Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 1.223
Filtrer
1.
Nat Commun ; 15(1): 5524, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38951485

RÉSUMÉ

The three-dimensional genome structure organized by CTCF is required for development. Clinically identified mutations in CTCF have been linked to adverse developmental outcomes. Nevertheless, the underlying mechanism remains elusive. In this investigation, we explore the regulatory roles of a clinically relevant R567W point mutation, located within the 11th zinc finger of CTCF, by introducing this mutation into both murine models and human embryonic stem cell-derived cortical organoid models. Mice with homozygous CTCFR567W mutation exhibit growth impediments, resulting in postnatal mortality, and deviations in brain, heart, and lung development at the pathological and single-cell transcriptome levels. This mutation induces premature stem-like cell exhaustion, accelerates the maturation of GABAergic neurons, and disrupts neurodevelopmental and synaptic pathways. Additionally, it specifically hinders CTCF binding to peripheral motifs upstream to the core consensus site, causing alterations in local chromatin structure and gene expression, particularly at the clustered protocadherin locus. Comparative analysis using human cortical organoids mirrors the consequences induced by this mutation. In summary, this study elucidates the influence of the CTCFR567W mutation on human neurodevelopmental disorders, paving the way for potential therapeutic interventions.


Sujet(s)
Facteur de liaison à la séquence CCCTC , Troubles du développement neurologique , Organoïdes , Facteur de liaison à la séquence CCCTC/métabolisme , Facteur de liaison à la séquence CCCTC/génétique , Humains , Animaux , Souris , Troubles du développement neurologique/génétique , Organoïdes/métabolisme , Mutation , Neurones GABAergiques/métabolisme , Neurones GABAergiques/anatomopathologie , Mâle , Chromatine/métabolisme , Chromatine/génétique , Femelle , Encéphale/métabolisme , Encéphale/anatomopathologie , Mutation ponctuelle , Cellules souches embryonnaires humaines/métabolisme
2.
Stem Cell Res Ther ; 15(1): 180, 2024 Jun 21.
Article de Anglais | MEDLINE | ID: mdl-38902824

RÉSUMÉ

BACKGROUND: Telomeres consist of repetitive DNA sequences at the chromosome ends to protect chromosomal stability, and primarily maintained by telomerase or occasionally by alternative telomere lengthening of telomeres (ALT) through recombination-based mechanisms. Additional mechanisms that may regulate telomere maintenance remain to be explored. Simultaneous measurement of telomere length and transcriptome in the same human embryonic stem cell (hESC) revealed that mRNA expression levels of UBQLN1 exhibit linear relationship with telomere length. METHODS: In this study, we first generated UBQLN1-deficient hESCs and compared with the wild-type (WT) hESCs the telomere length and molecular change at RNA and protein level by RNA-seq and proteomics. Then we identified the potential interacting proteins with UBQLN1 using immunoprecipitation-mass spectrometry (IP-MS). Furthermore, the potential mechanisms underlying the shortened telomeres in UBQLN1-deficient hESCs were analyzed. RESULTS: We show that Ubiquilin1 (UBQLN1) is critical for telomere maintenance in human embryonic stem cells (hESCs) via promoting mitochondrial function. UBQLN1 deficiency leads to oxidative stress, loss of proteostasis, mitochondria dysfunction, DNA damage, and telomere attrition. Reducing oxidative damage and promoting mitochondria function by culture under hypoxia condition or supplementation with N-acetylcysteine partly attenuate the telomere attrition induced by UBQLN1 deficiency. Moreover, UBQLN1 deficiency/telomere shortening downregulates genes for neuro-ectoderm lineage differentiation. CONCLUSIONS: Altogether, UBQLN1 functions to scavenge ubiquitinated proteins, preventing their overloading mitochondria and elevated mitophagy. UBQLN1 maintains mitochondria and telomeres by regulating proteostasis and plays critical role in neuro-ectoderm differentiation.


Sujet(s)
Protéines associées à l'autophagie , Cellules souches embryonnaires humaines , Mitochondries , Homéostasie protéique , Homéostasie des télomères , Télomère , Humains , Cellules souches embryonnaires humaines/métabolisme , Cellules souches embryonnaires humaines/cytologie , Protéines associées à l'autophagie/métabolisme , Protéines associées à l'autophagie/génétique , Mitochondries/métabolisme , Télomère/métabolisme , Protéines adaptatrices de la transduction du signal/métabolisme , Protéines adaptatrices de la transduction du signal/génétique , Protéines du cycle cellulaire/métabolisme , Protéines du cycle cellulaire/génétique , Stress oxydatif , Altération de l'ADN
3.
PLoS One ; 19(5): e0298274, 2024.
Article de Anglais | MEDLINE | ID: mdl-38753762

