Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 4.510
Filtrer
1.
Development ; 151(13)2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38984540

RÉSUMÉ

Germ granules have been hypothesized to deliver mRNAs of germ cell fate determinants to primordial germ cells. Now, a new study in Development finds that many mRNAs enriched in germ granules are not involved in germline development in Caenorhabditis elegans. To find out more about the story behind the paper, we caught up with first author Alyshia Scholl, second author Yihong Liu and corresponding author Geraldine Seydoux, Professor at Johns Hopkins University School of Medicine.


Sujet(s)
Caenorhabditis elegans , Animaux , Caenorhabditis elegans/génétique , Cellules germinales/métabolisme , Biologie du développement/histoire , Histoire du 21ème siècle , Histoire du 20ème siècle , Humains , ARN messager/génétique , ARN messager/métabolisme , Protéines de Caenorhabditis elegans/métabolisme , Protéines de Caenorhabditis elegans/génétique
2.
Reprod Biol Endocrinol ; 22(1): 82, 2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-39010074

RÉSUMÉ

BACKGROUND: Exploring the molecular mechanisms of primordial germ cell (PGC) migration and the involvement of gonadal somatic cells in gonad development is valuable for comprehending the origins and potential treatments of reproductive-related diseases. METHODS: Diaphanous related formin 1 (Diaph1, also known as mDia1) was screened by analyzing publicly available datasets (ATAC-seq, DNase-seq, and RNA-seq). Subsequently, the CRISPR-Cas9 technology was used to construct Diaph1 knockout mice to investigate the role of Diaph1 in gonad development. RESULTS: Based on data from public databases, a differentially expressed gene Diaph1, was identified in the migration of mouse PGC. Additionally, the number of PGCs was significantly reduced in Diaph1 knockout mice compared to wild type mice, and the expression levels of genes related to proliferation (Dicer1, Mcm9), adhesion (E-cadherin, Cdh1), and migration (Cxcr4, Hmgcr, Dazl) were significantly decreased. Diaph1 knockout also inhibited Leydig cell proliferation and induced apoptosis in the testis, as well as granulosa cell apoptosis in the ovary. Moreover, the sperm count in the epididymal region and the count of ovarian follicles were significantly reduced in Diaph1 knockout mice, resulting in decreased fertility, concomitant with lowered levels of serum testosterone and estradiol. Further research found that in Diaph1 knockout mice, the key enzymes involved in testosterone synthesis (CYP11A1, 3ß-HSD) were decreased in Leydig cells, and the estradiol-associated factor (FSH receptor, AMH) in granulosa cells were also downregulated. CONCLUSIONS: Overall, our findings indicate that the knockout of Diaph1 can disrupt the expression of factors that regulate sex hormone production, leading to impaired secretion of sex hormones, ultimately resulting in damage to reproductive function. These results provide a new perspective on the molecular mechanisms underlying PGC migration and gonadal development, and offer valuable insights for further research on the causes, diagnosis, and treatment of related diseases.


Sujet(s)
Prolifération cellulaire , Formines , Cellules germinales , Gonades , Souris knockout , Animaux , Souris , Femelle , Mâle , Formines/génétique , Formines/métabolisme , Prolifération cellulaire/génétique , Gonades/métabolisme , Cellules germinales/métabolisme , Apoptose/génétique , Testicule/métabolisme , Testicule/croissance et développement , Testicule/cytologie , Mouvement cellulaire/génétique , Ovaire/métabolisme , Ovaire/croissance et développement , Souris de lignée C57BL
3.
Parasit Vectors ; 17(1): 304, 2024 Jul 13.
Article de Anglais | MEDLINE | ID: mdl-39003498

RÉSUMÉ

BACKGROUND: Malaria, a global health concern, is caused by parasites of the Plasmodium genus, which undergo gametogenesis in the midgut of mosquitoes after ingestion of an infected blood meal. The resulting male and female gametes fuse to form a zygote, which differentiates into a motile ookinete. After traversing the midgut epithelium, the ookinete differentiates into an oocyst on the basal side of the epithelium. METHODS: Membrane proteins with increased gene expression levels from the gamete to oocyst stages in P. berghei were investigated utilizing PlasmoDB, the functional genomic database for Plasmodium spp. Based on this analysis, we selected the 184-kDa membrane protein, Pb184, for further study. The expression of Pb184 was further confirmed through immunofluorescence staining, following which we examined whether Pb184 is involved in fertilization using antibodies targeting the C-terminal region of Pb184 and biotin-labeled C-terminal region peptides of Pb184. RESULTS: Pb184 is expressed on the surface of male and female gametes. The antibody inhibited zygote and ookinete formation in vitro. When mosquitoes were fed on parasite-infected blood containing the antibody, oocyst formation decreased on the second day after feeding. Synthesized biotin-labeled peptides matching the C-terminal region of Pb184 bound to the female gamete and the residual body of male gametes, and inhibited differentiation into ookinetes in the in vitro culture system. CONCLUSIONS: These results may be useful for the further studying the fertilization mechanism of Plasmodium protozoa. There is also the potential for their application as future tools to prevent malaria transmission.


Sujet(s)
Fécondation , Plasmodium berghei , Protéines de protozoaire , Plasmodium berghei/génétique , Plasmodium berghei/métabolisme , Animaux , Femelle , Mâle , Protéines de protozoaire/génétique , Protéines de protozoaire/métabolisme , Souris , Cellules germinales/métabolisme , Paludisme/parasitologie , Protéines membranaires/métabolisme , Protéines membranaires/génétique , Zygote/métabolisme , Anopheles/parasitologie , Anopheles/métabolisme , Oocystes/métabolisme , Gamétogenèse/génétique
4.
Nat Commun ; 15(1): 5799, 2024 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-38987544

RÉSUMÉ

Germ granules are biomolecular condensates present in most animal germ cells. One function of germ granules is to help maintain germ cell totipotency by organizing mRNA regulatory machinery, including small RNA-based gene regulatory pathways. The C. elegans germ granule is compartmentalized into multiple subcompartments whose biological functions are largely unknown. Here, we identify an uncharted subcompartment of the C. elegans germ granule, which we term the E granule. The E granule is nonrandomly positioned within the germ granule. We identify five proteins that localize to the E granule, including the RNA-dependent RNA polymerase (RdRP) EGO-1, the Dicer-related helicase DRH-3, the Tudor domain-containing protein EKL-1, and two intrinsically disordered proteins, EGC-1 and ELLI-1. Localization of EGO-1 to the E granule enables synthesis of a specialized class of 22G RNAs, which derive exclusively from 5' regions of a subset of germline-expressed mRNAs. Defects in E granule assembly elicit disordered production of endogenous siRNAs, which disturbs fertility and the RNAi response. Our results define a distinct subcompartment of the C. elegans germ granule and suggest that one function of germ granule compartmentalization is to facilitate the localized production of specialized classes of small regulatory RNAs.


Sujet(s)
Protéines de Caenorhabditis elegans , Caenorhabditis elegans , Granulations cytoplasmiques , Cellules germinales , Caenorhabditis elegans/métabolisme , Caenorhabditis elegans/génétique , Protéines de Caenorhabditis elegans/métabolisme , Protéines de Caenorhabditis elegans/génétique , Animaux , Cellules germinales/métabolisme , Granulations cytoplasmiques/métabolisme , ARN messager/métabolisme , ARN messager/génétique , DEAD-box RNA helicases/métabolisme , DEAD-box RNA helicases/génétique , RNA replicase/métabolisme , RNA replicase/génétique , Protéines intrinsèquement désordonnées/métabolisme , Protéines intrinsèquement désordonnées/génétique
5.
BMC Genomics ; 25(1): 678, 2024 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-38977960

RÉSUMÉ

BACKGROUND: The piRNA pathway in animal gonads functions as an 'RNA-based immune system', serving to silence transposable elements and prevent inheritance of novel invaders. In Drosophila, this pathway relies on three gonad-specific Argonaute proteins (Argonaute-3, Aubergine and Piwi) that associate with 23-28 nucleotide piRNAs, directing the silencing of transposon-derived transcripts. Transposons constitute a primary driver of genome evolution, yet the evolution of piRNA pathway factors has not received in-depth exploration. Specifically, channel nuclear pore proteins, which impact piRNA processing, exhibit regions of rapid evolution in their promoters. Consequently, the question arises whether such a mode of evolution is a general feature of transposon silencing pathways. RESULTS: By employing genomic analysis of coding and promoter regions within genes that function in transposon silencing in Drosophila, we demonstrate that the promoters of germ cell-specific piRNA factors are undergoing rapid evolution. Our findings indicate that rapid promoter evolution is a common trait among piRNA factors engaged in germline silencing across insect species, potentially contributing to gene expression divergence in closely related taxa. Furthermore, we observe that the promoters of genes exclusively expressed in germ cells generally exhibit rapid evolution, with some divergence in gene expression. CONCLUSION: Our results suggest that increased germline promoter evolution, in partnership with other factors, could contribute to transposon silencing and evolution of species through differential expression of genes driven by invading transposons.


Sujet(s)
Éléments transposables d'ADN , Évolution moléculaire , Extinction de l'expression des gènes , Cellules germinales , Régions promotrices (génétique) , Petit ARN interférent , Animaux , Éléments transposables d'ADN/génétique , Cellules germinales/métabolisme , Petit ARN interférent/génétique , Petit ARN interférent/métabolisme , Protéines de Drosophila/génétique , Drosophila/génétique , Protéines Argonaute/génétique
6.
Life Sci Alliance ; 7(10)2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-38991729

RÉSUMÉ

Embryonic germ cells develop rapidly to establish the foundation for future developmental trajectories, and in this process, they make critical lineage choices including the configuration of their unique identity and a decision on sex. Here, we use single-cell genomics patterns for the entire embryonic germline in Drosophila melanogaster along with the somatic gonadal precursors after embryonic gonad coalescence to investigate molecular mechanisms involved in the setting up and regulation of the germline program. Profiling of the early germline chromatin landscape revealed sex- and stage-specific features. In the male germline immediately after zygotic activation, the chromatin structure underwent a brief remodeling phase during which nucleosome density was lower and deconcentrated from promoter regions. These findings echoed enrichment analysis results of our genomics data in which top candidates were factors with the ability to mediate large-scale chromatin reorganization. Together, they point to the importance of chromatin regulation in the early germline and raise the possibility of a conserved epigenetic reprogramming-like process required for proper initiation of germline development.


Sujet(s)
Assemblage et désassemblage de la chromatine , Chromatine , Drosophila melanogaster , Développement embryonnaire , Animaux , Mâle , Drosophila melanogaster/embryologie , Drosophila melanogaster/génétique , Chromatine/métabolisme , Chromatine/génétique , Assemblage et désassemblage de la chromatine/génétique , Développement embryonnaire/génétique , Régulation de l'expression des gènes au cours du développement/génétique , Cellules germinales embryonnaires/métabolisme , Cellules germinales embryonnaires/cytologie , Cellules germinales/métabolisme , Épigenèse génétique , Femelle , Nucléosomes/métabolisme , Nucléosomes/génétique , Analyse sur cellule unique/méthodes
7.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article de Anglais | MEDLINE | ID: mdl-39000159

RÉSUMÉ

The fungicide tebuconazole (TEB) poses risks to human and animal health via various exposure routes. It induces toxicity in multiple organs and disrupts reproductive health by affecting steroid hormone synthesis and fetal development. In this study, we investigated the impact of TEB on fetal testes using in vitro models, focusing on germ, Sertoli, and Leydig cells, and explored the mechanisms underlying cellular damage. The results revealed significant damage to germ cells and disruption of Leydig cell development. TEB exposure led to a decrease in germ cell numbers, as indicated by histological and immunostaining analyses. TEB induced the up- and down-regulation of the expression of fetal and adult Leydig cell markers, respectively. Additionally, TEB-treated fetal testes exhibited increased expression of oxidative-stress-related genes and proteins. However, co-treatment with the antioxidant N-acetylcysteine mitigated TEB-induced germ cell damage and prevented abnormal Leydig cell development. These findings suggest that administration of antioxidants can prevent the intratesticular damage typically caused by TEB exposure.


Sujet(s)
Cellules de Leydig , Techniques de culture d'organes , Stress oxydatif , Espèces réactives de l'oxygène , Testicule , Triazoles , Mâle , Animaux , Testicule/effets des médicaments et des substances chimiques , Testicule/métabolisme , Triazoles/pharmacologie , Souris , Espèces réactives de l'oxygène/métabolisme , Cellules de Leydig/effets des médicaments et des substances chimiques , Cellules de Leydig/métabolisme , Stress oxydatif/effets des médicaments et des substances chimiques , Techniques de culture d'organes/méthodes , Cellules de Sertoli/effets des médicaments et des substances chimiques , Cellules de Sertoli/métabolisme , Antioxydants/pharmacologie , Foetus/effets des médicaments et des substances chimiques , Fongicides industriels/toxicité , Cellules germinales/effets des médicaments et des substances chimiques , Cellules germinales/métabolisme
8.
PLoS Genet ; 20(7): e1011345, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38985845

RÉSUMÉ

The piRNA pathway is a conserved germline-specific small RNA pathway that ensures genomic integrity and continued fertility. In C. elegans and other nematodes, Type-I piRNAs are expressed from >10,000 independently transcribed genes clustered within two discrete domains of 1.5 and 3.5 MB on Chromosome IV. Clustering of piRNA genes contributes to their germline-specific expression, but the underlying mechanisms are unclear. We analyze isolated germ nuclei to demonstrate that the piRNA genomic domains are located in a heterochromatin-like environment. USTC (Upstream Sequence Transcription Complex) promotes strong association of nucleosomes throughout piRNA clusters, yet organizes the local nucleosome environment to direct the exposure of individual piRNA genes. Localization of USTC to the piRNA domains depends upon the ATPase chromatin remodeler ISW-1, which maintains high nucleosome density across piRNA clusters and ongoing production of piRNA precursors. Overall, this work provides insight into how chromatin states coordinate transcriptional regulation over large genomic domains, with implications for global genome organization.


Sujet(s)
Protéines de Caenorhabditis elegans , Caenorhabditis elegans , Cellules germinales , Nucléosomes , Régions promotrices (génétique) , Petit ARN interférent , Animaux , Caenorhabditis elegans/génétique , Petit ARN interférent/génétique , Petit ARN interférent/métabolisme , Nucléosomes/génétique , Nucléosomes/métabolisme , Protéines de Caenorhabditis elegans/génétique , Protéines de Caenorhabditis elegans/métabolisme , Cellules germinales/métabolisme , Assemblage et désassemblage de la chromatine/génétique , Chromatine/génétique , Chromatine/métabolisme , Transcription génétique , Régulation de l'expression des gènes/génétique , Hétérochromatine/génétique , Hétérochromatine/métabolisme , ARN interagissant avec Piwi
9.
Development ; 151(13)2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38984542

RÉSUMÉ

In animals with germ plasm, embryonic germline precursors inherit germ granules, condensates proposed to regulate mRNAs coding for germ cell fate determinants. In Caenorhabditis elegans, mRNAs are recruited to germ granules by MEG-3, a sequence non-specific RNA-binding protein that forms stabilizing interfacial clusters on germ granules. Using fluorescence in situ hybridization, we confirmed that 441 MEG-3-bound transcripts are distributed in a pattern consistent with enrichment in germ granules. Thirteen are related to transcripts reported in germ granules in Drosophila or Nasonia. The majority, however, are low-translation maternal transcripts required for embryogenesis that are not maintained preferentially in the nascent germline. Granule enrichment raises the concentration of certain transcripts in germ plasm but is not essential to regulate mRNA translation or stability. Our findings suggest that only a minority of germ granule-associated transcripts contribute to germ cell fate in C. elegans and that the vast majority function as non-specific scaffolds for MEG-3.


Sujet(s)
Protéines de Caenorhabditis elegans , Caenorhabditis elegans , Cellules germinales , Biosynthèse des protéines , ARN messager , Protéines de liaison à l'ARN , Animaux , Caenorhabditis elegans/génétique , Caenorhabditis elegans/métabolisme , Protéines de Caenorhabditis elegans/métabolisme , Protéines de Caenorhabditis elegans/génétique , Cellules germinales/métabolisme , Cellules germinales/cytologie , ARN messager/métabolisme , ARN messager/génétique , Protéines de liaison à l'ARN/métabolisme , Protéines de liaison à l'ARN/génétique , Granulations cytoplasmiques/métabolisme , Régulation de l'expression des gènes au cours du développement , Hybridation fluorescente in situ
10.
Genes (Basel) ; 15(6)2024 Jun 08.
Article de Anglais | MEDLINE | ID: mdl-38927693

RÉSUMÉ

The identification and expression of germ cells are important for studying sex-related mechanisms in fish. The vasa gene, encoding an ATP-dependent RNA helicase, is recognized as a molecular marker of germ cells and plays a crucial role in germ cell development. Silurus asotus, an important freshwater economic fish species in China, shows significant sex dimorphism with the female growing faster than the male. However, the molecular mechanisms underlying these sex differences especially involving in the vasa gene in this fish remain poorly understood. In this work, the vasa gene sequence of S. asotus (named as Savasa) was obtained through RT-PCR and rapid amplification of cDNA end (RACE), and its expression in embryos and tissues was analyzed using qRT-PCR and an in situ hybridization method. Letrozole (LT) treatment on the larvae fish was also conducted to investigate its influence on the gene. The results revealed that the open reading frame (ORF) of Savasa was 1989 bp, encoding 662 amino acids. The SaVasa protein contains 10 conserved domains unique to the DEAD-box protein family, showing the highest sequence identity of 95.92% with that of Silurus meridionalis. In embryos, Savasa is highly expressed from the two-cell stage to the blastula stage in early embryos, with a gradually decreasing trend from the gastrula stage to the heart-beating stage. Furthermore, Savasa was initially detected at the end of the cleavage furrow during the two-cell stage, later condensing into four symmetrical cell clusters with embryonic development. At the gastrula stage, Savasa-positive cells increased and began to migrate towards the dorsal side of the embryo. In tissues, Savasa is predominantly expressed in the ovaries, with almost no or lower expression in other detected tissues. Moreover, Savasa was expressed in phase I-V oocytes in the ovaries, as well as in spermatogonia and spermatocytes in the testis, implying a specific expression pattern of germ cells. In addition, LT significantly upregulated the expression of Savasa in a concentration-dependent manner during the key gonadal differentiation period of the fish. Notably, at 120 dph after LT treatment, Savasa expression was the lowest in the testis and ovary of the high concentration group. Collectively, findings from gene structure, protein sequence, phylogenetic analysis, RNA expression patterns, and response to LT suggest that Savasa is maternally inherited with conserved features, serving as a potential marker gene for germ cells in S.asotus, and might participate in LT-induced early embryonic development and gonadal development processes of the fish. This would provide a basis for further research on the application of germ cell markers and the molecular mechanisms of sex differences in S. asotus.


Sujet(s)
Poissons-chats , DEAD-box RNA helicases , Protéines de poisson , Létrozole , Animaux , Létrozole/pharmacologie , Femelle , Mâle , Protéines de poisson/génétique , Protéines de poisson/métabolisme , DEAD-box RNA helicases/génétique , DEAD-box RNA helicases/métabolisme , Poissons-chats/génétique , Poissons-chats/croissance et développement , Poissons-chats/métabolisme , Régulation de l'expression des gènes au cours du développement/effets des médicaments et des substances chimiques , Cellules germinales/métabolisme , Cellules germinales/effets des médicaments et des substances chimiques , Cellules germinales/croissance et développement , Phylogenèse
11.
EMBO J ; 43(14): 3044-3071, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38858601

RÉSUMÉ

MCM8 has emerged as a core gene in reproductive aging and is crucial for meiotic homologous recombination repair. It also safeguards genome stability by coordinating the replication stress response during mitosis, but its function in mitotic germ cells remains elusive. Here we found that disabling MCM8 in mice resulted in proliferation defects of primordial germ cells (PGCs) and ultimately impaired fertility. We further demonstrated that MCM8 interacted with two known helicases DDX5 and DHX9, and loss of MCM8 led to R-loop accumulation by reducing the retention of these helicases at R-loops, thus inducing genome instability. Cells expressing premature ovarian insufficiency-causative mutants of MCM8 with decreased interaction with DDX5 displayed increased R-loop levels. These results show MCM8 interacts with R-loop-resolving factors to prevent R-loop-induced DNA damage, which may contribute to the maintenance of genome integrity of PGCs and reproductive reserve establishment. Our findings thus reveal an essential role for MCM8 in PGC development and improve our understanding of reproductive aging caused by genome instability in mitotic germ cells.


Sujet(s)
DEAD-box RNA helicases , Instabilité du génome , Protéines de maintenance des minichromosomes , Structures en boucle R , Animaux , Souris , DEAD-box RNA helicases/métabolisme , DEAD-box RNA helicases/génétique , Protéines de maintenance des minichromosomes/métabolisme , Protéines de maintenance des minichromosomes/génétique , Femelle , Structures en boucle R/génétique , Humains , Cellules germinales/métabolisme , Altération de l'ADN , Mâle
12.
Int J Mol Sci ; 25(12)2024 Jun 17.
Article de Anglais | MEDLINE | ID: mdl-38928348

RÉSUMÉ

Germ cells (GCs) serve as indispensable carriers in both animals and plants, ensuring genetic continuity across generations. While it is generally acknowledged that the timing of germline segregation differs significantly between animals and plants, ongoing debates persist as new evidence continues to emerge. In this review, we delve into studies focusing on male germ cell specifications in plants, and we summarize the core gene regulatory circuits in germ cell specification, which show remarkable parallels to those governing meristem homeostasis. The similarity in germline establishment between animals and plants is also discussed.


Sujet(s)
Cellules germinales de plante , Cellules germinales de plante/croissance et développement , Cellules germinales de plante/métabolisme , Animaux , Plantes/génétique , Plantes/métabolisme , Différenciation cellulaire/génétique , Régulation de l'expression des gènes végétaux , Cellules germinales/cytologie , Cellules germinales/métabolisme , Méristème/croissance et développement , Méristème/génétique , Méristème/cytologie , Réseaux de régulation génique
13.
PLoS Biol ; 22(6): e3002678, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38885262

RÉSUMÉ

The rates at which mutations accumulate across human cell types vary. To identify causes of this variation, mutations are often decomposed into a combination of the single-base substitution (SBS) "signatures" observed in germline, soma, and tumors, with the idea that each signature corresponds to one or a small number of underlying mutagenic processes. Two such signatures turn out to be ubiquitous across cell types: SBS signature 1, which consists primarily of transitions at methylated CpG sites thought to be caused by spontaneous deamination, and the more diffuse SBS signature 5, which is of unknown etiology. In cancers, the number of mutations attributed to these 2 signatures accumulates linearly with age of diagnosis, and thus the signatures have been termed "clock-like." To better understand this clock-like behavior, we develop a mathematical model that includes DNA replication errors, unrepaired damage, and damage repaired incorrectly. We show that mutational signatures can exhibit clock-like behavior because cell divisions occur at a constant rate and/or because damage rates remain constant over time, and that these distinct sources can be teased apart by comparing cell lineages that divide at different rates. With this goal in mind, we analyze the rate of accumulation of mutations in multiple cell types, including soma as well as male and female germline. We find no detectable increase in SBS signature 1 mutations in neurons and only a very weak increase in mutations assigned to the female germline, but a significant increase with time in rapidly dividing cells, suggesting that SBS signature 1 is driven by rounds of DNA replication occurring at a relatively fixed rate. In contrast, SBS signature 5 increases with time in all cell types, including postmitotic ones, indicating that it accumulates independently of cell divisions; this observation points to errors in DNA repair as the key underlying mechanism. Thus, the two "clock-like" signatures observed across cell types likely have distinct origins, one set by rates of cell division, the other by damage rates.


Sujet(s)
Altération de l'ADN , Réparation de l'ADN , Mutation germinale , Humains , Réparation de l'ADN/génétique , Altération de l'ADN/génétique , Mutation/génétique , Cellules germinales/métabolisme , Modèles génétiques , Tumeurs/génétique , Tumeurs/anatomopathologie , Méthylation de l'ADN/génétique , Réplication de l'ADN/génétique
14.
Cell Rep ; 43(6): 114336, 2024 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-38852157

RÉSUMÉ

Proteome integrity is fundamental for cellular and organismal homeostasis. The mitochondrial unfolded protein response (UPRmt), a key component of the proteostasis network, is activated in a non-cell-autonomous manner in response to mitochondrial stress in distal tissues. However, the importance of inter-tissue communication for UPRmt inducibility under physiological conditions remains elusive. Here, we show that an intact germline is essential for robust UPRmt induction in the Caenorhabditis elegans somatic tissues. A series of nematode mutants with germline defects are unable to respond to genetic or chemical UPRmt inducers. Our genetic analysis suggests that reproductive signals, rather than germline stem cells, are responsible for somatic UPRmt induction. Consistent with this observation, we show that UPRmt is sexually dimorphic, as male nematodes are inherently unresponsive to mitochondrial stress. Our findings highlight a paradigm of germline-somatic communication and suggest that reproductive cessation is a primary cause of age-related UPRmt decline.


Sujet(s)
Protéines de Caenorhabditis elegans , Caenorhabditis elegans , Cellules germinales , Mitochondries , Reproduction , Réponse aux protéines mal repliées , Animaux , Caenorhabditis elegans/métabolisme , Caenorhabditis elegans/génétique , Mitochondries/métabolisme , Protéines de Caenorhabditis elegans/métabolisme , Protéines de Caenorhabditis elegans/génétique , Cellules germinales/métabolisme , Mâle , Stress physiologique , Femelle
15.
Cell Rep ; 43(6): 114323, 2024 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-38861385

RÉSUMÉ

Aberrant male germline development can lead to the formation of seminoma, a testicular germ cell tumor. Seminomas are biologically similar to primordial germ cells (PGCs) and many bear an isochromosome 12p [i(12p)] with two additional copies of the short arm of chromosome 12. By mapping seminoma transcriptomes and open chromatin landscape onto a normal human male germline trajectory, we find that seminoma resembles premigratory/migratory PGCs; however, it exhibits enhanced germline and pluripotency programs and upregulation of genes involved in apoptosis, angiogenesis, and MAPK/ERK pathways. Using pluripotent stem cell-derived PGCs from Pallister-Killian syndrome patients mosaic for i(12p), we model seminoma and identify gene dosage effects that may contribute to transformation. As murine seminoma models do not exist, our analyses provide critical insights into genetic, cellular, and signaling programs driving seminoma transformation, and the in vitro platform developed herein permits evaluation of additional signals required for seminoma tumorigenesis.


Sujet(s)
Épigenèse génétique , Cellules germinales , Séminome , Tumeurs du testicule , Humains , Séminome/génétique , Séminome/anatomopathologie , Séminome/métabolisme , Mâle , Cellules germinales/métabolisme , Tumeurs du testicule/génétique , Tumeurs du testicule/anatomopathologie , Tumeurs du testicule/métabolisme , Transcription génétique , Régulation de l'expression des gènes tumoraux , Transcriptome/génétique
16.
Dev Biol ; 514: 28-36, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-38880277

RÉSUMÉ

Primordial germ cells (PGCs) are the precursors of sperms and oocytes. Proper development of PGCs is crucial for the survival of the species. In many organisms, factors responsible for PGC development are synthesized during early oogenesis and assembled into the germ plasm. During early embryonic development, germ plasm is inherited by a few cells, leading to the formation of PGCs. While germline development has been extensively studied, how components of the germ plasm regulate PGC development is not fully understood. Here, we report that Dzip1 is dynamically expressed in vertebrate germline and is a novel component of the germ plasm in Xenopus and zebrafish. Knockdown of Dzip1 impairs PGC development in Xenopus embryos. At the molecular level, Dzip1 physically interacts with Dazl, an evolutionarily conserved RNA-binding protein that plays a multifaced role during germline development. We further showed that the sequence between amino acid residues 282 and 550 of Dzip1 is responsible for binding to Dazl. Disruption of the binding between Dzip1 and Dazl leads to defective PGC development. Taken together, our results presented here demonstrate that Dzip1 is dynamically expressed in the vertebrate germline and plays a novel function during Xenopus PGC development.


Sujet(s)
Régulation de l'expression des gènes au cours du développement , Cellules germinales , Protéines de liaison à l'ARN , Protéines de Xénope , Xenopus laevis , Danio zébré , Animaux , Cellules germinales/métabolisme , Cellules germinales/cytologie , Protéines de liaison à l'ARN/métabolisme , Protéines de liaison à l'ARN/génétique , Protéines de Xénope/métabolisme , Protéines de Xénope/génétique , Danio zébré/embryologie , Danio zébré/génétique , Danio zébré/métabolisme , Xenopus laevis/embryologie , Xenopus laevis/métabolisme , Xenopus laevis/génétique , Protéines de poisson-zèbre/métabolisme , Protéines de poisson-zèbre/génétique , Femelle , Ovogenèse/génétique
17.
Genes Dev ; 38(9-10): 415-435, 2024 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-38866555

RÉSUMÉ

The association of genomic loci to the nuclear periphery is proposed to facilitate cell type-specific gene repression and influence cell fate decisions. However, the interplay between gene position and expression remains incompletely understood, in part because the proteins that position genomic loci at the nuclear periphery remain unidentified. Here, we used an Oligopaint-based HiDRO screen targeting ∼1000 genes to discover novel regulators of nuclear architecture in Drosophila cells. We identified the heterochromatin-associated protein Stonewall (Stwl) as a factor promoting perinuclear chromatin positioning. In female germline stem cells (GSCs), Stwl binds and positions chromatin loci, including GSC differentiation genes, at the nuclear periphery. Strikingly, Stwl-dependent perinuclear positioning is associated with transcriptional repression, highlighting a likely mechanism for Stwl's known role in GSC maintenance and ovary homeostasis. Thus, our study identifies perinuclear anchors in Drosophila and demonstrates the importance of gene repression at the nuclear periphery for cell fate.


Sujet(s)
Différenciation cellulaire , Noyau de la cellule , Chromatine , Protéines de Drosophila , Animaux , Protéines de Drosophila/métabolisme , Protéines de Drosophila/génétique , Chromatine/métabolisme , Chromatine/génétique , Noyau de la cellule/métabolisme , Noyau de la cellule/génétique , Femelle , Différenciation cellulaire/génétique , Drosophila melanogaster/génétique , Drosophila melanogaster/métabolisme , Cellules souches/métabolisme , Cellules souches/cytologie , Régulation de l'expression des gènes au cours du développement/génétique , Drosophila/génétique , Cellules germinales/métabolisme
18.
Sci Adv ; 10(24): eadi1621, 2024 Jun 14.
Article de Anglais | MEDLINE | ID: mdl-38865462

RÉSUMÉ

The function of germ cells in somatic growth and aging has been demonstrated in invertebrate models but remains unclear in vertebrates. We demonstrated sex-dependent somatic regulation by germ cells in the short-lived vertebrate model Nothobranchius furzeri. In females, germ cell removal shortened life span, decreased estrogen, and increased insulin-like growth factor 1 (IGF-1) signaling. In contrast, germ cell removal in males improved their health with increased vitamin D signaling. Body size increased in both sexes but was caused by different signaling pathways, i.e., IGF-1 and vitamin D in females and males, respectively. Thus, vertebrate germ cells regulate somatic growth and aging through different pathways of the endocrine system, depending on the sex, which may underlie the sexual difference in reproductive strategies.


Sujet(s)
Vieillissement , Cellules germinales , Facteur de croissance IGF-I , Animaux , Cellules germinales/métabolisme , Cellules germinales/cytologie , Mâle , Femelle , Vieillissement/physiologie , Facteur de croissance IGF-I/métabolisme , Vertébrés , Transduction du signal , Caractères sexuels , Mensurations corporelles , Vitamine D/métabolisme , Oestrogènes/métabolisme
19.
PLoS One ; 19(6): e0303577, 2024.
Article de Anglais | MEDLINE | ID: mdl-38843233

RÉSUMÉ

Malic Enzyme 1 (ME1) plays an integral role in fatty acid synthesis and cellular energetics through its production of NADPH and pyruvate. As such, it has been identified as a gene of interest in obesity, type 2 diabetes, and an array of epithelial cancers, with most work being performed in vitro. The current standard model for ME1 loss in vivo is the spontaneous Mod-1 null allele, which produces a canonically inactive form of ME1. Herein, we describe two new genetically engineered mouse models exhibiting ME1 loss at dynamic timepoints. Using murine embryonic stem cells and Flp/FRT and Cre/loxP class switch recombination, we established a germline Me1 knockout model (Me1 KO) and an inducible conditional knockout model (Me1 cKO), activated upon tamoxifen treatment in adulthood. Collectively, neither the Me1 KO nor Me1 cKO models exhibited deleterious phenotype under standard laboratory conditions. Knockout of ME1 was validated by immunohistochemistry and genotype confirmed by PCR. Transmission patterns favor Me1 loss in Me1 KO mice when maternally transmitted to male progeny. Hematological examination of these models through complete blood count and serum chemistry panels revealed no discrepancy with their wild-type counterparts. Orthotopic pancreatic tumors in Me1 cKO mice grow similarly to Me1 expressing mice. Similarly, no behavioral phenotype was observed in Me1 cKO mice when aged for 52 weeks. Histological analysis of several tissues revealed no pathological phenotype. These models provide a more modern approach to ME1 knockout in vivo while opening the door for further study into the role of ME1 loss under more biologically relevant, stressful conditions.


Sujet(s)
Malate dehydrogenase , Souris knockout , Phénotype , Animaux , Malate dehydrogenase/métabolisme , Malate dehydrogenase/génétique , Mâle , Souris , Femelle , Cellules germinales/métabolisme , Souris de lignée C57BL
20.
Development ; 151(11)2024 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-38832826

RÉSUMÉ

Germline maintenance relies on adult stem cells to continually replenish lost gametes over a lifetime and respond to external cues altering the demands on the tissue. Mating worsens germline homeostasis over time, yet a negative impact on stem cell behavior has not been explored. Using extended live imaging of the Drosophila testis stem cell niche, we find that short periods of mating in young males disrupts cytokinesis in germline stem cells (GSCs). This defect leads to failure of abscission, preventing release of differentiating cells from the niche. We find that GSC abscission failure is caused by increased Ecdysone hormone signaling induced upon mating, which leads to disrupted somatic encystment of the germline. Abscission failure is rescued by isolating males from females, but recurs with resumption of mating. Importantly, reiterative mating also leads to increased GSC loss, requiring increased restoration of stem cells via symmetric renewal and de-differentiation. Together, these results suggest a model whereby acute mating results in hormonal changes that negatively impact GSC cytokinesis but preserves the stem cell population.


Sujet(s)
Cytocinèse , Drosophila melanogaster , Ecdysone , Cellules germinales , Testicule , Animaux , Mâle , Ecdysone/métabolisme , Testicule/métabolisme , Femelle , Drosophila melanogaster/métabolisme , Cellules germinales/métabolisme , Cellules germinales/cytologie , Niche de cellules souches , Cellules souches/métabolisme , Cellules souches/cytologie , Différenciation cellulaire , Transduction du signal , Protéines de Drosophila/métabolisme , Protéines de Drosophila/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE