Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 5.024
Filtrer
1.
Biomolecules ; 14(6)2024 Jun 08.
Article de Anglais | MEDLINE | ID: mdl-38927074

RÉSUMÉ

Diabetes imposes a huge burden worldwide. Islet transplantation is an alternative therapy for diabetes. However, tacrolimus, a kind of immunosuppressant after organ transplantation, is closely related to post-transplant diabetes mellitus. Mesenchymal stem cells (MSCs) have attracted interest for their potential to alleviate diabetes. In vivo experiments revealed that human menstrual blood-derived stem cells (MenSCs) treatment improved tacrolimus-induced blood glucose, body weight, and glucose tolerance disorders in mice. RNA sequencing was used to analyze the potential therapeutic targets of MenSCs. In this study, we illustrated that cystathionine ß-synthase (CBS) contributed to tacrolimus -induced islet dysfunction. Using ß-cell lines (MIN6, ß-TC-6), we demonstrated that MenSCs ameliorated tacrolimus-induced islet dysfunction in vitro. Moreover, MenSC reduced the tacrolimus-induced elevation of CBS levels and significantly enhanced the viability, anti-apoptotic ability, glucose-stimulated insulin secretion (GSIS), and glycolytic flux of ß-cells. We further revealed that MenSCs exerted their therapeutic effects by inhibiting CBS expression to activate the IL6/JAK2/STAT3 pathway. In conclusion, we showed that MenSCs may be a potential strategy to improve tacrolimus-induced islet dysfunction.


Sujet(s)
Cystathionine beta-synthase , Interleukine-6 , Facteur de transcription STAT-3 , Tacrolimus , Humains , Facteur de transcription STAT-3/métabolisme , Tacrolimus/pharmacologie , Interleukine-6/métabolisme , Animaux , Souris , Femelle , Cystathionine beta-synthase/métabolisme , Ilots pancréatiques/effets des médicaments et des substances chimiques , Ilots pancréatiques/métabolisme , Kinase Janus-2/métabolisme , Cellules à insuline/effets des médicaments et des substances chimiques , Cellules à insuline/métabolisme , Menstruation/sang , Menstruation/effets des médicaments et des substances chimiques , Cellules souches mésenchymateuses/métabolisme , Cellules souches mésenchymateuses/effets des médicaments et des substances chimiques , Cellules souches mésenchymateuses/cytologie , Transduction du signal/effets des médicaments et des substances chimiques , Sécrétion d'insuline/effets des médicaments et des substances chimiques , Lignée cellulaire
2.
Int J Mol Sci ; 25(12)2024 Jun 07.
Article de Anglais | MEDLINE | ID: mdl-38928038

RÉSUMÉ

Despite the availability of different treatments for type 2 diabetes (T2D), post-diagnosis complications remain prevalent; therefore, more effective treatments are desired. Glucagon-like peptide (GLP)-1-based drugs are currently used for T2D treatment. They act as orthosteric agonists for the GLP-1 receptor (GLP-1R). In this study, we analyzed in vitro how the GLP-1R orthosteric and allosteric agonists augment glucose-stimulated insulin secretion (GSIS) and intracellular cAMP production (GSICP) in INS-1E pancreatic beta cells under healthy, diabetic, and recovered states. The findings from this study suggest that allosteric agonists have a longer duration of action than orthosteric agonists. They also suggest that the GLP-1R agonists do not deplete intracellular insulin, indicating they can be a sustainable and safe treatment option for T2D. Importantly, this study demonstrates that the GLP-1R agonists variably augment GSIS through GSICP in healthy, diabetic, and recovered INS-1E cells. Furthermore, we find that INS-1E cells respond differentially to the GLP-1R agonists depending on both glucose concentration during and before treatment and/or whether the cells have been previously exposed to these drugs. In conclusion, the findings described in this manuscript will be useful in determining in vitro how pancreatic beta cells respond to T2D drug treatments in healthy, diabetic, and recovered states.


Sujet(s)
Diabète de type 2 , Récepteur du peptide-1 similaire au glucagon , Sécrétion d'insuline , Cellules à insuline , Cellules à insuline/métabolisme , Cellules à insuline/effets des médicaments et des substances chimiques , Récepteur du peptide-1 similaire au glucagon/agonistes , Récepteur du peptide-1 similaire au glucagon/métabolisme , Sécrétion d'insuline/effets des médicaments et des substances chimiques , Diabète de type 2/métabolisme , Diabète de type 2/traitement médicamenteux , Animaux , Régulation allostérique/effets des médicaments et des substances chimiques , Rats , Humains , Insuline/métabolisme , Glucose/métabolisme , AMP cyclique/métabolisme , Lignée cellulaire , Hypoglycémiants/pharmacologie , Glucagon-like peptide 1/métabolisme
3.
Int J Mol Sci ; 25(12)2024 Jun 11.
Article de Anglais | MEDLINE | ID: mdl-38928130

RÉSUMÉ

The prevalence of diabetes is increasing worldwide. Massive death of pancreatic beta-cells causes type 1 diabetes. Progressive loss of beta-cell function and mass characterizes type 2 diabetes. To date, none of the available antidiabetic drugs promotes the maintenance of a functional mass of endogenous beta-cells, revealing an unmet medical need. Dysfunction and apoptotic death of beta-cells occur, in particular, through the activation of intracellular protein kinases. In recent years, protein kinases have become highly studied targets of the pharmaceutical industry for drug development. A number of drugs that inhibit protein kinases have been approved for the treatment of cancers. The question of whether safe drugs that inhibit protein kinase activity can be developed and used to protect the function and survival of beta-cells in diabetes is still unresolved. This review presents arguments suggesting that several protein kinases in beta-cells may represent targets of interest for the development of drugs to treat diabetes.


