Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 235
Filtrer
1.
Int J Biol Macromol ; 278(Pt 1): 134602, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39127282

RÉSUMÉ

This study evaluates the feasibility of using enzymatic technology to produce novel nanostructures of cellulose nanomaterials, specifically cellulose nanospheres (CNS), through enzymatic hydrolysis with endoglucanase and xylanase of pre-treated cellulose fibers. A statistical experimental design facilitated a comprehensive understanding of the process parameters, which enabled high yields of up to 82.7 %, while maintaining a uniform diameter of 54 nm and slightly improved crystallinity and thermal stability. Atomic force microscopy analyses revealed a distinct CNS formation mechanism, where initial fragmentation of rod-like nanoparticles and subsequent self-assembly of shorter rod-shaped nanoparticles led to CNS formation. Additionally, adjustments in process parameters allowed precise control over the CNS diameter, ranging from 20 to 100 nm, highlighting the potential for customization in high-performance applications. Furthermore, this study demonstrates how the process framework, originally developed for cellulose nanocrystals (CNC) production, was successfully adapted and optimized for CNS production, ensuring scalability and efficiency. In conclusion, this study emphasizes the versatility and efficiency of the enzyme-based platform for producing high-quality CNS, providing valuable insights into energy consumption for large-scale economic and environmental assessments.


Sujet(s)
Cellulase , Cellulose , Nanosphères , Cellulose/composition chimique , Hydrolyse , Nanosphères/composition chimique , Cellulase/composition chimique , Cellulase/métabolisme , Endo-1,4-beta xylanases/composition chimique , Endo-1,4-beta xylanases/métabolisme
2.
Food Res Int ; 192: 114768, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39147496

RÉSUMÉ

In the context of biorefinery, researchers have been looking for lignocellulosic biomasses and ideal treatments to produce economically viable biofuels. In this scenario, the bamboo culm appears as a plant matrix of great potential, given the high cellulose content of low crystallinity. Thus, the objective and differential of this work was to determine the best conditions for enzymatic hydrolysis of cellulose extracted from bamboo culm and to evaluate its potential application in the production of bioethanol through Separate Hydrolysis and Fermentation (SHF) and Saccharification and Simultaneous Fermentation (SSF) by Saccharomyces cerevisiae modified via CRISPR/Cas9. The average cellulose extraction yield was 41.87 % with an extraction efficiency of 86.76 %. In general, as the hydrolysis time increased, an increase in glucose production was observed in almost all assays, with higher hydrolysis efficiency values at 72 h. The results ranged from 2.09 to 19.8 g/L of glucose obtained with efficiency values of 10.47 to 99 %. The best conditions were found in test 5 (temperature of 36 °C and pH 5.0, with only 10 FPU/g of substrate Cellic Ctec2 Novozymes ® cocktail). It is observed that for all hydrolysis times the independent variables pH and temperature were significant under the hydrolysis efficiency, showing a negative effect, indicating that higher values of the same promote lower values of the response variable. For bioethanol production, a maximum concentration of 7.84 g/L was observed for the SSH process after 4 h of fermentation, while for the SSF process it was 12.6 g/L after 24 h of fermentation, indicating the large potential of the simultaneous process together with the application of bamboo culm biomass for high production of biofuel.


Sujet(s)
Biocarburants , Systèmes CRISPR-Cas , Cellulose , Éthanol , Fermentation , Saccharomyces cerevisiae , Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/génétique , Hydrolyse , Cellulose/métabolisme , Éthanol/métabolisme , Cellulase/métabolisme , Sasa , Glucose/métabolisme , Concentration en ions d'hydrogène , Biomasse
3.
Curr Microbiol ; 81(8): 255, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38955830

RÉSUMÉ

Turkey litter waste is lignocellulosic and keratinous, requiring prior enzymatic treatment to facilitate fiber hydrolysis and utilization by microorganisms in anaerobic digestion (AD) process. The understanding of the performance of microorganisms in AD can be facilitated through molecular biology and bioinformatics tools. This study aimed to determine the taxonomic profile and functional prediction of microbial communities in the AD of turkey litter waste subjected to enzymatic pretreatment and correlate it with operational parameters. The tests involved the use of turkey litter (T) at 25 g L-1 of volatile solids, a granular inoculum (S) (10% m/v), and the addition of cellulase (C), and pectinase (P) enzymes at four concentrations. The use of enzymes increased methane production by 19% (turkey litter, inoculum, and cellulase-TSC4) and 15% (turkey litter, inoculum, and enzymatic pectinase-TSP4) compared to the control (turkey litter and inoculum-TS), being more effective in TSC4 (667.52 mLCH4), where there was consumption of acetic, butyric, and propionic acids. The pectinase assay (TSP4) showed a methane production of 648 mLCH4 and there was the accumulation of metabolites. Cellulolytic microorganisms Bacteroides, Ruminofilibacter, Lachnospiraceae, Ruminococcaceae, and Methanosaeta were favored in TSC4. In TSP4, the predominant genus was Macellibacteroides and Methanosarcina, and genes involved in methylotrophic methanogenesis were also found (mtaB, mtmB, and mtbB). Enzymes involved in hydrogenotrophic methanogenesis were identified in both assays (TSC4 and TSP4). Molecular tools helped to understand the metabolic routes involved in AD with enzymatic treatment, allowing the elaboration of strategies to improve the sustainable degradation of turkey litter waste.


Sujet(s)
Bactéries , Cellulase , Méthane , Polygalacturonase , Dindons , Anaérobiose , Animaux , Méthane/métabolisme , Cellulase/métabolisme , Bactéries/classification , Bactéries/génétique , Bactéries/métabolisme , Bactéries/isolement et purification , Dindons/microbiologie , Polygalacturonase/métabolisme , Hydrolyse , Lignine/métabolisme , Agriculture , Métagénomique
4.
Extremophiles ; 28(2): 30, 2024 Jun 22.
Article de Anglais | MEDLINE | ID: mdl-38907846

RÉSUMÉ

This study characterized cultivable fungi present in sediments obtained from Boeckella Lake, Hope Bay, in the north-east of the Antarctic Peninsula, and evaluated their production of enzymes and biosurfactants of potential industrial interest. A total of 116 fungal isolates were obtained, which were classified into 16 genera within the phyla Ascomycota, Basidiomycota and Mortierellomycota, in rank. The most abundant genera of filamentous fungi included Pseudogymnoascus, Pseudeurotium and Antarctomyces; for yeasts, Thelebolales and Naganishia taxa were dominant. Overall, the lake sediments exhibited high fungal diversity and moderate richness and dominance. The enzymes esterase, cellulase and protease were the most abundantly produced by these fungi. Ramgea cf. ozimecii, Holtermanniella wattica, Leucosporidium creatinivorum, Leucosporidium sp., Mrakia blollopis, Naganishia sp. and Phenoliferia sp. displayed enzymatic index > 2. Fourteen isolates of filamentous fungi demonstrated an Emulsification Index 24% (EI24%) ≥ 50%; among them, three isolates of A. psychrotrophicus showed an EI24% > 80%. Boeckella Lake itself is in the process of drying out due to the impact of regional climate change, and may be lost completely in approaching decades, therefore hosts a threatened community of cultivable fungi that produce important biomolecules with potential application in biotechnological processes.


Sujet(s)
Champignons , Sédiments géologiques , Lacs , Régions antarctiques , Sédiments géologiques/microbiologie , Lacs/microbiologie , Champignons/enzymologie , Champignons/isolement et purification , Champignons/métabolisme , Tensioactifs/métabolisme , Protéines fongiques/métabolisme , Cellulase/métabolisme , Esterases/métabolisme
5.
Protein Expr Purif ; 220: 106490, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38697589

RÉSUMÉ

The production of fermentable sugars from lignocellulosic biomass is achieved by the synergistic action of a group of enzymes called cellulases. Cellulose is a long chain of chemically linked glucoses by ß-1,4 bonds. The enzyme ß-1,4-endoglucanase is the first cellulase involved in the degradation, breaking the bond of the amorphous regions. A ß-1,4-endoglucanase enzyme with high activity was obtained from a Bacillus subtilis strain isolated from wastewater of a pulp and paper mill. Sequencing and bioinformatic analysis showed that the gene amplified by PCR consisting of 1407 nucleotides and coding for a ß-1,4-endoglucanase enzyme of approximately 55 kDa. The open reading frame (ORF) encoding the mature endoglucanase (eglS) was successfully inserted in a modified cloning plasmid (pITD03) and into the pYD1 plasmid used for its expression in yeast. Carboxymethylcellulose (CMC) plate assay, SDS-PAGE, and zymogram confirmed the production and secretion by the transformed E. coli BL21-SI strain of a 39 kDa ß-1,4-endoglucanase consistent with the catalytic domain without the cellulose-binding module (CBM). The results showed that the truncated ß-1,4-endoglucanase had higher activity and stability.


Sujet(s)
Bacillus subtilis , Cellulase , Papier , Protéines recombinantes , Eaux usées , Bacillus subtilis/génétique , Bacillus subtilis/enzymologie , Bacillus subtilis/isolement et purification , Eaux usées/microbiologie , Eaux usées/composition chimique , Cellulase/génétique , Cellulase/composition chimique , Cellulase/biosynthèse , Cellulase/isolement et purification , Cellulase/métabolisme , Protéines recombinantes/génétique , Protéines recombinantes/composition chimique , Protéines recombinantes/isolement et purification , Protéines recombinantes/métabolisme , Protéines recombinantes/biosynthèse , Protéines bactériennes/génétique , Protéines bactériennes/composition chimique , Protéines bactériennes/isolement et purification , Protéines bactériennes/biosynthèse , Protéines bactériennes/métabolisme , Escherichia coli/génétique , Escherichia coli/métabolisme , Clonage moléculaire , Expression des gènes
6.
J Basic Microbiol ; 64(7): e2400049, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38715338

RÉSUMÉ

Endophytic microbial communities colonize plants growing under various abiotic stress conditions. Candelilla (Euphorbia antisyphilitica Zucc.) is a shrub that develops functionally in arid and semi-arid zones of Mexico; these conditions generate an association between the plant and the microorganisms, contributing to the production of enzymes as a defense mechanism for resistance to abiotic stress. The objective of this research was to isolate and identify endophyte fungi of candelilla and bioprospection of these endophytic fungi for enzyme production using candelilla by-products. Fungi were isolated and identified using ITS1/ITS4 sequencing. Their potency index (PI) was evaluated in producing endoglucanase, xylanase, amylase, and laccase. Fermentation was carried out at 30°C for 8 days at 200 rpm, with measurements every 2 days, using candelilla by-products as substrate. All fungi exhibited higher cellulase, amylase, and laccase activities on the 2nd, 6th, and 8th day of fermentation, respectively, of fermentation. The fungus Aspergillus niger ITD-IN4.1 showed the highest amylase activity (246.84 U/mg), the genus Neurospora showed the highest cellulase activity, reaching up to 13.45 FPU/mg, and the strain Neurospora sp. ITD-IN5.2 showed the highest laccase activity (3.46 U/mg). This work provides the first report on the endophytic diversity of E. antisyphilitica and its potential role in enzyme production.


Sujet(s)
Bioprospection , Cellulase , Endophytes , Fermentation , Laccase , Endophytes/isolement et purification , Endophytes/enzymologie , Endophytes/métabolisme , Endophytes/génétique , Laccase/métabolisme , Laccase/biosynthèse , Cellulase/métabolisme , Cellulase/biosynthèse , Amylases/métabolisme , Aspergillus niger/isolement et purification , Aspergillus niger/enzymologie , Mexique , Neurospora , Champignons/isolement et purification , Champignons/enzymologie , Champignons/classification , Champignons/génétique
7.
Tuberculosis (Edinb) ; 147: 102516, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38735123

RÉSUMÉ

Although studies on non-tuberculous mycobacteria have increased in recent years because they cause a considerable proportion of infections, their cellulolytic system is still poorly studied. This study presents a characterization of the cellulolytic activities of environmental mycobacterial isolates derived from soil and water samples from the central region of Argentina, aimed to evaluate the conservation of the mechanism for the degradation of cellulose in this group of bacteria. The molecular and genomic identification revealed identity with Mycolicibacterium septicum. The endoglucanase and total cellulase activities were assessed both qualitatively and quantitatively and the optimal enzymatic conditions were characterized. A specific protein of around 56 kDa with cellulolytic activity was detected in a zymogram. Protein sequences possibly arising from a cellulase were identified by mass spectrometry-based shotgun proteomics. Results showed that M. septicum encodes for cellulose- and hemicellulose-related degrading enzymes, including at least an active ß-1,4 endoglucanase enzyme that could be useful to improve its survival in the environment. Given the important health issues related to mycobacteria, the results of the present study may contribute to the knowledge of their cellulolytic system, which could be important for their ability to survive in many different types of environments.


Sujet(s)
Protéines bactériennes , Cellulase , Cellulose , Microbiologie du sol , Cellulose/métabolisme , Cellulase/métabolisme , Protéines bactériennes/métabolisme , Protéines bactériennes/génétique , Argentine , Microbiologie de l'eau , Protéomique/méthodes , Mycobacteriaceae/génétique , Mycobacteriaceae/enzymologie
8.
Carbohydr Res ; 539: 109104, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38643706

RÉSUMÉ

Cellulose nanocrystals (CNCs) are crystalline domains isolated from cellulosic fibers. They have been utilized in a wide range of applications, such as reinforcing fillers, antibacterial agents and manufacturing of biosensors. Whitin this context, the aim of this work was to obtain and analyze CNCs extracted from bacterial nanocellulose (BNC) using two distinct methods combined with milling pre-treatment: an acidic hydrolysis using 64 % sulfuric acid and an enzymatic hydrolysis using a commercial cellulase enzyme mixture. The CNCs obtained from the enzymatic route (e-CNCs) were observed to be spherical nanoparticles with diameter of 56 ± 11 nm. In contrast, the CNCs from the acid hydrolysis (a-CNCs) appeared as needle-shaped nanoparticles with a high aspect ratio with lengths/widths of 158 ± 64 nm/11 ± 2 nm. The surface zeta potential (ZP) of the a-CNCs was -30,8 mV, whereas the e-CNCs has a potential of +2.70 ± 3.32 mV, indicating that a-CNCs consisted of negatively charged particles with higher stability in solution. Although the acidic route resulted in nanocrystals with a slightly higher crystallinity index compared to the enzymatic route, e-CNCs was found to be more thermally stable than BNC and a-CNCs. Here, we also confirmed the safety of a-CNCs and e-CNCs using L929 cell line. Lastly, this article describes two different CNCs synthesis approaches that leads to the formation of nanoparticles with different dimensions, morphology and unique physicochemical properties. To the best of our knowledge, this is the first study to yield spherical nanoparticles as a result of BNC enzymatic treatment.


Sujet(s)
Cellulose , Nanoparticules , Cellulose/composition chimique , Nanoparticules/composition chimique , Hydrolyse , Cellulase/composition chimique , Cellulase/métabolisme , Acides sulfuriques/composition chimique , Animaux , Souris , Taille de particule
9.
World J Microbiol Biotechnol ; 40(5): 137, 2024 Mar 20.
Article de Anglais | MEDLINE | ID: mdl-38504029

RÉSUMÉ

The present study evaluated the performance of the fungus Trichoderma reesei to tolerate and biodegrade the herbicide diuron in its agrochemical presentation in agar plates, liquid culture, and solid-state fermentation. The tolerance of T. reesei to diuron was characterized through a non-competitive inhibition model of the fungal radial growth on the PDA agar plate and growth in liquid culture with glucose and ammonium nitrate, showing a higher tolerance to diuron on the PDA agar plate (inhibition constant 98.63 mg L-1) than in liquid culture (inhibition constant 39.4 mg L-1). Diuron biodegradation by T. reesei was characterized through model inhibition by the substrate on agar plate and liquid culture. In liquid culture, the fungus biotransformed diuron into 3,4-dichloroaniline using the amide group from the diuron structure as a carbon and nitrogen source, yielding 0.154 mg of biomass per mg of diuron. A mixture of barley straw and agrolite was used as the support and substrate for solid-state fermentation. The diuron removal percentage in solid-state fermentation was fitted by non-multiple linear regression to a parabolic surface response model and reached the higher removal (97.26%) with a specific aeration rate of 1.0 vkgm and inoculum of 2.6 × 108 spores g-1. The diuron removal in solid-state fermentation by sorption on barley straw and agrolite was discarded compared to the removal magnitude of the biosorption and biodegradation mechanisms of Trichoderma reesei. The findings in this work about the tolerance and capability of Trichoderma reesei to remove diuron in liquid and solid culture media demonstrate the potential of the fungus to be implemented in bioremediation technologies of herbicide-polluted sites.


Sujet(s)
Cellulase , Herbicides , Hypocreales , Trichoderma , Fermentation , Trichoderma/métabolisme , Diuron/métabolisme , Agar-agar/métabolisme , Herbicides/métabolisme , Dépollution biologique de l'environnement , Cellulase/métabolisme
10.
Braz J Microbiol ; 55(2): 1151-1166, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38472698

RÉSUMÉ

Developing efficient microbiological methods to convert polysaccharide-rich materials into fermentable sugars, particularly monosaccharides, is vital for advancing the bioeconomy and producing renewable chemicals and energy sources. This study focused on optimizing the production conditions of an enzyme cocktail from Aspergillus niger ATCC 9642 using solid-state fermentation (SSF) and assessing its effectiveness in saccharifying mango peels through a simple, rapid, and efficient one-step process. A rotatable central composite design was employed to determine optimal conditions of moisture, time, and pH for enzyme production in SSF medium. The optimized enzyme cocktail exhibited cellulase activity (CMCase) at 6.28 U/g, filter paper activity (FPase) at 3.29 U/g, and pectinase activity at 117.02 U/g. These optimal activities were achieved with an SSF duration of 81 h, pH of 4.66, and a moisture content of 59%. The optimized enzyme cocktail effectively saccharified the mango peels without the need for chemical agents. The maximum saccharification yield reached approximately 81%, indicating efficient conversion of mango peels into sugars. The enzyme cocktail displayed consistent thermal stability within the tested temperature range of 30-60°C. Notably, the highest sugar release occurred within 36 h, with glucose, arabinose, galactose, and xylose being the primary monosaccharides released during saccharification. This study highlights the potential application of Aspergillus niger ATCC 9642 and SSF for enzymatic production, offering a simple and high-performance process for monosaccharide production. The optimized enzyme cocktail obtained through solid-state fermentation demonstrated efficient saccharification of mango peels, suggesting its suitability for industrial-scale applications.


Sujet(s)
Aspergillus niger , Fermentation , Mangifera , Aspergillus niger/enzymologie , Aspergillus niger/métabolisme , Mangifera/microbiologie , Mangifera/composition chimique , Concentration en ions d'hydrogène , Cellulase/métabolisme , Cellulase/composition chimique , Température , Polygalacturonase/métabolisme , Stabilité enzymatique , Hydrolyse , Protéines fongiques/métabolisme
11.
Microb Cell Fact ; 23(1): 22, 2024 Jan 16.
Article de Anglais | MEDLINE | ID: mdl-38229067

RÉSUMÉ

BACKGROUND: Trichoderma reesei is an organism extensively used in the bioethanol industry, owing to its capability to produce enzymes capable of breaking down holocellulose into simple sugars. The uptake of carbohydrates generated from cellulose breakdown is crucial to induce the signaling cascade that triggers cellulase production. However, the sugar transporters involved in this process in T. reesei remain poorly identified and characterized. RESULTS: To address this gap, this study used temporal membrane proteomics analysis to identify five known and nine putative sugar transporters that may be involved in cellulose degradation by T. reesei. Docking analysis pointed out potential ligands for the putative sugar transporter Tr44175. Further functional validation of this transporter was carried out in Saccharomyces cerevisiae. The results showed that Tr44175 transports a variety of sugar molecules, including cellobiose, cellotriose, cellotetraose, and sophorose. CONCLUSION: This study has unveiled a transporter Tr44175 capable of transporting cellobiose, cellotriose, cellotetraose, and sophorose. Our study represents the first inventory of T. reesei sugar transportome once exposed to cellulose, offering promising potential targets for strain engineering in the context of bioethanol production.


Sujet(s)
Cellulase , Glucanes , Hypocreales , Trichoderma , Cellobiose/métabolisme , Protéome/métabolisme , Protéines membranaires/métabolisme , Cellulose/métabolisme , Protéines de transport membranaire/métabolisme , Saccharomyces cerevisiae/métabolisme , Cellulase/métabolisme , Sucres/métabolisme , Oligosaccharides/métabolisme , Trichoderma/métabolisme
12.
Molecules ; 28(14)2023 Jul 24.
Article de Anglais | MEDLINE | ID: mdl-37513489

RÉSUMÉ

Lignocellulosic biomasses have a complex and compact structure, requiring physical and/or chemical pretreatments to produce glucose before hydrolysis. Mathematical modeling of enzymatic hydrolysis highlights the interactions between cellulases and cellulose, evaluating the factors contributing to reactor scale-up and conversion rates. Furthermore, this study evaluated the influence of two pretreatments (hydrothermal and organosolv) on the kinetics of enzymatic hydrolysis of sugarcane bagasse. The kinetic parameters of the model were estimated using the Pikaia genetic algorithm with data from the experimental profiles of cellulose, cellobiose, glucose, and xylose. The model considered the phenomenon of non-productive adsorption of cellulase on lignin and inhibition of cellulase by xylose. Moreover, it included the behavior of cellulase adsorption on the substrate throughout hydrolysis and kinetic equations for obtaining xylose from xylanase-catalyzed hydrolysis of xylan. The model for both pretreatments was experimentally validated with bagasse concentration at 10% w/v. The Plackett-Burman design identified 17 kinetic parameters as significant in the behavior of process variables. In this way, the modeling and parameter estimation methodology obtained a good fit from the experimental data and a more comprehensive model.


Sujet(s)
Cellulase , Saccharum , Cellulose/composition chimique , Cellulase/métabolisme , Hydrolyse , Saccharum/composition chimique , Cinétique , Xylose , Lignine/composition chimique , Glucose
13.
Appl Microbiol Biotechnol ; 107(13): 4261-4274, 2023 Jul.
Article de Anglais | MEDLINE | ID: mdl-37212884

RÉSUMÉ

The development of multifunctional particles using polymeric scaffolds is an emerging technology for many nanobiotechnological applications. Here we present a system for the production of multifunctional complexes, based on the high affinity non-covalent interaction of cohesin and dockerin modules complementary fused to decameric Brucella abortus lumazine synthase (BLS) subunits, and selected target proteins, respectively. The cohesin-BLS scaffold was solubly expressed in high yield in Escherichia coli, and revealed a high thermostability. The production of multienzymatic particles using this system was evaluated using the catalytic domain of Cellulomonas fimi endoglucanase CenA recombinantly fused to a dockerin module. Coupling of the enzyme to the scaffold was highly efficient and occurred with the expected stoichiometry. The decavalent enzymatic complexes obtained showed higher cellulolytic activity and association to the substrate compared to equivalent amounts of the free enzyme. This phenomenon was dependent on the multiplicity and proximity of the enzymes coupled to the scaffold, and was attributed to an avidity effect in the polyvalent enzyme interaction with the substrate. Our results highlight the usefulness of the scaffold presented in this work for the development of multifunctional particles, and the improvement of lignocellulose degradation among other applications. KEY POINTS: • New system for multifunctional particle production using the BLS scaffold • Higher cellulolytic activity of polyvalent endoglucanase compared to the free enzyme • Amount of enzyme associated to cellulose is higher for the polyvalent endoglucanase.


Sujet(s)
Cellulase , Cellulomonas , Cellulase/métabolisme , Cellulomonas/génétique , Cellulomonas/métabolisme , Domaine catalytique , Protéines bactériennes/métabolisme
14.
Biotechnol Appl Biochem ; 70(1): 184-192, 2023 Feb.
Article de Anglais | MEDLINE | ID: mdl-35338782

RÉSUMÉ

The enormous amount of agroindustrial residues generated in Brazil can be used as biomass to produce fermentable sugars. This study compared the pretreatments with different proportions of dilute acid. The method involved pretreatment with 0.5%, 1%, and 1.5% (v/v) sulfuric acid, followed by hydrolysis using the halotolerant and thermostable endoglucanase from Botrytis ricini URM 5627. The physicochemical characterization of plant biomass was performed using XRD, FTIR, and SEM. The pretreatment significantly increased the production of fermentable sugars following enzymatic saccharification from wheat bran, sugarcane bagasse, and rice husk: 153.67%, 91.98%, and 253.21% increment in sugar production; 36.39 mg⋅g-1 ± 1.23, 39.55 mg⋅g-1 ± 1.70, and 42.53 mg⋅g-1 ± 7.61 mg⋅L-1 of glucose; and 3.26 ± 0.35 mg⋅g-1 , 3.61mg⋅g-1 ± 0.74 and 3.59 mg⋅g-1 ± 0.80 of fructose were produced, respectively. In conclusion, biomass should preferably be pretreated before the enzymatic saccharification using B. ricini URM 5627 endoglucanase.


Sujet(s)
Cellulase , Saccharum , Cellulose/métabolisme , Cellulase/métabolisme , Fermentation , Saccharum/métabolisme , Glucose , Hydrolyse
15.
Bioresour Technol ; 364: 128019, 2022 Nov.
Article de Anglais | MEDLINE | ID: mdl-36162784

RÉSUMÉ

Despite decades of research and industrial applications of Trichoderma reesei, the development of industrially relevant strains for enzyme production including a low-cost and scalable bioprocess remains elusive. Herein, bioprocess optimization, pilot plant scale-up, techno-economic analysis and life-cycle assessment for enzyme production by an engineered T. reesei strain are reported. The developed bioprocess increased in âˆ¼ 2-fold protein productivity (0.39 g.L-1.h-1) and 1.6-fold FPase activity (196 FPU.L-1.h-1), reducing the fermentation in 4 days. Cultivation in a 65-L pilot plant bioreactor resulted in 54 g.L-1 protein in 7 days, highlighting the robustness and scalability of this bioprocess. Techno-economic analysis indicates an enzyme cost of âˆ¼ 3.2 USD.kg-1, which is below to the target proposed (4.24 USD.kg-1) in the NREL/TP-5100-47764 report, while life-cycle assessment shows a carbon footprint reduction of approximately 50% compared to a typical commercial enzyme. This study provides the fundamental knowledge for the design of economically competitive Trichoderma technologies for industrial use.


Sujet(s)
Cellulase , Trichoderma , Animaux , Trichoderma/métabolisme , Cellulase/métabolisme , Bioréacteurs , Fermentation , Étapes du cycle de vie
16.
World J Microbiol Biotechnol ; 38(2): 30, 2022 Jan 06.
Article de Anglais | MEDLINE | ID: mdl-34989888

RÉSUMÉ

Enzymes are biocatalysts that are widely used in different industries and generate billions of dollars annually. With the advancement of biotechnology, new enzymatic sources are being evaluated, especially microbial ones, in order to find efficient producers. Endophytic fungi are promising sources of biomolecules; however, Amazonian species are still poorly studied as to their enzymatic production potential. In this sense, the production of hydrolases (amylases, lipases, cellulases and pectinases) was evaluated in endophytic fungi isolated from the leaves, roots and stems of açai palms (Euterpe precatoria). A qualitative test was carried out to detect the enzymatic synthesis in each isolate, and the most promising ones were cultivated using submerged fermentation. The enzyme extracts were quantified to determine those with the greatest activity. Cellulolytic and amylolytic extracts showed the highest enzymatic activities and were partially characterized. Among 50 isolates, 82.9% produced pectinase, 58.5% produced cellulase, 31.7% produced amylase, and 12.2% produced lipase. Penicillium sp. L3 was the best producer of amylase and Colletotrichum sp. S1 was the best producer of cellulase in liquid medium cultivation. The amylolytic extract showed the highest enzymatic activity at pH 8.0 and 45 °C, and the cellulolytic extract at pH 5.0 and 35 °C. The cellulase and amylase produced by the endophytes had their molecular masses estimated between 38 and 76 kDa. These results indicate that endophytic fungi from the açai palm can be used as a new source of hydrolytic enzymes, which can be applied in numerous biotechnological processes.


Sujet(s)
Endophytes/enzymologie , Endophytes/métabolisme , Euterpe/microbiologie , Champignons/enzymologie , Champignons/métabolisme , Amylases/métabolisme , Biotechnologie/méthodes , Cellulase/métabolisme , Cellulases/métabolisme , Colletotrichum , Champignons/classification , Hydrolyse , Triacylglycerol lipase/métabolisme , Penicillium , Peptide hydrolases , Polygalacturonase/métabolisme
17.
J Appl Microbiol ; 132(4): 2859-2869, 2022 Apr.
Article de Anglais | MEDLINE | ID: mdl-34905274

RÉSUMÉ

AIMS: Optimize the production of Aspergillus brasiliensis endoglucanase in a solid-phase bioprocess using cupuaçu shell as substrate. METHODS AND RESULTS: The shells were supplemented with nitrogen and phosphorous and used as a substrate. The centesimal and inorganic composition of the residue was determined, and found to be rich in fibres, and possessed essential elements for fungal growth. In the initial cultivation of A. brasiliensis, endoglucanase activity of 7.35 U g-1 was obtained. A factorial experimental design was used to determine the most significant variables for the bioprocess. The interactions between moisture, temperature and nitrogen source were noteworthy (p < 0.05). From the rotational central composite design, the optimization of temperature and nitrogen supplementation was obtained, and this reached 40.50 U g-1 , which is an increase of more than five times the value obtained initially. The enzymatic extract was applied as the biocatalyst in the hydrolysis of cupuaçu shells and, after 48 h, it was possible to observe the production of reducing sugars. CONCLUSIONS: Cupuaçu shell can be used as a substrate for endoglucanase production by A. brasiliensis. The process was optimized for the cultivation temperature and the nitrogen source. The enzymatic extract can be applied in the hydrolysis of lignocellulosic biomass. SIGNIFICANCE AND IMPACT OF THE STUDY: Cupuaçu shells can be used to produce cellulases, a product of high added value that can generate economic and environmental benefits for communities and companies producing derivatives of the cupuaçu fruit.


Sujet(s)
Cacaoyer , Cellulase , Aspergillus/métabolisme , Cacaoyer/métabolisme , Cellulase/métabolisme , Fermentation
18.
Carbohydr Polym ; 264: 118059, 2021 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-33910709

RÉSUMÉ

Processive cellulases are highly efficient molecular engines involved in the cellulose breakdown process. However, the mechanism that processive bacterial enzymes utilize to recruit and retain cellulose strands in the catalytic site remains poorly understood. Here, integrated enzymatic assays, protein crystallography and computational approaches were combined to study the enzymatic properties of the processive BlCel48B cellulase from Bacillus licheniformis. Hydrolytic efficiency, substrate binding affinity, cleavage patterns, and the apparent processivity of bacterial BlCel48B are significantly impacted by the cellulose size and its surface morphology. BlCel48B crystallographic structure was solved with ligands spanning -5 to -2 and +1 to +2 subsites. Statistical coupling analysis and molecular dynamics show that co-evolved residues on active site are critical for stabilizing ligands in the catalytic tunnel. Our results provide mechanistic insights into BlCel48B molecular-level determinants of activity, substrate binding, and processivity on insoluble cellulose, thus shedding light on structure-activity correlations of GH48 family members in general.


Sujet(s)
Bacillus licheniformis/enzymologie , Cellulase/composition chimique , Cellulase/métabolisme , Cellulose/métabolisme , Bacillus licheniformis/composition chimique , Domaine catalytique , Cellulases/composition chimique , Cellulases/métabolisme , Cellulose/composition chimique , Cristallographie aux rayons X/méthodes , Hydrolyse , Modèles moléculaires , Simulation de dynamique moléculaire , Liaison aux protéines , Spécificité du substrat
19.
Biomolecules ; 11(4)2021 03 29.
Article de Anglais | MEDLINE | ID: mdl-33805256

RÉSUMÉ

The objective of this study was to investigate structural changes and lignin redistribution in Eucalyptus globulus pre-treated by steam explosion under different degrees of severity (S0), in order to evaluate their effect on cellulose accessibility by enzymatic hydrolysis. Approximately 87.7% to 98.5% of original glucans were retained in the pre-treated material. Glucose yields after the enzymatic hydrolysis of pre-treated material improved from 19.4% to 85.1% when S0 was increased from 8.53 to 10.42. One of the main reasons for the increase in glucose yield was the redistribution of lignin as micro-particles were deposited on the surface and interior of the fibre cell wall. This information was confirmed by laser scanning confocal fluorescence and FT-IR imaging; these microscopic techniques show changes in the physical and chemical characteristics of pre-treated fibres. In addition, the results allowed the construction of an explanatory model for microscale understanding of the enzymatic accessibility mechanism in the pre-treated lignocellulose.


Sujet(s)
Eucalyptus/métabolisme , Lignine/métabolisme , Cellulase/métabolisme , Hydrolyse , Lignine/composition chimique , Microscopie confocale , Analyse en composantes principales , Spectroscopie infrarouge à transformée de Fourier , Température
20.
J Chem Inf Model ; 61(4): 1902-1912, 2021 04 26.
Article de Anglais | MEDLINE | ID: mdl-33760586

RÉSUMÉ

Glycoside hydrolases (GH) cleave carbohydrate glycosidic bonds and play pivotal roles in living organisms and in many industrial processes. Unlike acid-catalyzed hydrolysis of carbohydrates in solution, which can occur either via cyclic or acyclic oxocarbenium-like transition states, it is widely accepted that GH-catalyzed hydrolysis proceeds via a general acid mechanism involving a cyclic oxocarbenium-like transition state with protonation of the glycosidic oxygen. The GH45 subfamily C inverting endoglucanase from Phanerochaete chrysosporium (PcCel45A) defies the classical inverting mechanism as its crystal structure conspicuously lacks a general Asp or Glu base residue. Instead, PcCel45A has an Asn residue, a notoriously weak base in solution, as one of its catalytic residues at position 92. Moreover, unlike other inverting GHs, the relative position of the catalytic residues in PcCel45A impairs the proton abstraction from the nucleophilic water that attacks the anomeric carbon, a key step in the classical mechanism. Here, we investigate the viability of an endocyclic mechanism for PcCel45A using hybrid quantum mechanics/molecular mechanics (QM/MM) simulations, with the QM region treated with the self-consistent-charge density-functional tight-binding level of theory. In this mechanism, an acyclic oxocarbenium-like transition state is stabilized leading to the opening of the glucopyranose ring and formation of an unstable acyclic hemiacetal that can be readily decomposed into hydrolysis product. In silico characterization of the Michaelis complex shows that PcCel45A significantly restrains the sugar ring to the 4C1 chair conformation at the -1 subsite of the substrate binding cleft, in contrast to the classical exocyclic mechanism in which ring puckering is critical. We also show that PcCel45A provides an environment where the catalytic Asn92 residue in its standard amide form participates in a cooperative hydrogen bond network resulting in its increased nucleophilicity due to an increased negative charge on the oxygen atom. Our results for PcCel45A suggest that carbohydrate hydrolysis catalyzed by GHs may take an alternative route from the classical mechanism.


Sujet(s)
Cellulase , Cellulase/métabolisme , Cellulose , Hydrolyse , Simulation de dynamique moléculaire , Théorie quantique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE