substances chimiques , Antioxydants/pharmacologie , Phosphorylation , Myocytes cardiaques/effets des médicaments et des substances chimiques , Myocytes cardiaques/anatomopathologie , Myocytes cardiaques/métabolisme , Myocarde/anatomopathologie , Myocarde/métabolisme , Insuline , Malonaldéhyde/métabolisme
7.
Cardiovasc Toxicol ; 24(9): 942-954, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39023814

RÉSUMÉ

Diabetic cardiomyopathy (DCM) is one of the serious complications of type 2 diabetes mellitus. Vasant Kusumakar Rasa (VKR) is a Herbo-metallic formulation reported in Ayurveda, an Indian system of medicine. The present work was designed to study the effect of VKR in cardiomyopathy in type 2 diabetic rats. Diabetes was induced by feeding a high-fat diet (HFD) for 2 weeks followed by streptozotocin (STZ) administration (35 mg/kg i.p.). VKR was administered orally at dose of 28 and 56 mg/kg once a day for 16 weeks. The results of the study indicated that VKR treatment significantly improved the glycemic and lipid profile, serum insulin, CK-MB, LDH, and cardiac troponin-I when compared to diabetic control animals. VKR treatment in rats significantly improved the hemodynamic parameters and cardiac tissue levels of TNF-α, IL-1ß, and IL- 6 were also reduced. Antioxidant enzymes such as GSH, SOD, and catalase were improved in all treatment groups. Heart sections stained with H & E and Masson's trichome showed decreased damage to histoarchitecture of the myocardium. Expression of PI3K, Akt, and GLUT4 in the myocardium was upregulated after 16 weeks of VKR treatment. The study data suggested the cardioprotective capability of VKR in the management of diabetic cardiomyopathy in rats.


Sujet(s)
Diabète expérimental , Diabète de type 2 , Cardiomyopathies diabétiques , Stress oxydatif , Animaux , Cardiomyopathies diabétiques/prévention et contrôle , Cardiomyopathies diabétiques/physiopathologie , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/étiologie , Cardiomyopathies diabétiques/anatomopathologie , Cardiomyopathies diabétiques/traitement médicamenteux , Diabète expérimental/traitement médicamenteux , Diabète expérimental/complications , Mâle , Diabète de type 2/traitement médicamenteux , Diabète de type 2/complications , Stress oxydatif/effets des médicaments et des substances chimiques , Rat Wistar , Myocarde/anatomopathologie , Myocarde/métabolisme , Antioxydants/pharmacologie , Glycémie/métabolisme , Glycémie/effets des médicaments et des substances chimiques , Marqueurs biologiques/sang , Médecine ayurvédique , Rats , Médiateurs de l'inflammation/métabolisme , Transporteur de glucose de type 4/métabolisme , Protéines proto-oncogènes c-akt/métabolisme , Cytokines/métabolisme , Transduction du signal
8.
Int J Mol Sci ; 25(13)2024 Jun 26.
Article de Anglais | MEDLINE | ID: mdl-39000117

RÉSUMÉ

Diabetic cardiomyopathy (DCM) is a major determinant of mortality in diabetic populations, and the potential strategies are insufficient. Canagliflozin has emerged as a potential cardioprotective agent in diabetes, yet its underlying molecular mechanisms remain unclear. We employed a high-glucose challenge (60 mM for 48 h) in vitro to rat cardiomyocytes (H9C2), with or without canagliflozin treatment (20 µM). In vivo, male C57BL/6J mice were subjected to streptozotocin and a high-fat diet to induce diabetes, followed by canagliflozin administration (10, 30 mg·kg-1·d-1) for 12 weeks. Proteomics and echocardiography were used to assess the heart. Histopathological alterations were assessed by the use of Oil Red O and Masson's trichrome staining. Additionally, mitochondrial morphology and mitophagy were analyzed through biochemical and imaging techniques. A proteomic analysis highlighted alterations in mitochondrial and autophagy-related proteins after the treatment with canagliflozin. Diabetic conditions impaired mitochondrial respiration and ATP production, alongside decreasing the related expression of the PINK1-Parkin pathway. High-glucose conditions also reduced PGC-1α-TFAM signaling, which is responsible for mitochondrial biogenesis. Canagliflozin significantly alleviated cardiac dysfunction and improved mitochondrial function both in vitro and in vivo. Specifically, canagliflozin suppressed mitochondrial oxidative stress, enhancing ATP levels and sustaining mitochondrial respiratory capacity. It activated PINK1-Parkin-dependent mitophagy and improved mitochondrial function via increased phosphorylation of adenosine monophosphate-activated protein kinase (AMPK). Notably, PINK1 knockdown negated the beneficial effects of canagliflozin on mitochondrial integrity, underscoring the critical role of PINK1 in mediating these protective effects. Canagliflozin fosters PINK1-Parkin mitophagy and mitochondrial function, highlighting its potential as an effective treatment for DCM.