Sujet(s)
Cellules à insuline , Protein kinases , Humains , Cellules à insuline/effets des médicaments et des substances chimiques , Cellules à insuline/métabolisme , Animaux , Protein kinases/métabolisme , Inhibiteurs de protéines kinases/pharmacologie , Inhibiteurs de protéines kinases/usage thérapeutique , Diabète de type 2/traitement médicamenteux , Diabète de type 2/métabolisme , Hypoglycémiants/pharmacologie , Hypoglycémiants/usage thérapeutique , Survie cellulaire/effets des médicaments et des substances chimiques , Diabète/traitement médicamenteux , Diabète/métabolisme , Diabète de type 1/anatomopathologie , Diabète de type 1/métabolisme , Diabète de type 1/traitement médicamenteux
4.
PLoS One ; 19(6): e0303934, 2024.
Article de Anglais | MEDLINE | ID: mdl-38875221

RÉSUMÉ

The nerve growth factor (NGF) participates in cell survival and glucose-stimulated insulin secretion (GSIS) processes in rat adult beta cells. GSIS is a complex process in which metabolic events and ionic channel activity are finely coupled. GLUT2 and glucokinase (GK) play central roles in GSIS by regulating the rate of the glycolytic pathway. The biphasic release of insulin upon glucose stimulation characterizes mature adult beta cells. On the other hand, beta cells obtained from neonatal, suckling, and weaning rats are considered immature because they secrete low levels of insulin and do not increase insulin secretion in response to high glucose. The weaning of rats (at postnatal day 20 in laboratory conditions) involves a dietary transition from maternal milk to standard chow. It is characterized by increased basal plasma glucose levels and insulin levels, which we consider physiological insulin resistance. On the other hand, we have observed that incubating rat beta cells with NGF increases GSIS by increasing calcium currents in neonatal cells. In this work, we studied the effects of NGF on the regulation of cellular distribution and activity of GLUT2 and GK to explore its potential role in the maturation of GSIS in beta cells from P20 rats. Pancreatic islet cells from both adult and P20 rats were isolated and incubated with 5.6 mM or 15.6 mM glucose with and without NGF for 4 hours. Specific immunofluorescence assays were conducted following the incubation period to detect insulin and GLUT2. Additionally, we measured glucose uptake, glucokinase activity, and insulin secretion assays at 5.6 mM or 15.6 mM glucose concentrations. We observed an age-dependent variation in the distribution of GLUT2 in pancreatic beta cells and found that glucose plays a regulatory role in GLUT2 distribution independently of age. Moreover, NGF increases GLUT2 abundance, glucose uptake, and GSIS in P20 beta cells and GK activity in adult beta cells. Our results suggest that besides increasing calcium currents, NGF regulates metabolic components of the GSIS, thereby contributing to the maturation process of pancreatic beta cells.


Sujet(s)
Glucokinase , Transporteur de glucose de type 2 , Glucose , Cellules à insuline , Facteur de croissance nerveuse , Animaux , Mâle , Rats , Cellules cultivées , Glucokinase/métabolisme , Glucose/métabolisme , Transporteur de glucose de type 2/métabolisme , Insuline/métabolisme , Sécrétion d'insuline/effets des médicaments et des substances chimiques , Cellules à insuline/métabolisme , Cellules à insuline/effets des médicaments et des substances chimiques , Facteur de croissance nerveuse/métabolisme , Facteur de croissance nerveuse/pharmacologie , Rat Wistar
5.
Physiol Rep ; 12(12): e16106, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38884322

RÉSUMÉ

Pancreatic ß-cell mass is a critical determinant of insulin secretion. Severe endoplasmic reticulum (ER) stress causes ß-cell apoptosis; however, the mechanisms of progression and suppression are not yet fully understood. Here, we report that the autocrine/paracrine function of insulin reduces ER stress-induced ß-cell apoptosis. Insulin reduced the ER-stress inducer tunicamycin- and thapsigargin-induced cell viability loss due to apoptosis in INS-1 ß-cells. Moreover, the effect of insulin was greater than that of insulin-like growth factor-1 at physiologically relevant concentrations. Insulin did not attenuate the ER stress-induced increase in unfolded protein response genes. ER stress did not induce cytochrome c release from mitochondria. Mitochondrial hyperpolarization was induced by ER stress and prevented by insulin. The protonophore/mitochondrial oxidative phosphorylation uncoupler, but not the antioxidants N-acetylcysteine and α-tocopherol, exhibited potential cytoprotection during ER stress. Both procaspase-12 and cleaved caspase-12 levels increased under ER stress. The caspase-12 inhibitor Z-ATAD-FMK decreased ER stress-induced apoptosis. Caspase-12 overexpression reduced cell viability, which was diminished in the presence of insulin. Insulin decreased caspase-12 levels at the post-translational stages. These results demonstrate that insulin protects against ER stress-induced ß-cell apoptosis in this cell line. Furthermore, mitochondrial hyperpolarization and increased caspase-12 levels are involved in ER stress-induced and insulin-suppressed ß-cell apoptosis.


Sujet(s)
Apoptose , Caspase-12 , Stress du réticulum endoplasmique , Cellules à insuline , Insuline , Mitochondries , Cellules à insuline/métabolisme , Cellules à insuline/effets des médicaments et des substances chimiques , Apoptose/effets des médicaments et des substances chimiques , Stress du réticulum endoplasmique/effets des médicaments et des substances chimiques , Animaux , Insuline/pharmacologie , Insuline/métabolisme , Caspase-12/métabolisme , Caspase-12/génétique , Rats , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Potentiel de membrane mitochondriale/effets des médicaments et des substances chimiques , Survie cellulaire/effets des médicaments et des substances chimiques
6.
Physiol Rep ; 12(11): e16091, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38862270

RÉSUMÉ

Sildenafil, a phosphodiesterase-5 (PDE5) inhibitor, has been shown to improve insulin sensitivity in animal models and prediabetic patients. However, its other metabolic effects remain poorly investigated. This study examines the impact of sildenafil on insulin secretion in MIN6-K8 mouse clonal ß cells. Sildenafil amplified insulin secretion by enhancing Ca2+ influx. These effects required other depolarizing stimuli in MIN6-K8 cells but not in KATP channel-deficient ß cells, which were already depolarized, indicating that sildenafil-amplified insulin secretion is depolarization-dependent and KATP channel-independent. Interestingly, sildenafil-amplified insulin secretion was inhibited by pharmacological inhibition of R-type channels, but not of other types of voltage-dependent Ca2+ channels (VDCCs). Furthermore, sildenafil-amplified insulin secretion was barely affected when its effect on cyclic GMP was inhibited by PDE5 knockdown. Thus, sildenafil stimulates insulin secretion and Ca2+ influx through R-type VDCCs independently of the PDE5/cGMP pathway, a mechanism that differs from the known pharmacology of sildenafil and conventional insulin secretory pathways. Our results reposition sildenafil as an insulinotropic agent that can be used as a potential antidiabetic medicine and a tool to elucidate the novel mechanism of insulin secretion.


Sujet(s)
Calcium , Sécrétion d'insuline , Cellules à insuline , Insuline , Inhibiteurs de la phosphodiestérase-5 , Citrate de sildénafil , Citrate de sildénafil/pharmacologie , Animaux , Cellules à insuline/métabolisme , Cellules à insuline/effets des médicaments et des substances chimiques , Souris , Sécrétion d'insuline/effets des médicaments et des substances chimiques , Inhibiteurs de la phosphodiestérase-5/pharmacologie , Calcium/métabolisme , Insuline/métabolisme , Lignée cellulaire
7.
Cells ; 13(11)2024 May 30.
Article de Anglais | MEDLINE | ID: mdl-38891081

RÉSUMÉ

This study unveils verapamil's compelling cytoprotective and proliferative effects on pancreatic ß-cells amidst diabetic stressors, spotlighting its unforeseen role in augmenting cholecystokinin (CCK) expression. Through rigorous investigations employing MIN6 ß-cells and zebrafish models under type 1 and type 2 diabetic conditions, we demonstrate verapamil's capacity to significantly boost ß-cell proliferation, enhance glucose-stimulated insulin secretion, and fortify cellular resilience. A pivotal revelation of our research is verapamil's induction of CCK, a peptide hormone known for its role in nutrient digestion and insulin secretion, which signifies a novel pathway through which verapamil exerts its therapeutic effects. Furthermore, our mechanistic insights reveal that verapamil orchestrates a broad spectrum of gene and protein expressions pivotal for ß-cell survival and adaptation to immune-metabolic challenges. In vivo validation in a zebrafish larvae model confirms verapamil's efficacy in fostering ß-cell recovery post-metronidazole infliction. Collectively, our findings advocate for verapamil's reevaluation as a multifaceted agent in diabetes therapy, highlighting its novel function in CCK upregulation alongside enhancing ß-cell proliferation, glucose sensing, and oxidative respiration. This research enriches the therapeutic landscape, proposing verapamil not only as a cytoprotector but also as a promoter of ß-cell regeneration, thereby offering fresh avenues for diabetes management strategies aimed at preserving and augmenting ß-cell functionality.


Sujet(s)
Prolifération cellulaire , Cholécystokinine , Cellules à insuline , Vérapamil , Danio zébré , Animaux , Vérapamil/pharmacologie , Cellules à insuline/métabolisme , Cellules à insuline/effets des médicaments et des substances chimiques , Cholécystokinine/métabolisme , Cholécystokinine/pharmacologie , Prolifération cellulaire/effets des médicaments et des substances chimiques , Régénération/effets des médicaments et des substances chimiques , Lignée cellulaire , Souris , Modèles animaux de maladie humaine , Insuline/métabolisme , Glucose/métabolisme
8.
Int J Nanomedicine ; 19: 4957-4976, 2024.
Article de Anglais | MEDLINE | ID: mdl-38828198

RÉSUMÉ

Background: The "gut-islets axis" is an important endocrine signaling axis that regulates islets function by modulating the gut microbiota and endocrine metabolism within the gut. However, the specific mechanisms and roles of the intestine in islets regulation remain unclear. Recent studies investigated that exosomes derived from gut microbiota can transport signals to remotely regulate islets ß-cell function, suggesting the possibility of novel signaling pathways mediated by gut exosomes in the regulation of the "gut-islet axis.". Methods: The exosomes were isolated from the intestinal enteroendocrine cell-line STC-1cells culture supernatants treated with palmitate acid (PA) or BSA. Metabolic stress models were established by separately subjecting MIN6 cells to PA stimulation and feeding mice with a high-fat diet. Intervention with exosomes in vitro and in vivo to assess the biological effects of exosomes on islets ß cells under metabolic stress. The Mas receptor antagonist A779 and ACE2ko mice were used to evaluate the role of exosomal ACE2. Results: We found ACE2, a molecule that plays a crucial role in the regulation of islets function, is abundantly expressed in exosomes derived from STC-1 under physiological normal condition (NCEO). These exosomes cannot only be taken up by ß-cells in vitro but also selectively transported to the islets in vivo. Following intervention with NCEXO, both Min6 cells in a lipotoxic environment and mice on a high-fat diet exhibited significant improvements in islets ß-cell function and ß-cell mass. Further investigations demonstrated that these protective effects are attributed to exosomal ACE2, as ACE2 inhibits NLRP3 inflammasome activation and reduces ß-cell pyroptosis. Conclusion: ACE2-enriched exosomes from the gut can selectively target islets, subsequently inhibiting NLRP3 inflammasome activation and ß cell pyroptosis, thereby restoring islets ß cell function under metabolic stress. This study provides novel insights into therapeutic strategies for the prevention and treatment of obesity and diabetes.