RÉSUMÉ

The membrane peroxisomal proteins PEX11, play a crucial role in peroxisome proliferation by regulating elongation, membrane constriction, and fission of pre-existing peroxisomes. In this study, we evaluated the function of PEX11B gene in neural differentiation of human embryonic stem cell (hESC) by inducing shRNAi-mediated knockdown of PEX11B expression. Our results demonstrate that loss of PEX11B expression led to a significant decrease in the expression of peroxisomal-related genes including ACOX1, PMP70, PEX1, and PEX7, as well as neural tube-like structures and neuronal markers. Inhibition of SIRT1 using pharmacological agents counteracted the effects of PEX11B knockdown, resulting in a relative increase in PEX11B expression and an increase in differentiated neural tube-like structures. However, the neuroprotective effects of SIRT1 were eliminated by PPAR inhibition, indicating that PPARÉ£ may mediate the interaction between PEX11B and SIRT1. Our findings suggest that both SIRT1 and PPARÉ£ have neuroprotective effects, and also this study provides the first indication for a potential interaction between PEX11B, SIRT1, and PPARÉ£ during hESC neural differentiation.


Sujet(s)
Différenciation cellulaire , Cellules souches embryonnaires humaines , Protéines membranaires , Récepteur PPAR gamma , Sirtuine-1 , Humains , Sirtuine-1/métabolisme , Sirtuine-1/génétique , Récepteur PPAR gamma/métabolisme , Récepteur PPAR gamma/génétique , Différenciation cellulaire/effets des médicaments et des substances chimiques , Cellules souches embryonnaires humaines/métabolisme , Cellules souches embryonnaires humaines/cytologie , Cellules souches embryonnaires humaines/effets des médicaments et des substances chimiques , Protéines membranaires/métabolisme , Protéines membranaires/génétique , Neurones/métabolisme , Neurones/cytologie , Neurones/effets des médicaments et des substances chimiques , Lignée cellulaire , Péroxysomes/métabolisme
4.
Stem Cell Reports ; 19(6): 830-838, 2024 Jun 11.
Article de Anglais | MEDLINE | ID: mdl-38759646

RÉSUMÉ

The differentiation of human pluripotent stem cells into ventral mesencephalic dopaminergic (DA) fate is relevant for the treatment of Parkinson's disease. Shortcuts to obtaining DA cells through direct reprogramming often include forced expression of the transcription factor LMX1A. Although reprogramming with LMX1A can generate tyrosine hydroxylase (TH)-positive cells, their regional identity remains elusive. Using an in vitro model of early human neural tube patterning, we report that forced LMX1A expression induced a ventral-to-dorsal fate shift along the entire neuroaxis with the emergence of roof plate fates despite the presence of ventralizing molecules. The LMX1A-expressing progenitors gave rise to grafts containing roof plate-derived choroid plexus cysts as well as ectopically induced TH-positive neurons of a forebrain identity. Early activation of LMX1A prior to floor plate specification was necessary for the dorsalizing effect. Our work suggests using caution in employing LMX1A for the induction of DA fate, as this factor may generate roof plate rather than midbrain fates.


Sujet(s)
Différenciation cellulaire , Neurones dopaminergiques , Cellules souches embryonnaires humaines , Protéines à homéodomaine LIM , Mésencéphale , Facteurs de transcription , Humains , Neurones dopaminergiques/métabolisme , Neurones dopaminergiques/cytologie , Protéines à homéodomaine LIM/métabolisme , Protéines à homéodomaine LIM/génétique , Mésencéphale/cytologie , Mésencéphale/métabolisme , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique , Cellules souches embryonnaires humaines/métabolisme , Cellules souches embryonnaires humaines/cytologie , Plan d'organisation du corps/génétique , Tyrosine 3-monooxygenase/métabolisme , Tyrosine 3-monooxygenase/génétique , Animaux , Régulation de l'expression des gènes au cours du développement
5.
STAR Protoc ; 5(2): 103089, 2024 Jun 21.
Article de Anglais | MEDLINE | ID: mdl-38795356

RÉSUMÉ

Generating stable human embryonic stem cells (hESCs) with targeted genetic mutations allows for the interrogation of protein function in numerous cellular contexts while maintaining a relatively high degree of isogenicity. We describe a step-by-step protocol for generating knockout hESC lines with mutations in genes involved in synaptic transmission using CRISPR-Cas9. We describe steps for gRNA design, cloning, stem cell transfection, and clone isolation. We then detail procedures for gene knockout validation and differentiation of stem cells into functional induced neurons.


Sujet(s)
Systèmes CRISPR-Cas , Édition de gène , Cellules souches embryonnaires humaines , Neurones , Humains , Systèmes CRISPR-Cas/génétique , Cellules souches embryonnaires humaines/cytologie , Cellules souches embryonnaires humaines/métabolisme , Neurones/cytologie , Neurones/métabolisme , Édition de gène/méthodes , Différenciation cellulaire/génétique , Techniques de knock-out de gènes/méthodes , /génétique , Synapses/métabolisme , Synapses/génétique
6.
Nature ; 629(8014): 1165-1173, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38720076

RÉSUMÉ

The nucleus is highly organized, such that factors involved in the transcription and processing of distinct classes of RNA are confined within specific nuclear bodies1,2. One example is the nuclear speckle, which is defined by high concentrations of protein and noncoding RNA regulators of pre-mRNA splicing3. What functional role, if any, speckles might play in the process of mRNA splicing is unclear4,5. Here we show that genes localized near nuclear speckles display higher spliceosome concentrations, increased spliceosome binding to their pre-mRNAs and higher co-transcriptional splicing levels than genes that are located farther from nuclear speckles. Gene organization around nuclear speckles is dynamic between cell types, and changes in speckle proximity lead to differences in splicing efficiency. Finally, directed recruitment of a pre-mRNA to nuclear speckles is sufficient to increase mRNA splicing levels. Together, our results integrate the long-standing observations of nuclear speckles with the biochemistry of mRNA splicing and demonstrate a crucial role for dynamic three-dimensional spatial organization of genomic DNA in driving spliceosome concentrations and controlling the efficiency of mRNA splicing.


Sujet(s)
Génome , Speckles nucléaires , Précurseurs des ARN , Épissage des ARN , ARN messager , Splicéosomes , Animaux , Humains , Mâle , Souris , Gènes , Génome/génétique , Cellules souches embryonnaires humaines/métabolisme , Cellules souches embryonnaires de souris/métabolisme , Speckles nucléaires/génétique , Speckles nucléaires/métabolisme , Précurseurs des ARN/métabolisme , Précurseurs des ARN/génétique , Épissage des ARN/génétique , ARN messager/génétique , ARN messager/métabolisme , Splicéosomes/métabolisme , Transcription génétique
7.
Cell Rep Med ; 5(5): 101570, 2024 May 21.
Article de Anglais | MEDLINE | ID: mdl-38749422

RÉSUMÉ

While an association between Parkinson's disease (PD) and viral infections has been recognized, the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on PD progression remains unclear. Here, we demonstrate that SARS-CoV-2 infection heightens the risk of PD using human embryonic stem cell (hESC)-derived dopaminergic (DA) neurons and a human angiotensin-converting enzyme 2 (hACE2) transgenic (Tg) mouse model. Our findings reveal that SARS-CoV-2 infection exacerbates PD susceptibility and cellular toxicity in DA neurons pre-treated with human preformed fibrils (hPFFs). Additionally, nasally delivered SARS-CoV-2 infects DA neurons in hACE2 Tg mice, aggravating the damage initiated by hPFFs. Mice infected with SARS-CoV-2 display persisting neuroinflammation even after the virus is no longer detectable in the brain. A comprehensive analysis suggests that the inflammatory response mediated by astrocytes and microglia could contribute to increased PD susceptibility associated with SARS-CoV-2. These findings advance our understanding of the potential long-term effects of SARS-CoV-2 infection on the progression of PD.


Sujet(s)
Angiotensin-converting enzyme 2 , COVID-19 , Modèles animaux de maladie humaine , Neurones dopaminergiques , Souris transgéniques , Maladie de Parkinson , SARS-CoV-2 , Animaux , Neurones dopaminergiques/anatomopathologie , Neurones dopaminergiques/métabolisme , Neurones dopaminergiques/virologie , Humains , COVID-19/anatomopathologie , COVID-19/virologie , Maladie de Parkinson/anatomopathologie , Maladie de Parkinson/virologie , Souris , Angiotensin-converting enzyme 2/métabolisme , Angiotensin-converting enzyme 2/génétique , Microglie/anatomopathologie , Microglie/métabolisme , Microglie/virologie , Cellules souches embryonnaires humaines/métabolisme , Astrocytes/anatomopathologie , Astrocytes/virologie , Astrocytes/métabolisme , Encéphale/anatomopathologie , Encéphale/virologie
8.
Environ Int ; 188: 108748, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38763096