Sujet(s)
Canagliflozine , Diabète expérimental , Cardiomyopathies diabétiques , Souris de lignée C57BL , Mitophagie , Protein kinases , Ubiquitin-protein ligases , Animaux , Cardiomyopathies diabétiques/traitement médicamenteux , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/anatomopathologie , Mitophagie/effets des médicaments et des substances chimiques , Mâle , Souris , Protein kinases/métabolisme , Protein kinases/génétique , Rats , Canagliflozine/pharmacologie , Canagliflozine/usage thérapeutique , Diabète expérimental/traitement médicamenteux , Diabète expérimental/métabolisme , Ubiquitin-protein ligases/métabolisme , Ubiquitin-protein ligases/génétique , Myocytes cardiaques/métabolisme , Myocytes cardiaques/effets des médicaments et des substances chimiques , Myocytes cardiaques/anatomopathologie , Stress oxydatif/effets des médicaments et des substances chimiques , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Lignée cellulaire , Transduction du signal/effets des médicaments et des substances chimiques , Alimentation riche en graisse/effets indésirables
10.
Cells ; 13(14)2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-39056777

RÉSUMÉ

The incidence of cardiovascular disorders is continuously rising, and there are no effective drugs to treat diabetes-associated heart failure. Thus, there is an urgent need to explore alternate approaches, including natural plant extracts, which have been successfully exploited for therapeutic purposes. The current study aimed to explore the cardioprotective potential of Phoenix dactylifera (PD) extract in experimental diabetic cardiomyopathy (DCM). Following in vitro phytochemical analyses, Wistar albino rats (N = 16, male; age 2-3 weeks) were fed with a high-fat or standard diet prior to injection of streptozotocin (35 mg/kg i.p.) after 2 months and separation into the following four treatment groups: healthy control, DCM control, DCM metformin (200 mg/kg/day, as the reference control), and DCM PD treatment (5 mg/kg/day). After 25 days, glucolipid and myocardial blood and serum markers were assessed along with histopathology and gene expression of both heart and pancreatic tissues. The PD treatment improved glucolipid balance (FBG 110 ± 5.5 mg/dL; insulin 17 ± 3.4 ng/mL; total cholesterol 75 ± 8.5 mg/dL) and oxidative stress (TOS 50 ± 7.8 H2O2equiv./L) in the DCM rats, which was associated with preserved structural integrity of both the pancreas and heart compared to the DCM control (FBG 301 ± 10 mg/dL; insulin 27 ± 3.4 ng/mL; total cholesterol 126 ± 10 mg/dL; TOS 165 ± 12 H2O2equiv./L). Gene expression analyses revealed that PD treatment upregulated the expression of insulin signaling genes in pancreatic tissue (INS-I 1.69 ± 0.02; INS-II 1.3 ± 0.02) and downregulated profibrotic gene expression in ventricular tissue (TGF-ß 1.49 ± 0.04) compared to the DCM control (INS-I 0.6 ± 0.02; INS-II 0.49 ± 0.03; TGF-ß 5.7 ± 0.34). Taken together, these data indicate that Phoenix dactylifera may offer cardioprotection in DCM by regulating glucolipid balance and metabolic signaling.


Sujet(s)
Diabète expérimental , Cardiomyopathies diabétiques , Métabolisme lipidique , Phoeniceae , Extraits de plantes , Rat Wistar , Animaux , Phoeniceae/composition chimique , Extraits de plantes/pharmacologie , Extraits de plantes/usage thérapeutique , Mâle , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/traitement médicamenteux , Cardiomyopathies diabétiques/anatomopathologie , Cardiomyopathies diabétiques/prévention et contrôle , Rats , Métabolisme lipidique/effets des médicaments et des substances chimiques , Diabète expérimental/traitement médicamenteux , Diabète expérimental/métabolisme , Diabète expérimental/complications , Diabète expérimental/anatomopathologie , Méthanol/composition chimique , Stress oxydatif/effets des médicaments et des substances chimiques , Remodelage ventriculaire/effets des médicaments et des substances chimiques , Cardiotoniques/pharmacologie , Cardiotoniques/usage thérapeutique , Myocarde/métabolisme , Myocarde/anatomopathologie
11.
Biomed Pharmacother ; 177: 117048, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38959606

