RÉSUMÉ
Klebsiella pneumoniae strains that produce Klebsiella pneumoniae Carbapenemase (KPC) variants displaying resistance to ceftazidime-avibactam (CZA) often remain susceptible to meropenem (MEM), suggesting a potential therapeutic use of this carbapenem antibiotic. However, in vitro studies indicate that these sorts of strains can mutate becoming MEM-resistant, raising concerns about the effectiveness of carbapenems as treatment option. We have studied mutation rates occurring from the reversion of MEM-susceptible KPC-114 to MEM-resistant KPC-2, in CZA-resistant K. pneumoniae belonging to ST11. Two-step fluctuation assays (FAs) were conducted. In brief, initial cultures of KPC-114-producing K. pneumoniae showing 1 µg/mL MEM MIC were spread on Mueller-Hinton agar plates containing 2-8 µg/mL MEM. A second step of FA, at 4-16 µg/mL MEM was performed from a mutant colony obtained at 2 µg/mL MEM. Mutation rates were calculated using maximum likelihood estimation. Parental and mutant strains were sequenced by Illumina NextSeq, and mutations were predicted by variant-calling analysis. At 8 µg/mL MEM, mutants derived from parental CZA-resistant (MIC ≥ 64 µg/mL)/MEM-susceptible (MIC = 1 µg/mL) KPC-114-positive K. pneumoniae exhibited an accumulative mutation rate of 3.05 × 10-19 mutations/cell/generation, whereas at 16 µg/mL MEM an accumulative mutation rate of 1.33 × 10-19 mutations/cell/generation resulted in the reversion of KPC-114 (S181_P182 deletion) to KPC-2. These findings highlight that the reversion of MEM-susceptible KPC-114 to MEM-resistant KPC-2, in CZA-resistant K. pneumoniae ST11 is related to low mutation rates suggesting a low risk of therapeutic failure. In vivo investigations are necessary to confirm the clinical potential of MEM against CZA-resistant KPC variants.IMPORTANCEThe emergence of ceftazidime-avibactam (CZA) resistance among carbapenem-resistant Klebsiella pneumoniae is a major concern due to the limited therapeutic options. Strikingly, KPC mutations mediating CZA resistance are generally associated with meropenem susceptibility, suggesting a potential therapeutic use of this carbapenem antibiotic. However, the reversion of meropenem-susceptible to meropenem-resistant could be expected. Therefore, knowing the mutation rate related to this genetic event is essential to estimate the potential use of meropenem against CZA-resistant KPC-producing K. pneumoniae. In this study, we demonstrate, in vitro, that under high concentrations of meropenem, reversion of KPC-114 to KPC-2 in CZA-resistant/meropenem-susceptible K. pneumoniae belonging to the global high-risk ST11 is related to low mutation rates.
Sujet(s)
Antibactériens , Composés azabicycliques , Protéines bactériennes , Ceftazidime , Association médicamenteuse , Infections à Klebsiella , Klebsiella pneumoniae , Méropénème , Tests de sensibilité microbienne , Taux de mutation , bêta-Lactamases , Klebsiella pneumoniae/génétique , Klebsiella pneumoniae/effets des médicaments et des substances chimiques , Klebsiella pneumoniae/enzymologie , Ceftazidime/pharmacologie , Composés azabicycliques/pharmacologie , bêta-Lactamases/génétique , bêta-Lactamases/métabolisme , Antibactériens/pharmacologie , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , Méropénème/pharmacologie , Humains , Infections à Klebsiella/traitement médicamenteux , Infections à Klebsiella/microbiologie , Multirésistance bactérienne aux médicaments/génétique , MutationRÉSUMÉ
OBJECTIVE: Ceftazidime-avibactam (CZA) is a good option for Gram-negative bacilli infections that produce carbapenemase Classes A (especially blaKPC) and D (blaOXA). However, it is unknown whether it would have an impact on metallo-ß-lactamases (blaMBL) selection. The aim of the study was to compare carbapenem and CZA Klebsiella pneumoniae (KPN) susceptibility profiles for a period of two years following the introduction of CZA. METHODS: The study was conducted in a 36-bed adult ICU of a tertiary hospital in Buenos Aires, Argentina. Antimicrobial consumption was expressed as days of treatment per 100 patients-day (DOT). RESULTS: A total of 123 KPN strains in the first year and 172 in the second year were analyzed. An alarming decrease in carbapenem susceptibility was detected in the second year (OR 0.5 [0.3-0.8] p<.001). In parallel, there was a decrease in CZA susceptibility (OR 0.5 [0.3-0.9] p<.05). These findings were linked to a rise in blaMBL-KPN (32.1% vs. 45.1%, OR 1.7 [1.1-2.9], p <.04) during the second year. This new KPN susceptibility profile promoted an increment in CZA (1.0 DOT vs. 6.6 DOT, OR 6.6 [4.9-9.1] p<.001) and aztreonam (0.3 DOT vs. 4.1 DOT, OR 16.3 [9.1-29.3] p<.001) consumption. Thus, there was a decrease in carbapenem prescription (17.8 DOT vs. 15.4 DOT, OR 0.8 [0.8-0.9] p<.001). CONCLUSIONS: There was an escalation of blaMBL-KPN rate two years after CZA introduction, leading to a decrease in CZA and carbapenem susceptibility and an increase in CZA and aztreonam prescriptions.
Sujet(s)
Antibactériens , Composés azabicycliques , Ceftazidime , Association médicamenteuse , Unités de soins intensifs , Infections à Klebsiella , Klebsiella pneumoniae , Tests de sensibilité microbienne , bêta-Lactamases , Ceftazidime/pharmacologie , Ceftazidime/usage thérapeutique , Composés azabicycliques/usage thérapeutique , Composés azabicycliques/pharmacologie , Klebsiella pneumoniae/effets des médicaments et des substances chimiques , Klebsiella pneumoniae/génétique , Argentine , Humains , Antibactériens/usage thérapeutique , Antibactériens/pharmacologie , bêta-Lactamases/génétique , Infections à Klebsiella/traitement médicamenteux , Infections à Klebsiella/microbiologie , Carbapénèmes/pharmacologie , Carbapénèmes/usage thérapeutique , Centres de soins tertiairesRÉSUMÉ
The use of ß-lactam/ß-lactamase inhibitors constitutes an important strategy to counteract ß-lactamases in multidrug-resistant (MDR) Gram-negative bacteria. Recent reports have described ceftazidime-/avibactam-resistant isolates producing CTX-M variants with different amino acid substitutions (e.g., P167S, L169Q, and S130G). Relebactam (REL) combined with imipenem has proved very effective against Enterobacterales producing ESBLs, serine-carbapenemases, and AmpCs. Herein, we evaluated the inhibitory efficacy of REL against CTX-M-96, a CTX-M-15-type variant. The CTX-M-96 structure was obtained in complex with REL at 1.03 Å resolution (PDB 8EHH). REL was covalently bound to the S70-Oγ atom upon cleavage of the C7-N6 bond. Compared with apo CTX-M-96, binding of REL forces a slight displacement of the deacylating water inwards the active site (0.81 Å), making the E166 and N170 side chains shift to create a proper hydrogen bonding network. Binding of REL also disturbs the hydrophobic patch formed by Y105, P107, and Y129, likely due to the piperidine ring of REL that creates clashes with these residues. Also, a remarkable change in the positioning of the N104 sidechain is also affected by the piperidine ring. Therefore, differences in the kinetic behavior of REL against class A ß-lactamases seem to rely, at least in part, on differences in the residues being involved in the association and stabilization of the inhibitor before hydrolysis. Our data provide the biochemical and structural basis for REL effectiveness against CTX-M-producing Gram-negative pathogens and essential details for further DBO design. Imipenem/REL remains an important choice for dealing with isolates co-producing CTX-M with other ß-lactamases.
Sujet(s)
Composés azabicycliques , Inhibiteurs des bêta-lactamases , bêta-Lactamases , Composés azabicycliques/pharmacologie , Composés azabicycliques/composition chimique , bêta-Lactamases/génétique , bêta-Lactamases/métabolisme , bêta-Lactamases/composition chimique , Inhibiteurs des bêta-lactamases/pharmacologie , Inhibiteurs des bêta-lactamases/composition chimique , Cristallographie aux rayons X , Antibactériens/pharmacologie , Imipénem/pharmacologie , Imipénem/composition chimique , Ceftazidime/pharmacologie , Tests de sensibilité microbienne , Domaine catalytiqueRÉSUMÉ
Background: Biofilm production in nonfermenting Gram-negative bacteria influences drug resistance. The aim of this work was to evaluate the effect of different antibiotics on biofilm eradication of clinical isolates of Achromobacter, Burkholderia, and Stenotrophomonas maltophilia. Methods: Clinical isolates were identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry in a third-level hospital in Monterrey, Mexico. Crystal violet staining was used to determine biofilm production. Drug susceptibility testing was determined by broth microdilution in planktonic cells and biofilm cells. Results: Resistance in planktonic cells was moderate to trimethoprim-sulfamethoxazole, and low to chloramphenicol, minocycline, levofloxacin (S. maltophilia and Burkholderia), ceftazidime, and meropenem (Burkholderia and Achromobacter). Biofilm eradication required higher drug concentrations of ceftazidime, chloramphenicol, levofloxacin, and trimethoprim-sulfamethoxazole than planktonic cells (p < 0.05). Levofloxacin showed biofilm eradication activity in S. maltophilia, minocycline and meropenem in Burkholderia, and meropenem in Achromobacter. Conclusions: Drug resistance increased due to biofilm production for some antibiotics, particularly ceftazidime and trimethoprim-sulfamethoxazole for all three pathogens, chloramphenicol for S. maltophilia and Burkholderia, and levofloxacin for Burkholderia. Some antibiotics could be used for the treatment of biofilm-associated infections in our population, such as levofloxacin for S. maltophilia, minocycline and meropenem for Burkholderia, and meropenem for Achromobacter.
Sujet(s)
Achromobacter , Antibactériens , Biofilms , Burkholderia , Infections bactériennes à Gram négatif , Tests de sensibilité microbienne , Stenotrophomonas maltophilia , Biofilms/effets des médicaments et des substances chimiques , Stenotrophomonas maltophilia/effets des médicaments et des substances chimiques , Antibactériens/pharmacologie , Humains , Burkholderia/effets des médicaments et des substances chimiques , Achromobacter/effets des médicaments et des substances chimiques , Infections bactériennes à Gram négatif/microbiologie , Infections bactériennes à Gram négatif/traitement médicamenteux , Résistance bactérienne aux médicaments , Association triméthoprime-sulfaméthoxazole/pharmacologie , Mexique , Ceftazidime/pharmacologie , Plancton/effets des médicaments et des substances chimiques , Multirésistance bactérienne aux médicaments , Lévofloxacine/pharmacologieRÉSUMÉ
Pseudomonas aeruginosa infections have become a serious threat to public health due to the increasing emergence of extensively antibiotic-resistant strains and high mortality rates. Therefore, the search for new therapeutic alternatives has become crucial. In this study, the antivirulence and antibacterial activity of methyl gallate was evaluated against six clinical isolates of extensively antibiotic-resistant P. aeruginosa. Methyl gallate exhibited minimal inhibitory concentrations of 256-384 µg/mL; moreover, the use of subinhibitory concentrations of the compound inhibited biofilm formation, swimming, swarming, proteolytic activity, and pyocyanin production. Methyl gallate plus antipseudomonal antibiotics showed a synergistic effect by reduced the MICs of ceftazidime, gentamicin and meropenem. Furthermore, the potential therapeutic effect of methyl gallate was demonstrated in an infection model. This study evidenced the antivirulence and antimicrobial activity of methyl gallate as a therapeutic alternative against P. aeruginosa.
Sujet(s)
Antibactériens , Biofilms , Synergie des médicaments , Acide gallique , Tests de sensibilité microbienne , Infections à Pseudomonas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/effets des médicaments et des substances chimiques , Antibactériens/pharmacologie , Biofilms/effets des médicaments et des substances chimiques , Acide gallique/analogues et dérivés , Acide gallique/pharmacologie , Infections à Pseudomonas/traitement médicamenteux , Infections à Pseudomonas/microbiologie , Virulence/effets des médicaments et des substances chimiques , Humains , Animaux , Multirésistance bactérienne aux médicaments/effets des médicaments et des substances chimiques , Pyocyanine/métabolisme , Méropénème/pharmacologie , Ceftazidime/pharmacologie , Souris , Gentamicine/pharmacologie , Modèles animaux de maladie humaineRÉSUMÉ
INTRODUCTION: Novel beta-lactam/beta-lactamase inhibitor (BIBLI) combinations are commercially available and have been used for treating carbapenem-resistant Klebsiella pneumoniae (CRKP) infections. Continuous surveillance of susceptibility profiles and resistance mechanism identification are necessary to monitor the evolution of resistance within these agents. OBJECTIVE: The purpose of this study was to evaluate the susceptibility rates of ceftazidime/avibactam, imipenem/relebactam and meropenem/vaborbactam in CRKP isolated from patients with bloodstream infections who underwent screening for a randomized clinical trial in Brazil. METHODS: Minimum inhibitory concentrations (MICs) were determined for meropenem, ceftazidime/avibactam, imipenem/relebactam and meropenem/vaborbactam using the gradient diffusion strip method. Carbapenemase genes were detected by multiplex real-time polymerase chain reaction. Klebsiella pneumoniae carbapenemase (KPC)-producing isolates showing resistance to any BLBLI and New Delhi Metallo-beta-lactamase (NDM)-producing isolates with susceptibility to any BLBLI isolates were further submitted for whole-genome sequencing. RESULTS: From a total of 69 CRKP isolates, 39 were positive for blaKPC, 19 for blaNDM and 11 for blaKPC and blaNDM. KPC-producing isolates demonstrated susceptibility rates above 94â¯% for all BLBLIs. Two isolates with resistance to meropenem/vaborbactam demonstrated a Gly and Asp duplication at the porin OmpK36 as well as a truncated OmpK35. All NDM-producing isolates, including KPC and NDM coproducers, demonstrated susceptibility rates to ceftazidime/avibactam, imipenem/relebactam and meropenem/vaborbactam of 0â¯%, 9.1-21.1â¯% and 9.1-26.3â¯%, respectively. Five NDM-producing isolates that presented susceptibility to BLBLIs also had porin alterations CONCLUSIONS: This study showed that, although high susceptibility rates to BLBLIs were found, KPC-2 isolates were able to demonstrate resistance probably as a result of porin mutations. Additionally, NDM-1 isolates showed susceptibility to BLBLIs in vitro.
Sujet(s)
Antibactériens , Composés azabicycliques , Enterobacteriaceae résistantes aux carbapénèmes , Ceftazidime , Association médicamenteuse , Infections à Klebsiella , Klebsiella pneumoniae , Tests de sensibilité microbienne , Inhibiteurs des bêta-lactamases , bêta-Lactamases , Humains , Brésil , Klebsiella pneumoniae/effets des médicaments et des substances chimiques , Klebsiella pneumoniae/génétique , Klebsiella pneumoniae/isolement et purification , Inhibiteurs des bêta-lactamases/pharmacologie , Infections à Klebsiella/microbiologie , Composés azabicycliques/pharmacologie , Ceftazidime/pharmacologie , bêta-Lactamases/génétique , Antibactériens/pharmacologie , Enterobacteriaceae résistantes aux carbapénèmes/effets des médicaments et des substances chimiques , Enterobacteriaceae résistantes aux carbapénèmes/génétique , Enterobacteriaceae résistantes aux carbapénèmes/isolement et purification , Protéines bactériennes/génétique , Méropénème/pharmacologie , Imipénem/pharmacologie , Bactériémie/microbiologie , Acides boroniques/pharmacologie , Composés hétéromonocycliquesRÉSUMÉ
Introduction: Ceftazidime/avibactam (CZA) is indicated against multidrug-resistant Pseudomonas aeruginosa, particularly those that are carbapenem resistant. CZA resistance in P. aeruginosa producing PER, a class A extended-spectrum ß-lactamase, has been well documented in vitro. However, data regarding clinical isolates are scarce. Our aim was to analyze the contribution of PER to CZA resistance in non-carbapenemase-producing P. aeruginosa clinical isolates that were ceftazidime and/or carbapenem non-susceptible. Methods: Antimicrobial susceptibility was determined through agar dilution and broth microdilution, while bla PER gene was screened through PCR. All PER-positive isolates and five PER-negative isolates were analyzed through Whole Genome Sequencing. The mutational resistome associated to CZA resistance was determined through sequence analysis of genes coding for PBPs 1b, 3 and 4, MexAB-OprM regulators MexZ, MexR, NalC and NalD, AmpC regulators AmpD and AmpR, and OprD porin. Loss of bla PER-3 gene was induced in a PER-positive isolate by successive passages at 43°C without antibiotics. Results: Twenty-six of 287 isolates studied (9.1%) were CZA-resistant. Thirteen of 26 CZA-resistant isolates (50%) carried bla PER. One isolate carried bla PER but was CZA-susceptible. PER-producing isolates had significantly higher MICs for CZA, amikacin, gentamicin, ceftazidime, meropenem and ciprofloxacin than non-PER-producing isolates. All PER-producing isolates were ST309 and their bla PER-3 gene was associated to ISCR1, an insertion sequence known to mobilize adjacent DNA. PER-negative isolates were classified as ST41, ST235 (two isolates), ST395 and ST253. PER-negative isolates carried genes for narrow-spectrum ß-lactamases and the mutational resistome showed that all isolates had one major alteration in at least one of the genes analyzed. Loss of bla PER-3 gene restored susceptibility to CZA, ceftolozane/tazobactam and other ß-lactamsin the in vitro evolved isolate. Discussion: PER-3-producing ST309 P. aeruginosa is a successful multidrug-resistant clone with blaPER-3 gene implicated in resistance to CZA and other ß-lactams.
Sujet(s)
Protéines bactériennes , Ceftazidime , Multirésistance bactérienne aux médicaments , Infections à Pseudomonas , Pseudomonas aeruginosa , Humains , Antibactériens/pharmacologie , Composés azabicycliques/pharmacologie , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , bêta-Lactamases/génétique , bêta-Lactamases/métabolisme , Ceftazidime/pharmacologie , Chili , Association médicamenteuse , Multirésistance bactérienne aux médicaments/génétique , Tests de sensibilité microbienne , Mutation , Pseudomonas aeruginosa/effets des médicaments et des substances chimiques , Pseudomonas aeruginosa/génétique , Infections à Pseudomonas/microbiologie , Séquençage du génome entierRÉSUMÉ
Stenotrophomonas maltophilia (S. maltophilia) is an intrinsically drug-resistant and biofilm-forming bacteria causing infections in immunocompromised humans. This study reports the isolation of five S. maltophilia strains from saliva and gingival crevicular fluid (GCF) of AIDS patients with periodontitis in São Paulo, Brazil, showing resistance to ceftazidime, strong biofilm formation capacity and a close genetic relationship. The presence of S. maltophilia strains in saliva and CGF of patients with AIDS and periodontitis is a concern for the presence and persistence of intrinsically resistant bacteria in the oral environment, enhancing the risk for the development of severe infections in immunocompromised patients.
Sujet(s)
Syndrome d'immunodéficience acquise , Antibactériens , Biofilms , Ceftazidime , Exsudat gingival , Infections bactériennes à Gram négatif , Parodontite , Salive , Stenotrophomonas maltophilia , Humains , Stenotrophomonas maltophilia/effets des médicaments et des substances chimiques , Stenotrophomonas maltophilia/génétique , Stenotrophomonas maltophilia/isolement et purification , Brésil , Salive/microbiologie , Parodontite/microbiologie , Exsudat gingival/microbiologie , Exsudat gingival/composition chimique , Ceftazidime/pharmacologie , Antibactériens/pharmacologie , Infections bactériennes à Gram négatif/microbiologie , Biofilms/croissance et développement , Biofilms/effets des médicaments et des substances chimiques , Syndrome d'immunodéficience acquise/microbiologie , Mâle , Adulte , Femelle , Tests de sensibilité microbienne , Résistance bactérienne aux médicaments , Adulte d'âge moyenRÉSUMÉ
Resistance to ceftazidime-avibactam (CZA) due to Klebsiella pneumoniae carbapenemase (KPC) variants is increasing worldwide. We characterized two CZA-resistant clinical Klebsiella pneumoniae strains by antimicrobial susceptibility test, conjugation assays, and WGS. Isolates belonged to ST258 and ST45, and produced a KPC-31 and a novel variant KPC-197, respectively. The novel KPC variant presents a deletion of two amino acids on the Ω-loop (del_168-169_EL) and an insertion of two amino acids in position 274 (Ins_274_DS). Continued surveillance of KPC variants conferring CZA resistance in Colombia is warranted. IMPORTANCE: Latin America and the Caribbean is an endemic region for carbapenemases. Increasingly high rates of Klebsiella pneumoniae carbapenemase (KPC) have established ceftazidime-avibactam (CZA) as an essential antimicrobial for the treatment of infections due to MDR Gram-negative pathogens. Although other countries in the region have reported the emergence of CZA-resistant KPC variants, this is the first description of such enzymes in Colombia. This finding warrants active surveillance, as dissemination of these variants could have devastating public health consequences.
Sujet(s)
Antibactériens , Composés azabicycliques , Protéines bactériennes , Ceftazidime , Association médicamenteuse , Multirésistance bactérienne aux médicaments , Infections à Klebsiella , Klebsiella pneumoniae , Tests de sensibilité microbienne , bêta-Lactamases , Composés azabicycliques/pharmacologie , Ceftazidime/pharmacologie , Klebsiella pneumoniae/génétique , Klebsiella pneumoniae/effets des médicaments et des substances chimiques , Klebsiella pneumoniae/enzymologie , Colombie , bêta-Lactamases/génétique , bêta-Lactamases/métabolisme , Humains , Antibactériens/pharmacologie , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , Multirésistance bactérienne aux médicaments/génétique , Infections à Klebsiella/microbiologie , Infections à Klebsiella/traitement médicamenteuxSujet(s)
Antibactériens , Composés azabicycliques , Ceftazidime , Association médicamenteuse , bêta-Lactamases , Composés azabicycliques/pharmacologie , Ceftazidime/pharmacologie , bêta-Lactamases/génétique , Humains , Antibactériens/pharmacologie , Tests de sensibilité microbienne , Chromatographie d'affinité/méthodes , Protéines bactériennes/génétiqueRÉSUMÉ
OBJECTIVES: To describe at genomic level nine carbapenemase-producing Klebsiella pneumoniae ST307 (Kp-ST307) clinical isolates recovered in Buenos Aires during 2017 to 2021, investigating their resistome, virulome, and phylogeny. METHODS: Antimicrobial susceptibility was determined according to Clinical and Laboratory Standards Intitute (CLSI). Genomic DNA was sequenced by Illumina MiSeq and analysed using SPAdes, PROKKA, and Kleborate. Phylogeny of 355 randomly selected Kp-ST307 genomes and those from nine local isolates was inferred by a maximum-likelihood approach. The tree was visualized using Microreact. RESULTS: Besides resistance to ß-lactams and fluoroquinolones, six out of nine Kp-ST307 were also resistant to ceftazidime/avibactam (CZA). This difficult-to-treat resvistance phenotype was mediated by blaSHV-28 and GyrA-83I/ParC-80I mutations in addition to carbapenemase coding genes. Among CZA susceptible isolates, two of them harboured blaKPC-3 while the other harboured blaKPC-2+blaCTX-M-15. Regarding CZA-resistant isolates, three harboured blaKPC-3+blaNDM-1+blaCMY-6, two carried blaKPC-2+blaNDM-5+blaCTX-M-15, and blaNDM-5+blaCTX-M-15 were detected in the remaining isolate. Furthermore, five colistin-resistant isolates presented a nonsense mutation in mgrB. Global Kp-ST307 isolates were distributed in two deep-branching lineages while local isolates were set in the main clade of the phylogenetic tree. The five isolates from the same hospital, harbouring blaKPC-3 or blaKPC-3+blaNDM-1+blaCMY-6, clustered in a monophyletic subclade with Italian isolates. Also, an isolate harbouring blaKPC-2+blaNDM-5+blaCTX-M-15 recovered in another hospital was closed to this group. The remaining local Kp-ST307 were grouped in other subclades containing isolates of diverse geographical origin. CONCLUSION: The inferred resistome was consistent with the resistant phenotype. Phylogeny suggested multiple introduction events in our region and a single major introduction in one hospital followed by local spread.
Sujet(s)
Antibactériens , Protéines bactériennes , Ceftazidime , Infections à Klebsiella , Klebsiella pneumoniae , Tests de sensibilité microbienne , Phylogenèse , bêta-Lactamases , Klebsiella pneumoniae/génétique , Klebsiella pneumoniae/effets des médicaments et des substances chimiques , Klebsiella pneumoniae/isolement et purification , Klebsiella pneumoniae/enzymologie , Klebsiella pneumoniae/classification , Argentine , bêta-Lactamases/génétique , Protéines bactériennes/génétique , Humains , Infections à Klebsiella/microbiologie , Antibactériens/pharmacologie , Ceftazidime/pharmacologie , Multirésistance bactérienne aux médicaments/génétique , Génome bactérien , Composés azabicycliques/pharmacologie , Association médicamenteuse , Génomique , Séquençage du génome entierRÉSUMÉ
BACKGROUND: Infections caused by Stenotrophomonas maltophilia and related species are increasing worldwide. Unfortunately, treatment options are limited, whereas the antimicrobial resistance is increasing. METHODS: We included clinical isolates identified as S. maltophilia by VITEK 2 Compact. Ceftazidime/avibactam, meropenem/vaborbactam, imipenem/relebactam, cefiderocol, quinolones, and tetracycline family members were evaluated by broth microdilution method and compared with first-line treatment drugs. Minimum inhibitory concentrations (MICs) were reported for all antibiotics. We sequenced the Whole Genome of cefiderocol resistant strains (CRSs) and annotated their genes associated with cefiderocol resistance (GACR). Presumptive phylogenetic identification employing the 16S marker was performed. RESULTS: One hundred and one clinical strains were evaluated, sulfamethoxazole and trimethoprim, levofloxacin and minocycline showed susceptibilities of 99.01%, 95.04% and 100% respectively. Ceftazidime was the antibiotic with the highest percentage of resistance in all samples (77.22%). Five strains were resistant to cefiderocol exhibiting MIC values ≥ 2 µg/mL (4.95%). The ß-lactamase inhibitors meropenem/vaborbactam and imipenem/relebactam, failed to inhibit S. maltophilia, preserving both MIC50 and MIC90 ≥64 µg/mL. Ceftazidime/avibactam restored the activity of ceftazidime decreasing the MIC range. Tigecycline had the lowest MIC range, MIC50 and MIC90. Phylogeny based on 16S rRNA allowed to identify to cefiderocol resistant strains as putative species clustered into Stenotrophomonas maltophilia complex (Smc). In these strains, we detected GARCs such as Mutiple Drug Resistance (MDR) efflux pumps, L1-type ß-lactamases, iron transporters and type-1 fimbriae. CONCLUSION: Antimicrobial resistance to first-line treatment is low. The in vitro activity of new ß-lactamase inhibitors against S. maltophilia is poor, but avibactam may be a potential option. Cefiderocol could be considered as a potential new option for multidrug resistant infections. Tetracyclines had the best in vitro activity of all antibiotics evaluated.
Sujet(s)
Acides boroniques , Ceftazidime , Stenotrophomonas maltophilia , Ceftazidime/pharmacologie , Cefiderocol , Méropénème , Inhibiteurs des bêta-lactamases/pharmacologie , Inhibiteurs des bêta-lactamases/usage thérapeutique , Stenotrophomonas , Phylogenèse , ARN ribosomique 16S , Antibactériens/pharmacologie , Antibactériens/usage thérapeutique , Composés azabicycliques/pharmacologie , Association médicamenteuse , Imipénem/pharmacologie , Tests de sensibilité microbienne , bêta-Lactamases/génétiqueRÉSUMÉ
OBJECTIVES: Ceftazidime-avibactam (CAZ-AVI) is an option for infections caused by MDR gram-negative bacilli. In this study, we aimed to analyze the in vitro antimicrobial activity of CAZ-AVI and other antimicrobial agents against gram-negative bacilli that were collected in Colombia between 2019 and 2021 from patients with bacteremia and skin and soft-tissue infections (SSTIs). METHODS: A total of 600 Enterobacterales and 259 P. aeruginosa strains were analyzed. The phenotypic resistance of isolates, particularly non-susceptibility to meropenem, multidrug-resistant (MDR) isolates, and difficult-to-treat (DTR) P. aeruginosa, was evaluated according to CLSI breakpoints. RESULTS: Enterobacterales had the most susceptibility to CAZ-AVI (96.5 %) and tigecycline (95 %). Tigecycline and CAZ-AVI were the antimicrobial agents with the most in vitro activity against carbapenem-resistant Enterobacterales (CRE). CAZ-AVI was the antimicrobial treatment with the most activity against P. aeruginosa. CONCLUSIONS: Tigecycline and CAZ-AVI were the antimicrobial agents with the most activity against CRE and MDR Enterobacterales. For P. aeruginosa, CAZ-AVI was the antimicrobial treatment with the most in vitro activity.
Sujet(s)
Antibactériens , Composés azabicycliques , Bactériémie , Ceftazidime , Association médicamenteuse , Bactéries à Gram négatif , Tests de sensibilité microbienne , Infections des tissus mous , Tigecycline , Humains , Ceftazidime/pharmacologie , Infections des tissus mous/microbiologie , Infections des tissus mous/traitement médicamenteux , Colombie , Composés azabicycliques/pharmacologie , Antibactériens/pharmacologie , Bactériémie/microbiologie , Bactériémie/traitement médicamenteux , Bactéries à Gram négatif/effets des médicaments et des substances chimiques , Tigecycline/pharmacologie , Pseudomonas aeruginosa/effets des médicaments et des substances chimiques , Multirésistance bactérienne aux médicaments , Infections bactériennes à Gram négatif/microbiologie , Infections bactériennes à Gram négatif/traitement médicamenteux , Enterobacteriaceae/effets des médicaments et des substances chimiques , Dermatoses bactériennes/microbiologie , Dermatoses bactériennes/traitement médicamenteuxRÉSUMÉ
Aims: This work describes the encapsulation of ceftazidime and tobramycin in zein nanoparticles (ZNPs) and the characterization of their antibacterial and antibiofilm activities against Gram-negative bacteria. Materials & methods: ZNPs were synthesized by nanoprecipitation. Cytotoxicity was assessed by MTT assay and antibacterial and antibiofilm assays were performed by broth microdilution and violet crystal techniques. Results: ZNPs containing ceftazidime (CAZ-ZNPs) and tobramycin (TOB-ZNPs) showed drug encapsulation and thermal stability. Encapsulation of the drugs reduced their cytotoxicity 9-25-fold. Antibacterial activity, inhibition and eradication of biofilm by CAZ-ZNPs and TOB-ZNPs were observed. There was potentiation when CAZ-ZNPs and TOB-ZNPs were combined. Conclusion: CAZ-ZNPs and TOB-ZNPs present ideal physical characteristics for in vivo studies of antibacterial and antibiofilm activities.
A nanotechnology product was developed to treat diseases caused by bacteria. This prototype showed the ideal characteristics and could be administered by ingestion through the mouth, aspiration through the nose or injection into the veins. The prototype did not harm or kill human cells. It killed the bacteria and prevented the formation of a type of protection against antibiotics that bacteria can produce, called a biofilm. Nanotechnology products are a promising alternative for the treatment of bacterial infections.
Sujet(s)
Nanoparticules , Zéine , Ceftazidime/pharmacologie , Tobramycine/pharmacologie , Zéine/pharmacologie , Antibactériens/pharmacologie , Antibactériens/usage thérapeutique , Bactéries à Gram négatif , Tests de sensibilité microbienneRÉSUMÉ
Ceftazidime-avibactam (CZA) therapy has significantly improved survival rates for patients infected by carbapenem-resistant bacteria, including KPC producers. However, resistance to CZA is a growing concern, attributed to multiple mechanisms. In this study, we characterized four clinical CZA-resistant Klebsiella pneumoniae isolates obtained between July 2019 and December 2020. These isolates expressed novel allelic variants of blaKPC-2 resulting from changes in hotspots of the mature protein, particularly in loops surrounding the active site of KPC. Notably, KPC-80 had an K269_D270insPNK mutation near the Lys270-loop, KPC-81 had a del_I173 mutation within the Ω-loop, KPC-96 showed a Y241N substitution within the Val240-loop and KPC-97 had an V277_I278insNSEAV mutation within the Lys270-loop. Three of the four isolates exhibited low-level resistance to imipenem (4 µg/mL), while all remained susceptible to meropenem. Avibactam and relebactam effectively restored carbapenem susceptibility in resistant isolates. Cloning mutant blaKPC genes into pMBLe increased imipenem MICs in recipient Escherichia coli TOP10 for blaKPC-80, blaKPC-96, and blaKPC-97 by two dilutions; again, these MICs were restored by avibactam and relebactam. Frameshift mutations disrupted ompK35 in three isolates. Additional resistance genes, including blaTEM-1, blaOXA-18 and blaOXA-1, were also identified. Interestingly, three isolates belonged to clonal complex 11 (ST258 and ST11) and one to ST629. This study highlights the emergence of CZA resistance including unique allelic variants of blaKPC-2 and impermeability. Comprehensive epidemiological surveillance and in-depth molecular studies are imperative for understanding and monitoring these complex resistance mechanisms, crucial for effective antimicrobial treatment strategies. IMPORTANCE: The emergence of ceftazidime-avibactam (CZA) resistance poses a significant threat to the efficacy of this life-saving therapy against carbapenem-resistant bacteria, particularly Klebsiella pneumoniae-producing KPC enzymes. This study investigates four clinical isolates exhibiting resistance to CZA, revealing novel allelic variants of the key resistance gene, blaKPC-2. The mutations identified in hotspots surrounding the active site of KPC, such as K269_D270insPNK, del_I173, Y241N and V277_I278insNSEAV, prove the adaptability of these pathogens. Intriguingly, low-level resistance to imipenem and disruptions in porin genes were observed, emphasizing the complexity of the resistance mechanisms. Interestingly, three of four isolates belonged to clonal complex 11. This research not only sheds light on the clinical significance of CZA resistance but also shows the urgency for comprehensive surveillance and molecular studies to inform effective antimicrobial treatment strategies in the face of evolving bacterial resistance.
Sujet(s)
Antibactériens , Composés azabicycliques , Ceftazidime , Infections à Klebsiella , Humains , Antibactériens/pharmacologie , Klebsiella pneumoniae , Argentine , bêta-Lactamases/génétique , Protéines bactériennes/génétique , Carbapénèmes , Tests de sensibilité microbienne , Imipénem , Infections à Klebsiella/traitement médicamenteux , Infections à Klebsiella/microbiologie , Association médicamenteuseRÉSUMÉ
The present work aimed to develop, characterize, and evaluate the antibacterial and antibiofilm activity of two nanoemulsions (NEs) containing 500 µg/mL of curcumin from Curcuma longa (CUR). These NEs, produced with heating, contain olive oil (5%) and the surfactants tween 80 (5%) and span 80 (2.5%), water q.s. 100 mL, and were stable for 120 days. NE-2-CUR presented Ø of 165.40 ± 2.56 nm, PDI of 0.254, ζ of - 33.20 ± 1.35 mV, pH of 6.49, and Entrapment Drug Efficiency (EE) of 99%. The NE-4-CUR showed a Ø of 105.70 ± 4.13 nm, PDI of 0.459, ζ of - 32.10 ± 1.45 mV, pH of 6.40 and EE of 99.29%. Structural characterization was performed using DRX and FTIR, thermal characterization using DSC and TG, and morphological characterization using SEM, suggesting that there is no significant change in the CUR present in the NEs and that they remain stable. The MIC was performed by the broth microdilution method for nine gram-positive and gram-negative bacteria, as well as Klebsiella pneumoniae clinical isolates resistant to antibiotics and biofilm and efflux pump producers. The NEs mostly showed a bacteriostatic profile. The MIC varied between 125 and 250 µg/mL. The most sensitive bacteria were Staphylococcus aureus and Enterococcus faecalis, for which NE-2-CUR showed a MIC of 125 µg/mL. The NEs and ceftazidime (CAZ) interaction was also evaluated against the K. pneumoniae resistant clinical isolates using the Checkerboard method. NE-2-CUR and NE-4-CUR showed a synergistic or additive profile; there was a reduction in CAZ MICs between 256 times (K26-A2) and 2 times (K29-A2). Furthermore, the NEs inhibited these isolates biofilms formation. The NEs showed a MBIC ranging from 15.625 to 250 µg/mL. Thus, the NEs showed physicochemical characteristics suitable for future clinical trials, enhancing the CAZ antibacterial and antibiofilm activity, thus becoming a promising strategy for the treatment of bacterial infections caused by multidrug-resistant K. pneumoniae. KEY POINTS: ⢠The NEs showed physicochemical characteristics suitable for future clinical trials. ⢠The NEs showed a synergistic/additive profile, when associated with ceftazidime. ⢠The NEs inhibited biofilm formation of clinical isolates.
Sujet(s)
Anti-infectieux , Curcumine , Antibactériens/pharmacologie , Ceftazidime/pharmacologie , Curcumine/pharmacologie , Curcumine/composition chimique , Huile d'olive/pharmacologie , Bactéries à Gram positif , Bactéries à Gram négatif , Anti-infectieux/pharmacologie , Klebsiella pneumoniae , Tests de sensibilité microbienneRÉSUMÉ
OBJECTIVES: This study aimed to evaluate the clinical and microbiological risk factors associated with mortality in patients treated with ceftazidime-avibactam for carbapenem-resistant Gram-negative bacterial infections. METHODS: This multicentric prospective cohort study included hospitalized adult patients with a microbiologically confirmed infection treated with ceftazidime-avibactam for ≥48 hours. The clinical and microbiological risk factors for 30-day mortality were evaluated using a Cox regression model. RESULTS: Of the 193 patients evaluated from the five tertiary hospitals, 127 were included in the study. Thirty-five patients (27.6%) died within 30 days. Infections with AmpC beta-lactamase-carrying bacteria were independently related to 30-day mortality (adjusted hazard ratio [aHR] 2.49, 95% confidence interval [CI] 1.28-4.84, P < 0.01) after adjusting for time from infection to antimicrobial prescription (P = 0.04). Further, these bacterial infections were also related to higher in-hospital mortality (aHR 2.17, 95% CI 1.24-3.78, P < 0.01). Only one patient developed resistance to ceftazidime-avibactam during treatment. CONCLUSIONS: Treatment with ceftazidime-avibactam had worse clinical outcomes in patients with infections with bacteria with chromosomally encoded AmpC beta-lactamase. However, these findings should be confirmed in future studies.
Sujet(s)
Antibactériens , Composés azabicycliques , Infections bactériennes à Gram négatif , Adulte , Humains , Antibactériens/effets indésirables , Antibactériens/pharmacologie , Inhibiteurs des bêta-lactamases/effets indésirables , Ceftazidime/effets indésirables , Association médicamenteuse , Multirésistance bactérienne aux médicaments , Infections bactériennes à Gram négatif/traitement médicamenteux , Études prospectivesRÉSUMÉ
The purpose of this study was to evaluate the MBT-ASTRA to determine susceptibility to ceftazidime/avibactam (CZA) and meropenem (MEM) of Enterobacterales directly from positive blood cultures (BC). Bacterial suspension was incubated with antibiotic and analyzed by MALDI-TOF MS. The relative growth was calculated and cutoff values were determined to categorize isolates as "S," "I," and "R." Klebsiella spp. with CZA 20/8 mg/L and 1.5-h incubation presented 1 (5.9%) major discrepancy and 96.3% category agreement; other species required 2.5 h for 100% category agreement. For MEM, 4 mg/L and 1.5h were necessary, demonstrating 2 (6.67%) minor discrepancies and 93.3% categorical agreement.
Sujet(s)
Hémoculture , Ceftazidime , Humains , Ceftazidime/pharmacologie , Méropénème/pharmacologie , Spectrométrie de masse MALDI , Antibactériens/pharmacologie , Association médicamenteuse , Tests de sensibilité microbienne , bêta-LactamasesRÉSUMÉ
In intensive care units (ICUs), infection rates range from 18 to 54%, which is five to ten times higher than those observed in other hospital units, with a mortality rate of 9% to 60%. In recent decades, the susceptibility pattern has changed and Gram-Negative Bacteria (GNB) have become a threat due to their high frequency of multidrug resistance associated with a scarcity of therapeutic options. However, the drugs Ceftolozane/Tazobactam (C/T) and Ceftazidime/Avibactam (C/A) are demonstrating good clinical and microbiological response in the treatment of severe nosocomial infections. Therefore, this study aims to evaluate the clinical outcome of patients with severe infections caused by Multidrug-Resistant (MDR) GNB treated with C/T and C/A. Our study evaluates a total of 131 patients who received treatment with C/T and C/A due to infections caused by MDR GNB within the period from 2018 to 2021. The main infections were urinary tract (46,6%) and respiratory (26,7%) infections. Pseudomonas aeruginosa was the prevailing agent in the sample evaluation (34.3%), followed by Klebsiella pneumoniae (30,1%). About 54,9% of patients showed a favorable response, with culture negativation in 66,4% of the samples, with no discrepancy in negativations when comparing ages: 67,7% in young and 66% in elderly patients. Among the patients, 62,6% received monotherapy with C/T and C/A with a better response observed with monotherapy compared to combination therapy (58,6% vs 41,4%). The overall mortality rate was 45%, with MDR GNB infections responsible for 33,9% of these deaths, and the others (66,1%) due to factors such as oncological, hematological, and degenerative neurological diseases. In regards to hematological aspect, 35,1% of patients showed changes, with 28,2% of them presenting anemia, 4,5% thrombocytopenia, and 2,5% thrombocytosis. Concerning the use of invasive devices, higher mortality was observed in patients on mechanical ventilation (52%). In this manner, it was possible to observe that therapy with C/T and C/A yielded a favorable clinical outcome in patients with severe infections caused by MDR GNB in the study. These drugs also demonstrated good tolerability regardless of age or the presence of preexisting comorbidities and were deemed safe when assessing adverse effects. Our data also demonstrate the importance of determining the mechanism of resistance to carbapenems so that these drugs can be used more effectively and rationally.
Sujet(s)
Antibactériens , Composés azabicycliques , Ceftazidime , Humains , Sujet âgé , Ceftazidime/usage thérapeutique , Ceftazidime/pharmacologie , Antibactériens/pharmacologie , Antibactériens/usage thérapeutique , Céphalosporines/pharmacologie , Céphalosporines/usage thérapeutique , Tazobactam/usage thérapeutique , Tazobactam/pharmacologie , Multirésistance bactérienne aux médicaments , Bactéries à Gram négatif , Unités de soins intensifs , Tests de sensibilité microbienne , Pseudomonas aeruginosaRÉSUMÉ
O Complexo K. pneumoniae (C-Kp) é o principal grupo de bacilos Gram-negativos responsáveis por infecções nosocomiais graves em todo o mundo e o tratamento empírico dessas infecções usualmente inclui os carbapenêmicos. O principal mecanismo de resistência a essa classe de antimicrobianos é a expressão de carbapenemases, e no Brasil, mais frequentemente as do tipo KPC. Em março de 2019 a ceftazidima-avibactam foi disponibilizada para uso clínico no Brasil, sendo amplamente utilizada no tratamento infecções causadas por bacilos gram-negativos produtores de KPC. Diversos países já relataram a presença de K. pneumoniae produtores de KPC resistentes à ceftazidima-avibactam. No entanto, há poucos relatos dessa ocorrência no Brasil. O objetivo deste trabalho foi caracterizar genotipicamente e fenotipicamente isolados do C-Kp produtores de KPC, resistentes à ceftazidima-avibactam. No período de julho/2019 a julho/2021, 46 isolados do C-Kp, um por paciente, foram detectados em diferentes sítios de infecção ou culturas de vigilância de pacientes internados em hospitais privados de seis estados brasileiros. Os isolados tiveram seu genoma completo sequenciado nas plataformas MiSeq e MinION para determinação da variante alélica de blaKPC e avaliação do seu contexto genético. As taxas de resistência ao ertapenem e à ceftazidima-avibactam foram calculadas a partir de banco de dados. A clonalidade dos isolados foi avaliada por PFGE e MLST. A localização plasmidial do gene blaKPC foi confirmada por conjugação e/ou transformação. A concentração inibitória mínima (CIM) para betalactâmicos foi determinada por microdiluição em caldo segundo o BrCAST. Ensaios imunocromatográficos, NG-Test CARBA-5 e O.K.N.V.I. RESIST-5, foram avaliados quanto à sua performance na detecção de variantes KPC. A taxa de resistência ao ertapenem entre isolados do C-Kp aumentou 15,6% em 2019 para 27,3% em 2021. A taxa de resistência à ceftazidima-avibactam entre isolados do C-Kp resistentes ao ertapenem aumentou de 4,2% em 2019 para 17,2% em 2021. Onze isolados apresentaram novas variantes de KPC designadas KPC-103 a KPC-108 e KPC-139 a KPC-143. Os demais isolados apresentavam variantes de KPC já descritas, sendo a KPC-33 a variante mais frequente (36%). Quinze grupos clonais foram identificados, sendo que a maioria dos isolados pertencia ao ST11. O grupo clonal A foi o mais numeroso e pertencia ao ST258. A principal variante detectada nesse grupo foi a KPC-33. Diferentes grupos de incompatibilidade foram identificados em plasmídeos alberguando blaKPC, sendo os grupos IncN (n=12) e IncF, com replicons FII(K)-FIB (n=11), os grupos mais frequentes, seguido de InX3-IncU (n=9) e IncQ1 (n=1). Dos 46 isolados resistentes à ceftazidima-avibactam, 36 foram capazes de transferir o gene blaKPC para cepas receptoras. A maioria dos isolados foi sensível dose padrão ou sensível aumentabdo exposição ao meropenem e apresentaram redução significativa da CIM quando o avibactam foi adicionado ao aztreonam. O NG-Test CARBA-5 detectou 12 das 24 variantes testadas enquanto que o O.K.N.V.I. RESIST-5 detectou apenas nove variantes. A grande diversidade de variantes KPC, e a predominância do grupo clonal ST11, e da KPC- 33 retratam um cenário preocupante no Brasil
The K. pneumoniae Complex (C-Kp) is the main group of gram-negative bacilli responsible for serious nosocomial infections worldwide and the empirical treatment of these infections usually includes carbapenems. The main mechanism of resistance to this class of antimicrobials is the expression of carbapenemases, and in Brazil, more frequently the KPC type. In March 2019, ceftazidime-avibactam was available for clinical use in Brazil, being widely used to treat infections caused by KPC-producing gram-negative bacilli. Several countries have already reported the presence of KPC-producing K. pneumoniae resistant to ceftazidime-avibactam; however, there are few reports of this occurrence in Brazil. This work aimed to genotypically and phenotypically characterize KPC-producing C-Kp isolates resistant to ceftazidimeavibactam. From July 2019 to July 2021, 46 C-Kp isolates, one per patient, were detected in different sites of infection or surveillance cultures from patients admitted to private hospitals in six Brazilian states. The isolates had their complete genome sequenced on the MiSeq and MinION platforms to determine the allelic variant of blaKPC and evaluate its genetic context. Resistance rates to ertapenem and ceftazidime-avibactam were calculated from a database. The clonality of the isolates was evaluated by PFGE and MLST. The plasmid location of the blaKPC gene was confirmed by conjugation and/or transformation. The minimal inhibitory concentrations for beta-lactams were determined by broth microdilution according to BrCAST. Immunochromatographic assays, NG-Test CARBA-5 and O.K.N.V.I. RESIST-5, were evaluated for its performance in detecting KPC variants. The resistance rate to ertapenem among C-Kp isolates increased from 15.6% in 2019 to 27.3% in 2021. The resistance rate to ceftazidime-avibactam among ertapenem-resistant C-Kp isolates increased from 4.2% in 2019 to 17.2% in 2021. Eleven isolates showed new KPC variants designated KPC-103 to KPC-108 and KPC-139 to KPC-143. The remaining isolates presented previously described KPC variants, with KPC-33 being the most common variant (36%). Fifteen clonal groups were identified, with most isolates belonging to ST11. Different incompatibility groups were identified in plasmids harboring blaKPC, with the IncN (n=12) and IncF groups, with FII(K)-FIB(n=11) replicons, being the most frequent groups, followed by InX3-IncU (n= 9) and IncQ1 (n=1). All IncX3-IncU plasmids were approximately 46 kb in size and were identified among isolates belonging to the largest identified clonal group (A) and ST258. The main variant detected in this group was KPC-33. Of the 46 ceftazidime-avibactam-resistant isolates, 36 were able to transfer the blaKPC gene to recipient strains. Most isolates were susceptible standard dose or susceptible increased exposure to meropenem and showed a significant decrease in MIC when avibactam was added to aztreonam. The NG-Test CARBA-5 was able to detect 12 of the 24 variants evaluated while the O.K.N.V.I. RESIST-5 detected only nine variants. The great diversity of KPC variants, the predominance of the ST11 clonal group, and KPC-33 portray a worrying scenario in Brazil