RÉSUMÉ

INTRODUCTION: Endocrine disruptors are compounds of manmade origin able to interfere with the endocrine system and constitute an important environmental concern. Indeed, detrimental effects on thyroid physiology and functioning have been described. Differences exist in the susceptibility of human sexes to the incidence of thyroid disorders, like autoimmune diseases or cancer. METHODS: To study how different hormonal environments impact the thyroid response to endocrine disruptors, we exposed human embryonic stem cell-derived thyroid organoids to physiological concentrations of sex hormones resembling the serum levels of human females post-ovulation or males of reproductive age for three days. Afterwards, we added 10 µM benzo[a]pyrene or PCB153 for 24 h and analyzed the transcriptome changes via single-cell RNA sequencing with differential gene expression and gene ontology analysis. RESULTS: The sex hormones receptors genes AR, ESR1, ESR2 and PGR were expressed at low levels. Among the thyroid markers, only TG resulted downregulated by benzo[a]pyrene or benzo[a]pyrene with the "male" hormones mix. Both hormone mixtures and benzo[a]pyrene alone upregulated ribosomal genes and genes involved in oxidative phosphorylation, while their combination decreased the expression compared to benzo[a]pyrene alone. The "male" mix and benzo[a]pyrene, alone or in combination, upregulated genes involved in lipid transport and metabolism (APOA1, APOC3, APOA4, FABP1, FABP2, FABP6). The combination of "male" hormones and benzo[a]pyrene induced also genes involved in inflammation and NFkB targets. Benzo[a]pyrene upregulated CYP1A1, CYP1B1 and NQO1 irrespective of the hormonal context. The induction was stronger in the "female" mix. Benzo[a]pyrene alone upregulated genes involved in cell cycle regulation, response to reactive oxygen species and apoptosis. PCB153 had a modest effect in presence of "male" hormones, while we did not observe any changes with the "female" mix. CONCLUSION: This work shows how single cell transcriptomics can be applied to selectively study the in vitro effects of endocrine disrupters and their interaction with different hormonal contexts.


Sujet(s)
Benzo[a]pyrène , Perturbateurs endocriniens , Hormones sexuelles stéroïdiennes , Polychlorobiphényles , Glande thyroide , Transcriptome , Humains , Benzo[a]pyrène/toxicité , Polychlorobiphényles/toxicité , Perturbateurs endocriniens/toxicité , Transcriptome/effets des médicaments et des substances chimiques , Glande thyroide/effets des médicaments et des substances chimiques , Femelle , Mâle , Analyse sur cellule unique , Cellules souches embryonnaires humaines/effets des médicaments et des substances chimiques , Cellules souches embryonnaires humaines/métabolisme
9.
Cell Genom ; 4(5): 100556, 2024 May 08.
Article de Anglais | MEDLINE | ID: mdl-38697123

RÉSUMÉ

The ch12q13 locus is among the most significant childhood obesity loci identified in genome-wide association studies. This locus resides in a non-coding region within FAIM2; thus, the underlying causal variant(s) presumably influence disease susceptibility via cis-regulation. We implicated rs7132908 as a putative causal variant by leveraging our in-house 3D genomic data and public domain datasets. Using a luciferase reporter assay, we observed allele-specific cis-regulatory activity of the immediate region harboring rs7132908. We generated isogenic human embryonic stem cell lines homozygous for either rs7132908 allele to assess changes in gene expression and chromatin accessibility throughout a differentiation to hypothalamic neurons, a key cell type known to regulate feeding behavior. The rs7132908 obesity risk allele influenced expression of FAIM2 and other genes and decreased the proportion of neurons produced by differentiation. We have functionally validated rs7132908 as a causal obesity variant that temporally regulates nearby effector genes and influences neurodevelopment and survival.


Sujet(s)
Régions 3' non traduites , Protéines régulatrices de l'apoptose , Protéines membranaires , Obésité pédiatrique , Enfant , Humains , Régions 3' non traduites/génétique , Allèles , Différenciation cellulaire/génétique , Chromosomes humains de la paire 12/génétique , Prédisposition génétique à une maladie , Étude d'association pangénomique , Cellules souches embryonnaires humaines/métabolisme , Neurones/métabolisme , Obésité pédiatrique/génétique , Polymorphisme de nucléotide simple/génétique , Protéines membranaires/génétique , Protéines régulatrices de l'apoptose/génétique
10.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167232, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38759814

RÉSUMÉ

Focal malformations of cortical development (FMCDs) are brain disorders mainly caused by hyperactive mTOR signaling due to both inactivating and activating mutations of genes in the PI3K-AKT-mTOR pathway. Among them, mosaic and somatic activating mutations of the mTOR pathway activators are more frequently linked to severe form of FMCDs. A human stem cell-based FMCDs model to study these activating mutations is still lacking. Herein, we genetically engineer human embryonic stem cell lines carrying these activating mutations to generate cortical organoids. Mosaic and somatic expression of AKT3 activating mutations in cortical organoids mimicking the disease presentation with overproliferation and the formation of dysmorphic neurons. In parallel comparison of various AKT3 activating mutations reveals that stronger mutation is associated with more severe neuronal migratory and overgrowth defects. Together, we have established a feasible human stem cell-based model for FMCDs that could help to better understand pathogenic mechanism and develop novel therapeutic strategy.


Sujet(s)
Malformations corticales , Organoïdes , Protéines proto-oncogènes c-akt , Humains , Organoïdes/métabolisme , Organoïdes/anatomopathologie , Protéines proto-oncogènes c-akt/métabolisme , Protéines proto-oncogènes c-akt/génétique , Malformations corticales/génétique , Malformations corticales/anatomopathologie , Malformations corticales/métabolisme , Cellules souches embryonnaires humaines/métabolisme , Transduction du signal/génétique , Cortex cérébral/anatomopathologie , Cortex cérébral/métabolisme , Sérine-thréonine kinases TOR/métabolisme , Sérine-thréonine kinases TOR/génétique , Mutation , Neurones/métabolisme , Neurones/anatomopathologie , Lignée cellulaire
11.
Genome Biol ; 25(1): 122, 2024 05 13.
Article de Anglais | MEDLINE | ID: mdl-38741214

RÉSUMÉ

BACKGROUND: Pluripotent states of embryonic stem cells (ESCs) with distinct transcriptional profiles affect ESC differentiative capacity and therapeutic potential. Although single-cell RNA sequencing has revealed additional subpopulations and specific features of naive and primed human pluripotent stem cells (hPSCs), the underlying mechanisms that regulate their specific transcription and that control their pluripotent states remain elusive. RESULTS: By single-cell analysis of high-resolution, three-dimensional (3D) genomic structure, we herein demonstrate that remodeling of genomic structure is highly associated with the pluripotent states of human ESCs (hESCs). The naive pluripotent state is featured with specialized 3D genomic structures and clear chromatin compartmentalization that is distinct from the primed state. The naive pluripotent state is achieved by remodeling the active euchromatin compartment and reducing chromatin interactions at the nuclear center. This unique genomic organization is linked to enhanced chromatin accessibility on enhancers and elevated expression levels of naive pluripotent genes localized to this region. In contradistinction, the primed state exhibits intermingled genomic organization. Moreover, active euchromatin and primed pluripotent genes are distributed at the nuclear periphery, while repressive heterochromatin is densely concentrated at the nuclear center, reducing chromatin accessibility and the transcription of naive genes. CONCLUSIONS: Our data provide insights into the chromatin structure of ESCs in their naive and primed states, and we identify specific patterns of modifications in transcription and chromatin structure that might explain the genes that are differentially expressed between naive and primed hESCs. Thus, the inversion or relocation of heterochromatin to euchromatin via compartmentalization is related to the regulation of chromatin accessibility, thereby defining pluripotent states and cellular identity.


Sujet(s)
Cellules souches pluripotentes , Analyse sur cellule unique , Humains , Cellules souches pluripotentes/métabolisme , Cellules souches pluripotentes/cytologie , Génome humain , Euchromatine/génétique , Euchromatine/métabolisme , Chromatine/métabolisme , Cellules souches embryonnaires humaines/métabolisme , Cellules souches embryonnaires humaines/cytologie , Hétérochromatine/métabolisme , Cellules souches embryonnaires/métabolisme , Assemblage et désassemblage de la chromatine
12.
Circulation ; 149(25): 1960-1979, 2024 Jun 18.
Article de Anglais | MEDLINE | ID: mdl-38752370

RÉSUMÉ

BACKGROUND: Cardiomyocyte differentiation involves a stepwise clearance of repressors and fate-restricting regulators through the modulation of BMP (bone morphogenic protein)/Wnt-signaling pathways. However, the mechanisms and how regulatory roadblocks are removed with specific developmental signaling pathways remain unclear. METHODS: We conducted a genome-wide CRISPR screen to uncover essential regulators of cardiomyocyte specification in human embryonic stem cells using a myosin heavy chain 6 (MYH6)-GFP (green fluorescence protein) reporter system. After an independent secondary single guide ribonucleic acid validation of 25 candidates, we identified NF2 (neurofibromin 2), a moesin-ezrin-radixin like (MERLIN) tumor suppressor, as an upstream driver of early cardiomyocyte lineage specification. Independent monoclonal NF2 knockouts were generated using CRISPR-Cas9, and cell states were inferred through bulk RNA sequencing and protein expression analysis across differentiation time points. Terminal lineage differentiation was assessed by using an in vitro 2-dimensional-micropatterned gastruloid model, trilineage differentiation, and cardiomyocyte differentiation. Protein interaction and post-translation modification of NF2 with its interacting partners were assessed using site-directed mutagenesis, coimmunoprecipitation, and proximity ligation assays. RESULTS: Transcriptional regulation and trajectory inference from NF2-null cells reveal the loss of cardiomyocyte identity and the acquisition of nonmesodermal identity. Sustained elevation of early mesoderm lineage repressor SOX2 and upregulation of late anticardiac regulators CDX2 and MSX1 in NF2 knockout cells reflect a necessary role for NF2 in removing regulatory roadblocks. Furthermore, we found that NF2 and AMOT (angiomotin) cooperatively bind to YAP (yes-associated protein) during mesendoderm formation, thereby preventing YAP activation, independent of canonical MST (mammalian sterile 20-like serine-threonine protein kinase)-LATS (large tumor suppressor serine-threonine protein kinase) signaling. Mechanistically, cardiomyocyte lineage identity was rescued by wild-type and NF2 serine-518 phosphomutants, but not NF2 FERM (ezrin-radixin-meosin homology protein) domain blue-box mutants, demonstrating that the critical FERM domain-dependent formation of the AMOT-NF2-YAP scaffold complex at the adherens junction is required for early cardiomyocyte lineage differentiation. CONCLUSIONS: These results provide mechanistic insight into the essential role of NF2 during early epithelial-mesenchymal transition by sequestering the repressive effect of YAP and relieving regulatory roadblocks en route to cardiomyocytes.


Sujet(s)
Différenciation cellulaire , Lignage cellulaire , Myocytes cardiaques , Neurofibromine-2 , Humains , Myocytes cardiaques/métabolisme , Neurofibromine-2/génétique , Neurofibromine-2/métabolisme , Systèmes CRISPR-Cas , Cellules souches embryonnaires humaines/métabolisme , Cellules souches embryonnaires humaines/cytologie
13.
Stem Cell Res ; 78: 103445, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38820864

RÉSUMÉ

Forkhead box protein J1 (FOXJ1), a member of the forkhead family, is an important transcription factor regulating multiciliated cell differentiation and motile ciliogenic program. Here, we established a FOXJ1- EGFP knock-in human embryonic stem cell (hESC) line by inserting a P2A-EGFP gene cassette of FOXJ1 using CRISPR/Cas9 system. The reporter cell line retained a normal karyotype, expressed comparable pluripotent marker genes, and maintained differentiation potential. This reporter cell line enables live identification of multiciliated cells during the general lung differentiation and will be a valuable tool for studying the multiciliated cell differentiation, ciliogenesis and mechanism of related pulmonary diseases.


Sujet(s)
Systèmes CRISPR-Cas , Facteurs de transcription Forkhead , Cellules souches embryonnaires humaines , Humains , Cellules souches embryonnaires humaines/métabolisme , Cellules souches embryonnaires humaines/cytologie , Facteurs de transcription Forkhead/génétique , Facteurs de transcription Forkhead/métabolisme , Protéines à fluorescence verte/métabolisme , Protéines à fluorescence verte/génétique , Lignée cellulaire , Différenciation cellulaire , Techniques de knock-in de gènes/méthodes , Ciblage de gène/méthodes , Gènes rapporteurs
14.
Stem Cell Res ; 77: 103427, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38696852

RÉSUMÉ

The DNAJC19 gene, a member of DNAJ heat shock protein (Hsp40) family, is localized within the inner mitochondrial membrane (IMM) and plays a crucial role in regulating the function and localization of mitochondrial Hsp70 (MtHsp70). Mutations in the DNAJC19 gene cause Dilated Cardiomyopathy with Ataxia Syndrome (DCMA). The precise mechanisms underlying the DCMA phenotype caused by DNAJC19 mutations remain poorly understood, and effective treatment modalities were lacking unitl recently. By using CRISPR-Cas9 gene editing technology, this study generated a DNAJC19-knockout (DNAJC19-KO) human embryonic stem cell line (hESC), which will be a useful tool in studying the pathogenesis of DCMA.


Sujet(s)
Systèmes CRISPR-Cas , Protéines du choc thermique HSP40 , Cellules souches embryonnaires humaines , Humains , Cellules souches embryonnaires humaines/métabolisme , Cellules souches embryonnaires humaines/cytologie , Protéines du choc thermique HSP40/génétique , Protéines du choc thermique HSP40/métabolisme , Techniques de knock-out de gènes , Lignée cellulaire , Homozygote
15.
Nat Cell Biol ; 26(6): 903-916, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38702503

RÉSUMÉ

Dynamic changes in mechanical microenvironments, such as cell crowding, regulate lineage fates as well as cell proliferation. Although regulatory mechanisms for contact inhibition of proliferation have been extensively studied, it remains unclear how cell crowding induces lineage specification. Here we found that a well-known oncogene, ETS variant transcription factor 4 (ETV4), serves as a molecular transducer that links mechanical microenvironments and gene expression. In a growing epithelium of human embryonic stem cells, cell crowding dynamics is translated into ETV4 expression, serving as a pre-pattern for future lineage fates. A switch-like ETV4 inactivation by cell crowding derepresses the potential for neuroectoderm differentiation in human embryonic stem cell epithelia. Mechanistically, cell crowding inactivates the integrin-actomyosin pathway and blocks the endocytosis of fibroblast growth factor receptors (FGFRs). The disrupted FGFR endocytosis induces a marked decrease in ETV4 protein stability through ERK inactivation. Mathematical modelling demonstrates that the dynamics of cell density in a growing human embryonic stem cell epithelium precisely determines the spatiotemporal ETV4 expression pattern and, consequently, the timing and geometry of lineage development. Our findings suggest that cell crowding dynamics in a stem cell epithelium drives spatiotemporal lineage specification using ETV4 as a key mechanical transducer.


Sujet(s)
Différenciation cellulaire , Lignage cellulaire , Cellules souches embryonnaires humaines , Protéines proto-oncogènes c-ets , Facteurs de transcription , Humains , Protéines proto-oncogènes c-ets/métabolisme , Protéines proto-oncogènes c-ets/génétique , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique , Cellules souches embryonnaires humaines/métabolisme , Cellules souches embryonnaires humaines/cytologie , Endocytose , Prolifération cellulaire , Intégrines/métabolisme , Intégrines/génétique , Transduction du signal , Mécanotransduction cellulaire
16.
Brief Bioinform ; 25(3)2024 Mar 27.
Article de Anglais | MEDLINE | ID: mdl-38739758

RÉSUMÉ

The complicated process of neuronal development is initiated early in life, with the genetic mechanisms governing this process yet to be fully elucidated. Single-cell RNA sequencing (scRNA-seq) is a potent instrument for pinpointing biomarkers that exhibit differential expression across various cell types and developmental stages. By employing scRNA-seq on human embryonic stem cells, we aim to identify differentially expressed genes (DEGs) crucial for early-stage neuronal development. Our focus extends beyond simply identifying DEGs. We strive to investigate the functional roles of these genes through enrichment analysis and construct gene regulatory networks to understand their interactions. Ultimately, this comprehensive approach aspires to illuminate the molecular mechanisms and transcriptional dynamics governing early human brain development. By uncovering potential links between these DEGs and intelligence, mental disorders, and neurodevelopmental disorders, we hope to shed light on human neurological health and disease. In this study, we have used scRNA-seq to identify DEGs involved in early-stage neuronal development in hESCs. The scRNA-seq data, collected on days 26 (D26) and 54 (D54), of the in vitro differentiation of hESCs to neurons were analyzed. Our analysis identified 539 DEGs between D26 and D54. Functional enrichment of those DEG biomarkers indicated that the up-regulated DEGs participated in neurogenesis, while the down-regulated DEGs were linked to synapse regulation. The Reactome pathway analysis revealed that down-regulated DEGs were involved in the interactions between proteins located in synapse pathways. We also discovered interactions between DEGs and miRNA, transcriptional factors (TFs) and DEGs, and between TF and miRNA. Our study identified 20 significant transcription factors, shedding light on early brain development genetics. The identified DEGs and gene regulatory networks are valuable resources for future research into human brain development and neurodevelopmental disorders.


Sujet(s)
Marqueurs biologiques , Encéphale , Réseaux de régulation génique , Cellules souches embryonnaires humaines , Analyse sur cellule unique , Humains , Analyse sur cellule unique/méthodes , Cellules souches embryonnaires humaines/métabolisme , Cellules souches embryonnaires humaines/cytologie , Encéphale/métabolisme , Encéphale/embryologie , Encéphale/cytologie , Marqueurs biologiques/métabolisme , Neurones/métabolisme , Neurones/cytologie , Différenciation cellulaire/génétique , RNA-Seq , Neurogenèse/génétique , Régulation de l'expression des gènes au cours du développement , Analyse de profil d'expression de gènes , Analyse de séquence d'ARN/méthodes , Analyse de l'expression du gène de la cellule unique
17.
Stem Cell Reports ; 19(5): 729-743, 2024 May 14.
Article de Anglais | MEDLINE | ID: mdl-38701777

RÉSUMÉ

Embryonic stem cells (ESCs) are defined as stem cells with self-renewing and differentiation capabilities. These unique properties are tightly regulated and controlled by complex genetic and molecular mechanisms, whose understanding is essential for both basic and translational research. A large number of studies have mostly focused on understanding the molecular mechanisms governing pluripotency and differentiation of ESCs, while the regulation of proliferation has received comparably less attention. Here, we investigate the role of ZZZ3 (zinc finger ZZ-type containing 3) in human ESCs homeostasis. We found that knockdown of ZZZ3 negatively impacts ribosome biogenesis, translation, and mTOR signaling, leading to a significant reduction in cell proliferation. This process occurs without affecting pluripotency, suggesting that ZZZ3-depleted ESCs enter a "dormant-like" state and that proliferation and pluripotency can be uncoupled also in human ESCs.


Sujet(s)
Prolifération cellulaire , Homéostasie , Cellules souches embryonnaires humaines , Ribosomes , Transduction du signal , Sérine-thréonine kinases TOR , Humains , Sérine-thréonine kinases TOR/métabolisme , Cellules souches embryonnaires humaines/métabolisme , Cellules souches embryonnaires humaines/cytologie , Ribosomes/métabolisme , Différenciation cellulaire/génétique , Biosynthèse des protéines
18.
Stem Cell Res ; 77: 103436, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38733811

RÉSUMÉ

Y chromosome deletion and karyotype abnormalities are commonly associated with congenital non-obstructive azoospermia, impairing spermatogenesis. Specifically, the deletion of the Y chromosome Azoospermia factor a (AZFa) has been identified in infertile males with severely impaired spermatogenesis. AZFa, encompassing megabase-scale of the Y chromosome region, poses challenges in modeling AZFa deletion-related male infertility using gene editing tools. Here, we successfully created an AZFa-deleted human embryonic stem cell line utilizing the CRISPR/Cas9 gene editing tool. Our analysis indicates the AZFa-deleted stem cell line holds promise for differentiation into ectoderm, mesoderm, and endoderm, highlighting its potential for further comprehensive study.


Sujet(s)
Cellules souches embryonnaires humaines , Humains , Cellules souches embryonnaires humaines/métabolisme , Cellules souches embryonnaires humaines/cytologie , Mâle , Lignée cellulaire , Chromosomes Y humains/génétique , Différenciation cellulaire , Systèmes CRISPR-Cas , Délétion de segment de chromosome , Édition de gène
19.
Stem Cell Res ; 77: 103438, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38776701

RÉSUMÉ

Here we present the generation of a human embryonic stem cell line with the potential to escape immune rejection upon transplantation to an alternate species, in this case sus scrofa. For in vivo detection the cells were modified by CRISPR-Cas9 to express human secreted alkaline phosphatase. To avoid immune recognition and subsequent rejection by host, genes encoding hB2M and hCIITA were knocked out and the porcine gene for CD47 was introduced. Upon editing and subsequent culture, cells maintained molecular and phenotypic pluripotent charactaristics and a normal karyotype supporting viability and functionality of the engineered cell line.


Sujet(s)
Systèmes CRISPR-Cas , Cellules souches embryonnaires humaines , Animaux , Humains , Cellules souches embryonnaires humaines/métabolisme , Cellules souches embryonnaires humaines/cytologie , Suidae , Lignée cellulaire
20.
Cell Commun Signal ; 22(1): 300, 2024 May 30.
Article de Anglais | MEDLINE | ID: mdl-38816763

RÉSUMÉ

Optimizing the efficiency of definitive endoderm (DE) differentiation is necessary for the generation of diverse organ-like structures. In this study, we used the small molecule inhibitor saracatinib (SAR) to enhance DE differentiation of human embryonic stem cells and induced pluripotent stem cells. SAR significantly improved DE differentiation efficiency at low concentrations. The interaction between SAR and Focal Adhesion Kinase (FAK) was explored through RNA-seq and molecular docking simulations, which further supported the inhibition of DE differentiation by p-FAK overexpression in SAR-treated cells. In addition, we found that SAR inhibited the nuclear translocation of Yes-associated protein (YAP), a downstream effector of FAK, which promoted DE differentiation. Moreover, the addition of SAR enabled a significant reduction in activin A (AA) from 50 to 10 ng/mL without compromising DE differentiation efficiency. For induction of the pancreatic lineage, 10 ng/ml AA combined with SAR at the DE differentiation stage yielded a comparative number of PDX1+/NKX6.1+ pancreatic progenitor cells to those obtained by 50 ng/ml AA treatment. Our study highlights SAR as a potential modulator that facilitates the cost-effective generation of DE cells and provides insight into the orchestration of cell fate determination.


Sujet(s)
Benzodioxoles , Différenciation cellulaire , Endoderme , Quinazolines , Transduction du signal , Humains , Différenciation cellulaire/effets des médicaments et des substances chimiques , Endoderme/effets des médicaments et des substances chimiques , Endoderme/cytologie , Endoderme/métabolisme , Benzodioxoles/pharmacologie , Transduction du signal/effets des médicaments et des substances chimiques , Quinazolines/pharmacologie , Facteurs de transcription/métabolisme , Cellules souches pluripotentes induites/effets des médicaments et des substances chimiques , Cellules souches pluripotentes induites/métabolisme , Cellules souches pluripotentes induites/cytologie , Protéines adaptatrices de la transduction du signal/métabolisme , Protéines de signalisation YAP/métabolisme , Focal adhesion kinase 1/métabolisme , Focal adhesion kinase 1/génétique , Cellules souches embryonnaires humaines/effets des médicaments et des substances chimiques , Cellules souches embryonnaires humaines/métabolisme , Cellules souches embryonnaires humaines/cytologie , Activines/métabolisme , Simulation de docking moléculaire
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...