Sujet(s)
Angiotensin-converting enzyme 2 , Exosomes , Inflammasomes , Cellules à insuline , Souris de lignée C57BL , Protéine-3 de la famille des NLR contenant un domaine pyrine , Pyroptose , Animaux , Exosomes/métabolisme , Cellules à insuline/effets des médicaments et des substances chimiques , Cellules à insuline/métabolisme , Protéine-3 de la famille des NLR contenant un domaine pyrine/métabolisme , Souris , Pyroptose/effets des médicaments et des substances chimiques , Pyroptose/physiologie , Angiotensin-converting enzyme 2/métabolisme , Inflammasomes/métabolisme , Inflammasomes/effets des médicaments et des substances chimiques , Lignée cellulaire , Intestin grêle/effets des médicaments et des substances chimiques , Mâle , Alimentation riche en graisse , Souris knockout , Cellules entéroendocrines/effets des médicaments et des substances chimiques , Cellules entéroendocrines/métabolisme
9.
Islets ; 16(1): 2361996, 2024 Dec 31.
Article de Anglais | MEDLINE | ID: mdl-38833523

RÉSUMÉ

Epidemiological studies consistently link environmental toxicant exposure with increased Type 2 diabetes risk. Our study investigated the diabetogenic effects of a widely used flame retardant, Dechlorane Plus (DP), on pancreatic ß-cells using rodent and human model systems. We first examined pancreas tissues from male mice exposed daily to oral gavage of either vehicle (corn oil) or DP (10, 100, or 1000 µg/kg per day) and fed chow or high fat diet for 28-days in vivo. DP exposure did not affect islet size or endocrine cell composition in either diet group. Next, we assessed the effect of 48-hour exposure to vehicle (DMSO) or DP (1, 10, or 100 nM) in vitro using immortalized rat ß-cells (INS-1 832/3), primary mouse and human islets, and human stem-cell derived islet-like cells (SC-islets). In INS-1 832/3 cells, DP did not impact glucose-stimulated insulin secretion (GSIS) but significantly decreased intracellular insulin content. DP had no effect on GSIS in mouse islets or SC-islets but had variable effects on GSIS in human islets depending on the donor. DP alone did not affect insulin content in mouse islets, human islets, or SC-islets, but mouse islets co-exposed to DP and glucolipotoxic (GLT) stress conditions (28.7 mM glucose + 0.5 mM palmitate) had reduced insulin content compared to control conditions. Co-exposure of mouse islets to DP + GLT amplified the upregulation of Slc30a8 compared to GLT alone. Our study highlights the importance and challenges of using different in vitro models for studying chemical toxicity.


Sujet(s)
Hydrocarbures chlorés , Cellules à insuline , Composés polycycliques , Animaux , Cellules à insuline/effets des médicaments et des substances chimiques , Cellules à insuline/métabolisme , Humains , Souris , Mâle , Composés polycycliques/pharmacologie , Hydrocarbures chlorés/toxicité , Rats , Insuline/métabolisme , Ignifuges/toxicité , Sécrétion d'insuline/effets des médicaments et des substances chimiques , Souris de lignée C57BL , Cellules cultivées
10.
J Appl Biomed ; 22(2): 74-80, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38912862

RÉSUMÉ

Myo-inositol (MI), present in a variety of foods, is essential in several important processes of cell physiology. In this study, we explored the protective effects of MI against hyperglycemia and dyslipidemia in db/db mice, a typical animal model of type 2 diabetes mellitus (T2DM). MI supplement effectively suppressed the high plasma glucose and insulin levels and markedly relieved the insulin resistance (IR) in the db/db mice, comparable to metformin's effects. In MIN6 pancreatic ß cells, MI also restrained the upsurge of insulin secretion stimulated by high-concentration glucose but had no impact on the promoted cell proliferation. Moreover, MI abated the enhanced plasma triglyceride and total cholesterol levels in the db/db mice. Notably, the lipid droplet formation of mesenchymal stem cells (MSCs) from db/db mice was significantly diminished after the treatment of MI, indicating that MI could effectively inhibit the differentiation of db/db mouse MSCs into adipocytes. However, MI regretfully failed to control obesity in db/db mice. This work proved that MI significantly helped db/db mice's metabolic disorders, indicating that MI has potential as an effective adjunctive treatment for hyperglycemia and dyslipidemia in T2DM patients.


Sujet(s)
Diabète de type 2 , Dyslipidémies , Inositol , Insulinorésistance , Animaux , Dyslipidémies/traitement médicamenteux , Dyslipidémies/métabolisme , Inositol/pharmacologie , Inositol/usage thérapeutique , Souris , Diabète de type 2/traitement médicamenteux , Diabète de type 2/métabolisme , Mâle , Insuline/métabolisme , Insuline/sang , Cellules souches mésenchymateuses/métabolisme , Cellules souches mésenchymateuses/effets des médicaments et des substances chimiques , Glycémie/métabolisme , Glycémie/effets des médicaments et des substances chimiques , Cellules à insuline/effets des médicaments et des substances chimiques , Cellules à insuline/métabolisme , Adipocytes/métabolisme , Adipocytes/effets des médicaments et des substances chimiques , Hyperglycémie/traitement médicamenteux , Hyperglycémie/métabolisme
11.
ACS Nano ; 18(24): 15452-15467, 2024 Jun 18.
Article de Anglais | MEDLINE | ID: mdl-38830624

RÉSUMÉ

Type 2 diabetes (T2D), a prevalent metabolic disorder lacking effective treatments, is associated with lysosomal acidification dysfunction, as well as autophagic and mitochondrial impairments. Here, we report a series of biodegradable poly(butylene tetrafluorosuccinate-co-succinate) polyesters, comprising a 1,4-butanediol linker and varying ratios of tetrafluorosuccinic acid (TFSA) and succinic acid as components, to engineer lysosome-acidifying nanoparticles (NPs). The synthesized NPs are spherical with diameters of ≈100 nm and have low polydispersity and good stability. Notably, TFSA NPs, which are composed entirely of TFSA, exhibit the strongest degradation capability and superior acidifying properties. We further reveal significant downregulation of lysosomal vacuolar (H+)-ATPase subunits, which are responsible for maintaining lysosomal acidification, in human T2D pancreatic islets, INS-1 ß-cells under chronic lipotoxic conditions, and pancreatic tissues of high-fat-diet (HFD) mice. Treatment with TFSA NPs restores lysosomal acidification, autophagic function, and mitochondrial activity, thereby improving the pancreatic function in INS-1 cells and HFD mice with lipid overload. Importantly, the administration of TFSA NPs to HFD mice reduces insulin resistance and improves glucose clearance. These findings highlight the therapeutic potential of lysosome-acidifying TFSA NPs for T2D.


Sujet(s)
Cellules à insuline , Lysosomes , Nanoparticules , Lysosomes/métabolisme , Lysosomes/effets des médicaments et des substances chimiques , Animaux , Nanoparticules/composition chimique , Cellules à insuline/effets des médicaments et des substances chimiques , Cellules à insuline/métabolisme , Cellules à insuline/anatomopathologie , Souris , Humains , Diabète de type 2/métabolisme , Diabète de type 2/traitement médicamenteux , Diabète de type 2/anatomopathologie , Mâle , Alimentation riche en graisse , Souris de lignée C57BL , Concentration en ions d'hydrogène
12.
Clin Epigenetics ; 16(1): 78, 2024 Jun 11.
Article de Anglais | MEDLINE | ID: mdl-38862980

RÉSUMÉ

Diabetes mellitus is a chronic disease that impairs metabolism, and its prevalence has reached an epidemic proportion globally. Most people affected are with type 2 diabetes mellitus (T2DM), which is caused by a decline in the numbers or functioning of pancreatic endocrine islet cells, specifically the ß-cells that release insulin in sufficient quantity to overcome any insulin resistance of the metabolic tissues. Genetic and epigenetic factors have been implicated as the main contributors to the T2DM. Epigenetic modifiers, histone deacetylases (HDACs), are enzymes that remove acetyl groups from histones and play an important role in a variety of molecular processes, including pancreatic cell destiny, insulin release, insulin production, insulin signalling, and glucose metabolism. HDACs also govern other regulatory processes related to diabetes, such as oxidative stress, inflammation, apoptosis, and fibrosis, revealed by network and functional analysis. This review explains the current understanding of the function of HDACs in diabetic pathophysiology, the inhibitory role of various HDAC inhibitors (HDACi), and their functional importance as biomarkers and possible therapeutic targets for T2DM. While their role in T2DM is still emerging, a better understanding of the role of HDACi may be relevant in improving insulin sensitivity, protecting ß-cells and reducing T2DM-associated complications, among others.


Sujet(s)
Diabète de type 2 , Épigenèse génétique , Inhibiteurs de désacétylase d'histone , Histone deacetylases , Humains , Diabète de type 2/traitement médicamenteux , Diabète de type 2/physiopathologie , Histone deacetylases/métabolisme , Histone deacetylases/génétique , Inhibiteurs de désacétylase d'histone/pharmacologie , Inhibiteurs de désacétylase d'histone/usage thérapeutique , Épigenèse génétique/effets des médicaments et des substances chimiques , Insulinorésistance , Cellules à insuline/effets des médicaments et des substances chimiques , Cellules à insuline/métabolisme , Animaux , Stress oxydatif/effets des médicaments et des substances chimiques , Insuline/métabolisme
13.
Mol Biol Rep ; 51(1): 711, 2024 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-38824245

RÉSUMÉ

BACKGROUND: Diabetes is a chronic metabolic disease that affects many parts of the body. Considering diabetes as a beta cells' defect and loss, the focus is on finding mechanisms and compounds involved in stimulating the function and regeneration of pancreatic ß-cells. DNA methylation as an epigenetic mechanism plays a pivotal role in the ß-cells' function and development. Considering the regenerative and anti-diabetic effects of Rosa canina extract, this study aimed to assess the methylation levels of Pdx-1, Pax-4, and Ins-1 genes in diabetic rats treated with Rosa Canina extract. METHODS AND RESULTS: Streptozotocin-induced diabetic rats were used to evaluate the frequency of Pdx-1, Pax-4, and Ins-1 gene methylation. Treatment groups were exposed to Rosa canina as spray-dried and decoction extracts. Following blood glucose measurement, pancreatic DNA was extracted and bisulfited. Genes' methylation was measured using MSP-PCR and qRT-PCR techniques. Oral administration of Rosa canina extracts significantly reduced blood sugar levels in diabetic rats compared to the control group. The methylation levels of the Pdx-1, Pax-4, and Ins-1 genes promoter in streptozotocin-induced diabetic rats increased compared to the control rats while, the treatment of diabetic rats with Rosa canina extracts, spray-dried samples especially, led to a decreased methylation in these genes. CONCLUSION: The results of this study showed that Rosa canina extract as a spray-dried sample could be effective in treating diabetes by regulating the methylation of genes including Pdx-1, Pax-4, and Ins-1 involved in the activity and regeneration of pancreatic islet cells.


Sujet(s)
Glycémie , Méthylation de l'ADN , Diabète expérimental , Extraits de plantes , Rosa , Transactivateurs , Animaux , Diabète expérimental/génétique , Diabète expérimental/traitement médicamenteux , Rosa/composition chimique , Méthylation de l'ADN/effets des médicaments et des substances chimiques , Méthylation de l'ADN/génétique , Rats , Extraits de plantes/pharmacologie , Mâle , Transactivateurs/génétique , Transactivateurs/métabolisme , Glycémie/métabolisme , Protéines à homéodomaine/génétique , Protéines à homéodomaine/métabolisme , Pancréas/effets des médicaments et des substances chimiques , Pancréas/métabolisme , Pancréas/anatomopathologie , Streptozocine , Cellules à insuline/effets des médicaments et des substances chimiques , Cellules à insuline/métabolisme , Régions promotrices (génétique)/effets des médicaments et des substances chimiques , Régions promotrices (génétique)/génétique , Facteurs de transcription PAX/génétique , Facteurs de transcription PAX/métabolisme , Insuline/métabolisme
14.
Mol Biol Rep ; 51(1): 748, 2024 Jun 14.
Article de Anglais | MEDLINE | ID: mdl-38874843

RÉSUMÉ

Background this study was conducted to assess the effects of vitamin D on differentiation of bone marrow- derived mesenchymal stem cells (BM-MSCs) into insulin producing cells (IPCs). Method BM-MSCs were isolated from femur and tibia of rats and incubated in low (LG) or high glucose (HG) (5mM or 25mM), or high glucose DMEM media supplemented with vitamin D (0.2nM) (HGD) for 14 days. Cells viability was analysis by MTT assay. Differentiation of SCs was confirmed using measuring genes expression level of pdx1 and insulin, and insulin secretion, glucose stimulated insulin secretion, and insulin content by ELISA method. Results Cell viability was significantly higher in HGD than LG (p < 0.05) in day 3, also, in HG and HGD than LG (p < 0.001), and HGD vs. HG (p < 0.001) in day 7. Pdx1 and insulin level was markedly higher in HGD than LG (p < 0.05 and p < 0.01). pdx1 expression was markedly higher in HGD (p < 0.05) than LG, also insulin expression the HG (p < 0.05), and HGD (p < 0.01) groups compared to the LG group. Insulin release at 5mM glucose was notably higher in the HGD group compared to LG (p < 0.05), and at 25mM glucose, both HG and HGD showed significant increases vs. LG (p < 0.05 and p < 0.01, respectively). Insulin content was significantly higher in both 5mM and 25mM glucose for HG and HGD vs. LG (p < 0.01 and p < 0.001, respectively). In conclusion, treatment BM-MSCs with vitamin D could increase their differentiation into IPCs and it can be considered as a potential supplementary agent in enhancing differentiation SCs into insulin generating cells.


Sujet(s)
Cellules de la moelle osseuse , Différenciation cellulaire , Cellules à insuline , Insuline , Cellules souches mésenchymateuses , Vitamine D , Cellules souches mésenchymateuses/métabolisme , Cellules souches mésenchymateuses/effets des médicaments et des substances chimiques , Cellules souches mésenchymateuses/cytologie , Animaux , Différenciation cellulaire/effets des médicaments et des substances chimiques , Vitamine D/pharmacologie , Vitamine D/métabolisme , Rats , Insuline/métabolisme , Cellules à insuline/métabolisme , Cellules à insuline/effets des médicaments et des substances chimiques , Cellules de la moelle osseuse/métabolisme , Cellules de la moelle osseuse/effets des médicaments et des substances chimiques , Cellules de la moelle osseuse/cytologie , Glucose/métabolisme , Glucose/pharmacologie , Protéines à homéodomaine/métabolisme , Protéines à homéodomaine/génétique , Cellules cultivées , Survie cellulaire/effets des médicaments et des substances chimiques , Mâle , Transactivateurs/métabolisme , Transactivateurs/génétique , Compléments alimentaires , Sécrétion d'insuline/effets des médicaments et des substances chimiques
15.
Front Endocrinol (Lausanne) ; 15: 1394805, 2024.
Article de Anglais | MEDLINE | ID: mdl-38933821

RÉSUMÉ

Our understanding of type 2 diabetes (T2D) has evolved dramatically. Advances have upended entrenched dogmas pertaining to the onset and progression of T2D, beliefs that have prevailed from the early era of diabetes research-and continue to populate our medical textbooks and continuing medical education materials. This review article highlights key insights that lend new governing principles for gold standard management of T2D. From the historical context upon which old beliefs arose to new findings, this article outlines evidence and perspectives on beta cell function, the underlying defects in glucoregulation, the remediable nature of T2D, and, the rationale supporting the shift to complication-centric prescribing. Practical approaches translate this rectified understanding of T2D into strategies that fill gaps in current management practices of prediabetes through late type 2 diabetes.


Sujet(s)
Glycémie , Diabète de type 2 , Diabète de type 2/thérapie , Diabète de type 2/traitement médicamenteux , Humains , Glycémie/métabolisme , Hypoglycémiants/usage thérapeutique , Cellules à insuline/métabolisme , Cellules à insuline/effets des médicaments et des substances chimiques , Régulation de la glycémie/méthodes , Prise en charge de la maladie
16.
Am J Physiol Endocrinol Metab ; 327(1): E27-E41, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38690938

RÉSUMÉ

Pancreatic endocrine cells employ a sophisticated system of paracrine and autocrine signals to synchronize their activities, including glutamate, which controls hormone release and ß-cell viability by acting on glutamate receptors expressed by endocrine cells. We here investigate whether alteration of the excitatory amino acid transporter 2 (EAAT2), the major glutamate clearance system in the islet, may occur in type 2 diabetes mellitus and contribute to ß-cell dysfunction. Increased EAAT2 intracellular localization was evident in islets of Langerhans from T2DM subjects as compared with healthy control subjects, despite similar expression levels. Chronic treatment of islets from healthy donors with high-glucose concentrations led to the transporter internalization in vesicular compartments and reduced [H3]-d-glutamate uptake (65 ± 5% inhibition), phenocopying the findings in T2DM pancreatic sections. The transporter relocalization was associated with decreased Akt phosphorylation protein levels, suggesting an involvement of the phosphoinositide 3-kinase (PI3K)/Akt pathway in the process. In line with this, PI3K inhibition by a 100-µM LY294002 treatment in human and clonal ß-cells caused the transporter relocalization in intracellular compartments and significantly reduced the glutamate uptake compared to control conditions, suggesting that hyperglycemia changes the trafficking of the transporter to the plasma membrane. Upregulation of the glutamate transporter upon treatment with the antibiotic ceftriaxone rescued hyperglycemia-induced ß-cells dysfunction and death. Our data underscore the significance of EAAT2 in regulating islet physiology and provide a rationale for potential therapeutic targeting of this transporter to preserve ß-cell survival and function in diabetes.NEW & NOTEWORTHY The glutamate transporter SLC1A2/excitatory amino acid transporter 2 (EAAT2) is expressed on the plasma membrane of pancreatic ß-cells and controls islet glutamate clearance and ß-cells survival. We found that the EAAT2 membrane expression is lost in the islets of Langerhans from type 2 diabetes mellitus (T2DM) patients due to hyperglycemia-induced downregulation of the phosphoinositide 3-kinase/Akt pathway and modification of its intracellular trafficking. Pharmacological rescue of EAAT2 expression prevents ß-cell dysfunction and death, suggesting EAAT2 as a new potential target of intervention in T2DM.


Sujet(s)
Diabète de type 2 , Transporteur-2 d'acides aminés excitateurs , Acide glutamique , Hyperglycémie , Ilots pancréatiques , Transporteur-2 d'acides aminés excitateurs/métabolisme , Humains , Diabète de type 2/métabolisme , Acide glutamique/métabolisme , Hyperglycémie/métabolisme , Ilots pancréatiques/métabolisme , Ilots pancréatiques/effets des médicaments et des substances chimiques , Mâle , Adulte d'âge moyen , Femelle , Transport des protéines , Cellules à insuline/métabolisme , Cellules à insuline/effets des médicaments et des substances chimiques , Protéines proto-oncogènes c-akt/métabolisme , Sujet âgé , Adulte , Animaux , Phosphatidylinositol 3-kinases/métabolisme
17.
Am J Physiol Cell Physiol ; 327(1): C74-C96, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38738303

RÉSUMÉ

Activation of incretin receptors by their cognate agonist augments sustained cAMP generation both from the plasma membrane as well as from the endosome. To address the functional outcome of this spatiotemporal signaling, we developed a nonacylated glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptor dual agonist I-M-150847 that reduced receptor internalization following activation of the incretin receptors. The incretin receptor dual agonist I-M-150847 was developed by replacing the tryptophan cage of exendin-4 tyrosine substituted at the amino terminus with the C-terminal undecapeptide sequence of oxyntomodulin that placed lysine 30 of I-M-150847 in frame with the corresponding lysine residue of GIP. The peptide I-M-150847 is a partial agonist of GLP-1R and GIPR; however, the receptors, upon activation by I-M-150847, undergo reduced internalization that promotes agonist-mediated iterative cAMP signaling and augments glucose-stimulated insulin exocytosis in pancreatic ß cells. Chronic administration of I-M-150847 improved glycemic control, enhanced insulin sensitivity, and provided profound weight loss in diet-induced obese (DIO) mice. Our results demonstrated that despite being a partial agonist, I-M-150847, by reducing the receptor internalization upon activation, enhanced the incretin effect and reversed obesity.NEW & NOTEWORTHY Replacement of the tryptophan cage (Trp-cage) with the C-terminal oxyntomodulin undecapeptide along with the tyrosine substitution at the amino terminus converts the selective glucagon-like peptide-1 receptor (GLP-1R) agonist exendin-4 to a novel GLP-1R and GIPR dual agonist I-M-150847. Reduced internalization of incretin receptors upon activation by the GLP-1R and GIPR dual agonist I-M-150847 promotes iterative receptor signaling that enhances the incretin effect and reverses obesity.


Sujet(s)
Récepteur du peptide-1 similaire au glucagon , Incrétines , Souris de lignée C57BL , Obésité , Animaux , Obésité/métabolisme , Obésité/traitement médicamenteux , Récepteur du peptide-1 similaire au glucagon/agonistes , Récepteur du peptide-1 similaire au glucagon/métabolisme , Souris , Mâle , Incrétines/pharmacologie , Incrétines/métabolisme , Transport des protéines/effets des médicaments et des substances chimiques , Régulation de la glycémie/méthodes , Souris obèse , Récepteur hormone gastrointestinale/agonistes , Récepteur hormone gastrointestinale/métabolisme , Cellules à insuline/métabolisme , Cellules à insuline/effets des médicaments et des substances chimiques , Humains , Alimentation riche en graisse/effets indésirables , Glycémie/métabolisme , Glycémie/effets des médicaments et des substances chimiques , Insuline/métabolisme , Exénatide/pharmacologie , Transduction du signal/effets des médicaments et des substances chimiques , AMP cyclique/métabolisme
18.
Peptides ; 178: 171254, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38815655

RÉSUMÉ

The incretin hormones, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), are rapidly degraded by dipeptidyl peptidase-4 (DPP-4) to their major circulating metabolites GLP-1(9-36) and GIP(3-42). This study investigates the possible effects of these metabolites, and the equivalent exendin molecule Ex(9-39), on pancreatic islet morphology and constituent alpha and beta cells in high-fat diet (HFD) fed mice. Male Swiss TO-mice (6-8 weeks-old) were maintained on a HFD or normal diet (ND) for 4 months and then received twice-daily subcutaneous injections of GLP-1(9-36), GIP(3-42), Ex(9-39) (25 nmol/kg bw) or saline vehicle (0.9% (w/v) NaCl) over a 60-day period. Metabolic parameters were monitored and excised pancreatic tissues were used for immunohistochemical analysis. Body weight and assessed metabolic indices were not changed by peptide administration. GLP-1(9-36) significantly (p<0.001) increased islet density per mm2 tissue, that was decreased (p<0.05) by HFD. Islet, beta and alpha cell areas were increased (p<0.01) following HFD and subsequently reduced (p<0.01-p<0.001) by GIP(3-42) and Ex(9-39) treatment. While GLP-1(9-36) did not affect islet and beta cell areas in HFD mice, it significantly (p<0.01) decreased alpha cell area. Compared to ND and HFD mice, GIP(3-42) treatment significantly (p<0.05) increased beta cell proliferation. Whilst HFD increased (p<0.001) beta cell apoptosis, this was reduced (p<0.01-p<0.001) by both GLP-1(9-36) and GIP(3-42). These data indicate that the major circulating forms of GLP-1 and GIP, namely GLP-1(9-36) and GIP(3-42) previously considered largely inactive, may directly impact pancreatic morphology, with an important protective effect on beta cell health under conditions of beta cell stress.


Sujet(s)
Alimentation riche en graisse , Peptide gastrointestinal , Glucagon-like peptide 1 , Incrétines , Cellules à insuline , Animaux , Peptide gastrointestinal/pharmacologie , Peptide gastrointestinal/métabolisme , Mâle , Glucagon-like peptide 1/métabolisme , Glucagon-like peptide 1/pharmacologie , Souris , Cellules à insuline/effets des médicaments et des substances chimiques , Cellules à insuline/métabolisme , Alimentation riche en graisse/effets indésirables , Incrétines/pharmacologie , Incrétines/métabolisme , Fragments peptidiques/pharmacologie , Ilots pancréatiques/effets des médicaments et des substances chimiques , Ilots pancréatiques/métabolisme , Ilots pancréatiques/anatomopathologie , Apoptose/effets des médicaments et des substances chimiques , Insuline/métabolisme
19.
Peptides ; 178: 171243, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38788902

RÉSUMÉ

Glucagon-like peptide-1 signalling impacts glucose homeostasis and appetite thereby indirectly affecting substrate availability at the whole-body level. The incretin canonically produces an insulinotropic effect, thereby lowering blood glucose levels by promoting the uptake and inhibiting the production of the sugar by peripheral tissues. Likewise, GLP-1 signalling within the central nervous system reduces the appetite and food intake, whereas its gastric effect delays the absorption of nutrients, thus improving glycaemic control and reducing the risk of postprandial hyperglycaemia. We review the molecular aspects of the GLP-1 signalling, focusing on its impact on intracellular energy metabolism. Whilst the incretin exerts its effects predominantly via a Gs receptor, which decodes the incretin signal into the elevation of intracellular cAMP levels, the downstream signalling cascades within the cell, acting on fast and slow timescales, resulting in an enhancement or an attenuation of glucose catabolism, respectively.


Sujet(s)
Métabolisme énergétique , Glucagon-like peptide 1 , Cellules à insuline , Transduction du signal , Glucagon-like peptide 1/métabolisme , Humains , Métabolisme énergétique/effets des médicaments et des substances chimiques , Transduction du signal/effets des médicaments et des substances chimiques , Cellules à insuline/métabolisme , Cellules à insuline/effets des médicaments et des substances chimiques , Animaux , Incrétines/métabolisme , Glucose/métabolisme
20.
Redox Biol ; 73: 103170, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38692092

RÉSUMÉ

Adipose tissue-derived non-esterified saturated long-chain fatty acid palmitate (PA) decisively contributes to ß-cell demise in type 2 diabetes mellitus in part through the excessive generation of hydrogen peroxide (H2O2). The endoplasmic reticulum (ER) as the primary site of oxidative protein folding could represent a significant source of H2O2. Both ER-oxidoreductin-1 (ERO-1) isoenzymes, ERO-1α and ERO-1ß, catalyse oxidative protein folding within the ER, generating equimolar amounts of H2O2 for every disulphide bond formed. However, whether ERO-1-derived H2O2 constitutes a potential source of cytotoxic luminal H2O2 under lipotoxic conditions is still unknown. Here, we demonstrate that both ERO-1 isoforms are expressed in pancreatic ß-cells, but interestingly, PA only significantly induces ERO-1α. Its specific deletion significantly attenuates PA-mediated oxidative ER stress and subsequent ß-cell death by decreasing PA-mediated ER-luminal and mitochondrial H2O2 accumulation, by counteracting the dysregulation of ER Ca2+ homeostasis, and by mitigating the reduction of mitochondrial membrane potential and lowered ATP content. Moreover, ablation of ERO-1α alleviated PA-induced hyperoxidation of the ER redox milieu. Importantly, ablation of ERO-1α did not affect the insulin secretory capacity, the unfolded protein response, or ER redox homeostasis under steady-state conditions. The involvement of ERO-1α-derived H2O2 in PA-mediated ß-cell lipotoxicity was corroborated by the overexpression of a redox-active ERO-1α underscoring the proapoptotic activity of ERO-1α in pancreatic ß-cells. Overall, our findings highlight the critical role of ERO-1α-derived H2O2 in lipotoxic ER stress and ß-cell failure.


Sujet(s)
Apoptose , Stress du réticulum endoplasmique , Peroxyde d'hydrogène , Cellules à insuline , Palmitates , Cellules à insuline/métabolisme , Cellules à insuline/effets des médicaments et des substances chimiques , Stress du réticulum endoplasmique/effets des médicaments et des substances chimiques , Animaux , Apoptose/effets des médicaments et des substances chimiques , Palmitates/métabolisme , Palmitates/pharmacologie , Peroxyde d'hydrogène/métabolisme , Souris , Réticulum endoplasmique/métabolisme , Réticulum endoplasmique/effets des médicaments et des substances chimiques , Oxydoréduction , Stress oxydatif/effets des médicaments et des substances chimiques , Humains , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Potentiel de membrane mitochondriale/effets des médicaments et des substances chimiques
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...