RÉSUMÉ

BACKGROUND AND OBJECTIVES: Diabetic cardiomyopathy (DCM) is a cardiac condition resulting from myocardial damage caused by diabetes mellitus (DM), currently lacking specific therapeutic interventions. Fuzhengkangfu decoction (FZK) plays an important role in the prevention and treatment of various cardiovascular diseases. However, the efficacy and potential mechanisms of FZK are not fully understood. This study aims to investigate the protective effect and mechanisms of FZK against DCM. METHODOLOGIES: Rats were given a high-calorie diet along with a low dosage of streptozotocin (STZ) to establish a rat model of DCM. The diabetic rats received FZK or normal saline subcutaneously for 12 weeks. Echocardiography was conducted to evaluate their heart function characteristics. Rat heart morphologies were assessed using Sirius Red staining and H&E staining. Transcriptome sequencing analysis and network pharmacology were used to reveal possible targets and mechanisms. Molecular docking was conducted to validate the association between the primary components of FZK and the essential target molecules. Finally, both in vitro and in vivo studies were conducted on the cardioprotective properties and mechanism of FZK. RESULTS: According to the results of network pharmacology, FZK may prevent DCM by reducing oxidative stress and preventing apoptosis. Transcriptomics confirmed that FZK protected against DCM-induced myocardial fibrosis and remodelling, as predicted by network pharmacology, and suggested that FZK regulated the expression of oxidative stress and apoptosis-related proteins. Integrating network pharmacology and transcriptome analysis results revealed that the AGE-RAGE signalling pathway-associated MMP2, SLC2A1, NOX4, CCND1, and CYP1A1 might be key targets. Molecular docking showed that Poricoic acid A and 5-O-Methylvisammioside had the highest docking activities with these targets. We further conducted in vivo experiments, and the results showed that FZK significantly attenuated left ventricular remodelling, reduced myocardial fibrosis, and improved cardiac contractile function. And, our study demonstrated that FZK effectively reduced oxidative stress and apoptosis of cardiomyocytes. The data showed that Erk, NF-κB, and Caspase 3 phosphorylation was significantly inhibited, and Bcl-2/Bax was significantly increased after FZK treatment. In vitro, FZK significantly reduced AGEs-induced ROS increase and apoptosis in cardiomyocytes. Furthermore, FZK significantly inhibited the phosphorylation of Erk and NF-κB proteins and decreased the expression of MMP2. All the results confirmed that FZK inhibited the activation of the Erk/NF-κB pathway in AGE-RAGE signalling and alleviated oxidative stress and apoptosis of cardiomyocytes. In summary, we verified that FZK protects against DCM by inhibiting myocardial apoptotic remodelling through the suppression of the AGE-RAGE signalling pathway. CONCLUSION: In conclusion, our research indicates that FZK demonstrates anti-cardiac dysfunction properties by reducing oxidative stress and cardiomyocyte apoptosis through the AGE-RAGE pathway in DCM, showing potential for therapeutic use.


Sujet(s)
Diabète expérimental , Cardiomyopathies diabétiques , Médicaments issus de plantes chinoises , Simulation de docking moléculaire , Pharmacologie des réseaux , Rat Sprague-Dawley , Transcriptome , Animaux , Cardiomyopathies diabétiques/traitement médicamenteux , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/anatomopathologie , Médicaments issus de plantes chinoises/pharmacologie , Mâle , Diabète expérimental/traitement médicamenteux , Diabète expérimental/complications , Rats , Transcriptome/effets des médicaments et des substances chimiques , Stress oxydatif/effets des médicaments et des substances chimiques , Myocytes cardiaques/effets des médicaments et des substances chimiques , Myocytes cardiaques/métabolisme , Myocytes cardiaques/anatomopathologie , Apoptose/effets des médicaments et des substances chimiques , Transduction du signal/effets des médicaments et des substances chimiques , Fibrose , Streptozocine , Analyse de profil d'expression de gènes , Cardiotoniques/pharmacologie
12.
Physiol Res ; 73(3): 351-367, 2024 07 17.
Article de Anglais | MEDLINE | ID: mdl-39027953

RÉSUMÉ

Diabetic cardiomyopathy may result from the overproduction of ROS, TRPM2 and TRPV2. Moreover, the therapeutic role of ginger, omega-3 fatty acids, and their combinations on the expression of TRPM2 and TRPV2 and their relationship with apoptosis, inflammation, and oxidative damage in heart tissue of rats with type 2 diabetes have not yet been determined. Therefore, this study aimed to investigate the therapeutic effects of ginger and omega-3 fatty acids on diabetic cardiomyopathy by evaluating the cardiac gene expression of TRPM2 and TRPV2, oxidative damage, inflammation, and apoptosis in male rats. Ninety adult male Wistar rats were equally divided into nine control, diabetes, and treated diabetes groups. Ginger extract (100 mg/kg) and omega-3 fatty acids (50, 100, and 150 mg/kg) were orally administrated in diabetic rats for 6 weeks. Type 2 diabetes was induced by feeding a high-fat diet and a single dose of STZ (40 mg/kg). Glucose, cardiac troponin I (cTnI), lipid profile, insulin in serum, and TNF-alpha IL-6, SOD, MDA, and CAT in the left ventricle of the heart were measured. The cardiac expression of TRPM2, TRPV2, NF-kappaB, Bcl2, Bax, Cas-3, and Nrf-2 genes was also measured in the left ventricle of the heart. An electrocardiogram (ECG) was continuously recorded to monitor arrhythmia at the end of the course. The serum levels of cTnI, glucose, insulin, and lipid profile, and the cardiac levels of MDA, IL-6, and TNF-alpha increased in the diabetic group compared to the control group (p<0.05). Moreover, the cardiac levels of SOD and CAT decreased in the diabetic group compared to the control group (p<0.05). The cardiac expression of TRPM2, TRPV2, NF-kappaB, Bax, and Cas-3 increased and Bcl2 and Nrf-2 expression decreased in the diabetic group compared to the control group (p<0.05). However, simultaneous and separate treatment with ginger extract and omega-3 fatty acids (50, 100, and 150 mg/kg) could significantly moderate these changes (p<0.05). The results also showed that the simultaneous treatment of ginger extract and different doses of omega-3 fatty acids have improved therapeutic effects than their individual treatments (p<0.05). It can be concluded that ginger and omega-3 fatty acids showed protective effects against diabetic cardiomyopathy by inhibiting inflammation, apoptosis and oxidative damage of the heart and reducing blood glucose and cardiac expression of TRPM2 and TRPV2. Combining ginger and omega-3 in the diet may provide a natural approach to reducing the risk or progression of diabetic cardiomyopathy while preserving heart structure and function.


Sujet(s)
Diabète expérimental , Cardiomyopathies diabétiques , Acides gras omega-3 , Extraits de plantes , Rat Wistar , Zingiber officinale , Animaux , Mâle , Extraits de plantes/pharmacologie , Extraits de plantes/usage thérapeutique , Extraits de plantes/administration et posologie , Acides gras omega-3/pharmacologie , Acides gras omega-3/administration et posologie , Acides gras omega-3/usage thérapeutique , Zingiber officinale/composition chimique , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/traitement médicamenteux , Cardiomyopathies diabétiques/prévention et contrôle , Rats , Diabète expérimental/traitement médicamenteux , Diabète expérimental/métabolisme , Compléments alimentaires , Stress oxydatif/effets des médicaments et des substances chimiques , Canaux cationiques TRPV/métabolisme , Canaux cationiques TRPV/génétique , Diabète de type 2/traitement médicamenteux , Diabète de type 2/métabolisme , Diabète de type 2/complications , Canaux cationiques TRPM/métabolisme , Canaux cationiques TRPM/génétique
13.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(7): 1306-1314, 2024 Jul 20.
Article de Chinois | MEDLINE | ID: mdl-39051076

RÉSUMÉ

OBJECTIVE: To explore the therapeutic mechanism of compound Yuye Decoction against diabetic cardiomyopathy (DCM). METHODS: Drugbank, Gene Cards, OMIM and PharmGKb databases were used to obtain DCM-related targets, and the core targets were identified and functionally annotated by protein-protein interaction network analysis followed by GO and KEGG enrichment analysis. The "Traditional Chinese Medicine-Key Component-Key Target-Key Pathway" network was constructed using Cytoscape 3.9.1, and molecular docking was carried out for the key components and the core targets. In the animal experiment, Wistar rat models of DCM were treated with normal saline or Yuye Decoction by gavage at low (0.29 g/kg) and high (1.15 g/kg) doses for 8 weeks, and the changes in cardiac electrophysiology and histopathology were evaluated. The changes in serum levels of LDH, CK, and CK-MB were examined, and myocardial expressions of PI3K, P-PI3K, Akt, P-AKT, BAX, IL-6, and TNF-α were detected using Western blotting. RESULTS: We identified 61 active compounds in Yuye Decoction with 1057 targets, 3682 DCM-related disease targets, and 551 common targets between them. Enrichment of the core targets suggested that apoptosis, inflammation and the PI3K/Akt pathways were the key signaling pathways for DCM treatment. Molecular docking studies showed that the active components in Yuye Decoction including gold amidohydroxyethyl ester and kaempferol had strong binding activities with AKT1 and PIK3R1. In DCM rat models, treatment with Yuye Decoction significantly alleviated myocardial pathologies, reduced serum levels of LDH, CK and CK-MB, lowered myocardial expressions of BAX, IL-6 and TNF-α, and increased the expressions of P-PI3K and P-AKT. CONCLUSION: The therapeutic effect of compound Yuye Decoction against DCM is mediated by its multiple active components that act on multiple targets and pathways to inhibit cardiomyocyte apoptosis and inflammatory response by regulating the PI3K/Akt signaling pathway.


Sujet(s)
Apoptose , Diabète expérimental , Cardiomyopathies diabétiques , Médicaments issus de plantes chinoises , Inflammation , Simulation de docking moléculaire , Phosphatidylinositol 3-kinases , Protéines proto-oncogènes c-akt , Rat Wistar , Transduction du signal , Animaux , Rats , Protéines proto-oncogènes c-akt/métabolisme , Phosphatidylinositol 3-kinases/métabolisme , Médicaments issus de plantes chinoises/pharmacologie , Médicaments issus de plantes chinoises/usage thérapeutique , Transduction du signal/effets des médicaments et des substances chimiques , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/traitement médicamenteux , Apoptose/effets des médicaments et des substances chimiques , Diabète expérimental/métabolisme , Inflammation/métabolisme , Myocarde/métabolisme , Myocarde/anatomopathologie , Mâle , Interleukine-6/métabolisme
14.
Tissue Cell ; 90: 102478, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39053131

RÉSUMÉ

Nimbolide has been demonstrated to possess protective properties against gestational diabetes mellitus and diabetic retinopathy. However, the role and molecular mechanism of nimbolide in diabetic cardiomyopathy (DCM) remain unknown. Diabetes was induced in rats via a single injection of streptozotocin (STZ) and then the diabetic rats were administered nimbolide (5 mg/kg and 20 mg/kg) or dimethyl sulfoxide daily for 12 weeks. H9c2 cardiomyocytes were exposed to high glucose (25 mM glucose) to mimic DCM in vitro. The protective effects of nimbolide against DCM were evaluated in vivo and in vitro. The potential molecular mechanism of nimbolide in DCM was further explored. We found that nimbolide dose-dependently decreased blood glucose and improved body weight of diabetic rats. Additionally, nimbolide dose-dependently improved cardiac function, alleviated myocardial injury/fibrosis, and inhibited endoplasmic reticulum (ER) stress and apoptosis in diabetic rats. Moreover, nimbolide dose-dependently improved mitochondrial function and activated the Akt/mTOR signaling. We consistently demonstrated the cardioprotective effects of nimbolide in an in vitro model of DCM. The involvement of ER stress and mitochondrial pathways were further confirmed by using inhibitors of ER stress and mitochondrial division. By applying a specific Akt inhibitor SC66, the cardioprotective effects of nimbolide were partially blocked. Our study indicated that nimbolide alleviated DCM by activating Akt/mTOR pathway. Nimbolide may be a novel therapeutic agent for DCM treatment.


Sujet(s)
Diabète expérimental , Cardiomyopathies diabétiques , Stress du réticulum endoplasmique , Limonines , Mitochondries , Protéines proto-oncogènes c-akt , Transduction du signal , Sérine-thréonine kinases TOR , Animaux , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/traitement médicamenteux , Cardiomyopathies diabétiques/anatomopathologie , Cardiomyopathies diabétiques/prévention et contrôle , Stress du réticulum endoplasmique/effets des médicaments et des substances chimiques , Protéines proto-oncogènes c-akt/métabolisme , Rats , Diabète expérimental/métabolisme , Diabète expérimental/traitement médicamenteux , Diabète expérimental/anatomopathologie , Sérine-thréonine kinases TOR/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Limonines/pharmacologie , Mâle , Myocytes cardiaques/effets des médicaments et des substances chimiques , Myocytes cardiaques/métabolisme , Myocytes cardiaques/anatomopathologie , Rat Sprague-Dawley , Lignée cellulaire , Apoptose/effets des médicaments et des substances chimiques , Cardiotoniques/pharmacologie
15.
Cardiovasc Diabetol ; 23(1): 273, 2024 Jul 24.
Article de Anglais | MEDLINE | ID: mdl-39049086

RÉSUMÉ

BACKGROUND: Extracellular matrix (ECM) stiffness is closely related to the progress of diabetic cardiomyopathy (DCM) and the response of treatment of DCM to anti-diabetic drugs. Dapagliflozin (Dapa) has been proven to have cardio-protective efficacy for diabetes and listed as the first-line drug to treat heart failure. But the regulatory relationship between ECM stiffness and treatment efficacy of Dapa remains elusive. MATERIALS AND METHODS: This work investigated the effect of ECM stiffness on DCM progression and Dapa efficacy using both in vivo DCM rat model and in vitro myocardial cell model with high glucose injury. First, through DCM rat models with various levels of myocardial injury and administration with Dapa treatment for four weeks, the levels of myocardial injury, myocardial oxidative stress, expressions of AT1R (a mechanical signal protein) and the stiffness of myocardial tissues were obtained. Then for mimicking the stiffness of myocardial tissues at early and late stages of DCM, we constructed cell models through culturing H9c2 myocardial cells on the polyacrylamide gels with two stiffness and exposed to a high glucose level and without/with Dapa intervention. The cell viability, reactive oxygen species (ROS) levels and expressions of mechanical signal sensitive proteins were obtained. RESULTS: The DCM progression is accompanied by the increased myocardial tissue stiffness, which can synergistically exacerbate myocardial cell injury with high glucose. Dapa can improve the ECM stiffness-induced DCM progression and its efficacy on DCM is more pronounced on the soft ECM, which is related to the regulation pathway of AT1R-FAK-NOX2. Besides, Dapa can inhibit the expression of the ECM-induced integrin ß1, but without significant impact on piezo 1. CONCLUSIONS: Our study found the regulation and effect of biomechanics in the DCM progression and on the Dapa efficacy on DCM, providing the new insights for the DCM treatment. Additionally, our work showed the better clinical prognosis of DCM under early Dapa intervention.


Sujet(s)
Composés benzhydryliques , Cardiomyopathies diabétiques , Matrice extracellulaire , Glucosides , Myocytes cardiaques , Stress oxydatif , Rat Sprague-Dawley , Inhibiteurs du cotransporteur sodium-glucose de type 2 , Animaux , Cardiomyopathies diabétiques/physiopathologie , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/traitement médicamenteux , Cardiomyopathies diabétiques/étiologie , Cardiomyopathies diabétiques/anatomopathologie , Glucosides/pharmacologie , Matrice extracellulaire/métabolisme , Matrice extracellulaire/effets des médicaments et des substances chimiques , Matrice extracellulaire/anatomopathologie , Composés benzhydryliques/pharmacologie , Myocytes cardiaques/effets des médicaments et des substances chimiques , Myocytes cardiaques/anatomopathologie , Myocytes cardiaques/métabolisme , Inhibiteurs du cotransporteur sodium-glucose de type 2/pharmacologie , Inhibiteurs du cotransporteur sodium-glucose de type 2/usage thérapeutique , Mâle , Stress oxydatif/effets des médicaments et des substances chimiques , Lignée cellulaire , Modèles animaux de maladie humaine , Espèces réactives de l'oxygène/métabolisme , Rats , Focal adhesion kinase 1/métabolisme , Diabète expérimental/traitement médicamenteux , Diabète expérimental/métabolisme , Diabète expérimental/complications
16.
J Endocrinol ; 262(2)2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-38860519

RÉSUMÉ

Liraglutide, a glucagon-like peptide-1 receptor (GLP-1R) agonist used for the treatment of T2D, has been shown to alleviate diabetic cardiomyopathy (DbCM) in experimental T2D, which was associated with increased myocardial glucose oxidation. To determine whether this increase in glucose oxidation is necessary for cardioprotection, we hypothesized that liraglutide's ability to alleviate DbCM would be abolished in mice with cardiomyocyte-specific deletion of pyruvate dehydrogenase (PDH; Pdha1CM-/- mice), the rate-limiting enzyme of glucose oxidation. Male Pdha1CM-/- mice and their α-myosin heavy chain Cre expressing littermates (αMHCCre mice) were subjected to experimental T2D via 10 weeks of high-fat diet supplementation, with a single low-dose injection of streptozotocin (75 mg/kg) provided at week 4. All mice were randomized to treatment with either vehicle control or liraglutide (30 µg/kg) twice daily during the final 2.5 weeks, with cardiac function assessed via ultrasound echocardiography. As expected, liraglutide treatment improved glucose homeostasis in both αMHCCre and Pdha1CM-/- mice with T2D, in the presence of mild weight loss. Parameters of systolic function were unaffected by liraglutide treatment in both αMHCCre and Pdha1CM-/- mice with T2D. However, liraglutide treatment alleviated diastolic dysfunction in αMHCCre mice, as indicated by an increase and decrease in the e'/a' and E/e' ratios, respectively. Conversely, liraglutide failed to rescue these indices of diastolic dysfunction in Pdha1CM-/- mice. Our findings suggest that increases in glucose oxidation are necessary for GLP-1R agonist mediated alleviation of DbCM. As such, strategies aimed at increasing PDH activity may represent a novel approach for the treatment of DbCM.


Sujet(s)
Diabète expérimental , Cardiomyopathies diabétiques , Liraglutide , Animaux , Liraglutide/pharmacologie , Liraglutide/usage thérapeutique , Cardiomyopathies diabétiques/traitement médicamenteux , Cardiomyopathies diabétiques/métabolisme , Mâle , Souris , Diabète expérimental/traitement médicamenteux , Diabète expérimental/métabolisme , Hypoglycémiants/pharmacologie , Hypoglycémiants/usage thérapeutique , Souris knockout , Complexe du pyruvate déshydrogénase/métabolisme , Myocytes cardiaques/effets des médicaments et des substances chimiques , Myocytes cardiaques/métabolisme , Glycémie/métabolisme , Glycémie/effets des médicaments et des substances chimiques , Souris de lignée C57BL , Alimentation riche en graisse , Récepteur du peptide-1 similaire au glucagon/agonistes , Récepteur du peptide-1 similaire au glucagon/métabolisme , Glucose/métabolisme
17.
Cardiovasc Diabetol ; 23(1): 197, 2024 Jun 07.
Article de Anglais | MEDLINE | ID: mdl-38849829

RÉSUMÉ

OBJECTIVE: Sodium glucose cotransporter 2 (SGLT2) inhibitors significantly improve cardiovascular outcomes in diabetic patients; however, the mechanism is unclear. We hypothesized that dapagliflozin improves cardiac outcomes via beneficial effects on systemic and cardiac inflammation and cardiac fibrosis. RESEARCH AND DESIGN METHODS: This randomized placebo-controlled clinical trial enrolled 62 adult patients (mean age 62, 17% female) with type 2 diabetes (T2D) without known heart failure. Subjects were randomized to 12 months of daily 10 mg dapagliflozin or placebo. For all patients, blood/plasma samples and cardiac magnetic resonance imaging (CMRI) were obtained at time of randomization and at the end of 12 months. Systemic inflammation was assessed by plasma IL-1B, TNFα, IL-6 and ketone levels and PBMC mitochondrial respiration, an emerging marker of sterile inflammation. Global myocardial strain was assessed by feature tracking; cardiac fibrosis was assessed by T1 mapping to calculate extracellular volume fraction (ECV); and cardiac tissue inflammation was assessed by T2 mapping. RESULTS: Between the baseline and 12-month time point, plasma IL-1B was reduced (- 1.8 pg/mL, P = 0.003) while ketones were increased (0.26 mM, P = 0.0001) in patients randomized to dapagliflozin. PBMC maximal oxygen consumption rate (OCR) decreased over the 12-month period in the placebo group but did not change in patients receiving dapagliflozin (- 158.9 pmole/min/106 cells, P = 0.0497 vs. - 5.2 pmole/min/106 cells, P = 0.41), a finding consistent with an anti-inflammatory effect of SGLT2i. Global myocardial strain, ECV and T2 relaxation time did not change in both study groups. GOV REGISTRATION: NCT03782259.


Sujet(s)
Composés benzhydryliques , Marqueurs biologiques , Diabète de type 2 , Glucosides , Médiateurs de l'inflammation , Inhibiteurs du cotransporteur sodium-glucose de type 2 , Humains , Composés benzhydryliques/usage thérapeutique , Composés benzhydryliques/effets indésirables , Glucosides/usage thérapeutique , Glucosides/effets indésirables , Femelle , Diabète de type 2/traitement médicamenteux , Diabète de type 2/diagnostic , Diabète de type 2/sang , Diabète de type 2/complications , Mâle , Inhibiteurs du cotransporteur sodium-glucose de type 2/usage thérapeutique , Inhibiteurs du cotransporteur sodium-glucose de type 2/effets indésirables , Adulte d'âge moyen , Sujet âgé , Résultat thérapeutique , Médiateurs de l'inflammation/sang , Marqueurs biologiques/sang , Facteurs temps , Anti-inflammatoires/usage thérapeutique , Fibrose , Inflammation/traitement médicamenteux , Inflammation/sang , Inflammation/diagnostic , Méthode en double aveugle , Myocarde/anatomopathologie , Myocarde/métabolisme , Cardiomyopathies diabétiques/étiologie , Cardiomyopathies diabétiques/prévention et contrôle , Cardiomyopathies diabétiques/imagerie diagnostique , Cardiomyopathies diabétiques/traitement médicamenteux , Cardiomyopathies diabétiques/sang
18.
Cardiovasc Diabetol ; 23(1): 169, 2024 May 15.
Article de Anglais | MEDLINE | ID: mdl-38750502

RÉSUMÉ

Diabetic heart disease (DHD) is a serious complication in patients with diabetes. Despite numerous studies on the pathogenic mechanisms and therapeutic targets of DHD, effective means of prevention and treatment are still lacking. The pathogenic mechanisms of DHD include cardiac inflammation, insulin resistance, myocardial fibrosis, and oxidative stress. Macrophages, the primary cells of the human innate immune system, contribute significantly to these pathological processes, playing an important role in human disease and health. Therefore, drugs targeting macrophages hold great promise for the treatment of DHD. In this review, we examine how macrophages contribute to the development of DHD and which drugs could potentially be used to target macrophages in the treatment of DHD.


Sujet(s)
Cardiomyopathies diabétiques , Macrophages , Stress oxydatif , Transduction du signal , Humains , Macrophages/effets des médicaments et des substances chimiques , Macrophages/immunologie , Macrophages/métabolisme , Cardiomyopathies diabétiques/immunologie , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/traitement médicamenteux , Cardiomyopathies diabétiques/étiologie , Animaux , Stress oxydatif/effets des médicaments et des substances chimiques , Fibrose , Anti-inflammatoires/usage thérapeutique , Myocarde/anatomopathologie , Myocarde/métabolisme , Myocarde/immunologie , Insulinorésistance , Médiateurs de l'inflammation/métabolisme , Thérapie moléculaire ciblée
19.
J Transl Med ; 22(1): 494, 2024 May 24.
Article de Anglais | MEDLINE | ID: mdl-38790051

RÉSUMÉ

BACKGROUND: Diabetic cardiomyopathy (DCM), a serious complication of diabetes, leads to structural and functional abnormalities of the heart and ultimately evolves to heart failure. IL-37 exerts a substantial influence on the regulation of inflammation and metabolism. Whether IL-37 is involved in DCM is unknown. METHODS: The plasma samples were collected from healthy controls, diabetic patients and DCM patients, and the level of IL-37 and its relationship with heart function were observed. The changes in cardiac function, myocardial fibrosis and mitochondrial injury in DCM mice with or without IL-37 intervention were investigated in vivo. By an in vitro co-culture approach involving HG challenge of cardiomyocytes and fibroblasts, the interaction carried out by cardiomyocytes on fibroblast profibrotic activation was studied. Finally, the possible interactive mediator between cardiomyocytes and fibroblasts was explored, and the intervention role of IL-37 and its relevant molecular mechanisms. RESULTS: We showed that the level of plasma IL-37 in DCM patients was upregulated compared to that in healthy controls and diabetic patients. Both recombinant IL-37 administration or inducing IL-37 expression alleviated cardiac dysfunction and myocardial fibrosis in DCM mice. Mechanically, hyperglycemia impaired mitochondria through SIRT1/AMPK/PGC1α signaling, resulting in significant cardiomyocyte apoptosis and the release of extracellular vesicles containing mtDNA. Fibroblasts then engulfed these mtDNA-enriched vesicles, thereby activating TLR9 signaling and the cGAS-STING pathway to initiate pro-fibrotic process and adverse remodeling. However, the presence of IL-37 ameliorated mitochondrial injury by preserving the activity of SIRT1-AMPK-PGC1α axis, resulting in a reduction in release of mtDNA-enriched vesicle and ultimately attenuating the progression of DCM. CONCLUSIONS: Collectively, our study demonstrates a protective role of IL-37 in DCM, offering a promising therapeutic agent for this disease.


Sujet(s)
ADN mitochondrial , Cardiomyopathies diabétiques , Fibrose , Interleukine-1 , Myocytes cardiaques , Animaux , Femelle , Humains , Mâle , Souris , Adulte d'âge moyen , Apoptose/effets des médicaments et des substances chimiques , Cardiomyopathies diabétiques/anatomopathologie , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/traitement médicamenteux , ADN mitochondrial/métabolisme , Fibroblastes/métabolisme , Fibroblastes/effets des médicaments et des substances chimiques , Interleukine-1/métabolisme , Souris de lignée C57BL , Myocarde/anatomopathologie , Myocarde/métabolisme , Myocytes cardiaques/métabolisme , Myocytes cardiaques/effets des médicaments et des substances chimiques , Myocytes cardiaques/anatomopathologie , Transduction du signal/effets des médicaments et des substances chimiques , Sirtuine-1/métabolisme
20.
Front Immunol ; 15: 1393392, 2024.
Article de Anglais | MEDLINE | ID: mdl-38774880

RÉSUMÉ

This review provides a comprehensive analysis of the critical role played by macrophages and their underlying mechanisms in the progression of diabetic cardiomyopathy (DCM). It begins by discussing the origins and diverse subtypes of macrophages, elucidating their spatial distribution and modes of intercellular communication, thereby emphasizing their significance in the pathogenesis of DCM. The review then delves into the intricate relationship between macrophages and the onset of DCM, particularly focusing on the epigenetic regulatory mechanisms employed by macrophages in the context of DCM condition. Additionally, the review discusses various therapeutic strategies aimed at targeting macrophages to manage DCM. It specifically highlights the potential of natural food components in alleviating diabetic microvascular complications and examines the modulatory effects of existing hypoglycemic drugs on macrophage activity. These findings, summarized in this review, not only provide fresh insights into the role of macrophages in diabetic microvascular complications but also offer valuable guidance for future therapeutic research and interventions in this field.


Sujet(s)
Cardiomyopathies diabétiques , Macrophages , Animaux , Humains , Cardiomyopathies diabétiques/immunologie , Cardiomyopathies diabétiques/traitement médicamenteux , Cardiomyopathies diabétiques/étiologie , Cardiomyopathies diabétiques/anatomopathologie , Hypoglycémiants/usage thérapeutique , Macrophages/immunologie , Macrophages/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE