Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 1.678
Filtrer
1.
Sci Rep ; 14(1): 18204, 2024 08 06.
Article de Anglais | MEDLINE | ID: mdl-39107470

RÉSUMÉ

A limited number of accessible and representative models of human trophoblast cells currently exist for the study of placentation. Current stem cell models involve either a transition through a naïve stem cell state or precise dynamic control of multiple growth factors and small-molecule cues. Here, we demonstrated that a simple five-day treatment of human induced pluripotent stem cells with two small molecules, retinoic acid (RA) and Wnt agonist CHIR 99021 (CHIR), resulted in rapid, synergistic upregulation of CDX2. Transcriptomic analysis of RA + CHIR-treated cells showed high similarity to primary trophectoderm cells. Multipotency was verified via further differentiation towards cells with syncytiotrophoblast or extravillous trophoblast features. RA + CHIR-treated cells were also assessed for the established criteria defining a trophoblast cell model, and they possess all the features necessary to be considered valid. Collectively, our data demonstrate a facile, scalable method for generating functional trophoblast-like cells in vitro to better understand the placenta.


Sujet(s)
Différenciation cellulaire , Cellules souches pluripotentes induites , Trétinoïne , Trophoblastes , Humains , Trophoblastes/effets des médicaments et des substances chimiques , Trophoblastes/métabolisme , Trophoblastes/cytologie , Trétinoïne/pharmacologie , Cellules souches pluripotentes induites/cytologie , Cellules souches pluripotentes induites/métabolisme , Cellules souches pluripotentes induites/effets des médicaments et des substances chimiques , Différenciation cellulaire/effets des médicaments et des substances chimiques , Pyridines/pharmacologie , Femelle , Facteurs de transcription CDX2/métabolisme , Facteurs de transcription CDX2/génétique , Pyrimidines/pharmacologie , Grossesse , Modèles biologiques , Cellules cultivées
2.
Cells ; 13(15)2024 Jul 31.
Article de Anglais | MEDLINE | ID: mdl-39120325

RÉSUMÉ

Neonicotinoids are synthetic, nicotine-derived insecticides used worldwide to protect crops and domestic animals from pest insects. The reported evidence shows that they are also able to interact with mammalian nicotine receptors (nAChRs), triggering detrimental responses in cultured neurons. Exposure to high neonicotinoid levels during the fetal period induces neurotoxicity in animal models. Considering the persistent exposure to these insecticides and the key role of nAChRs in brain development, their potential neurotoxicity on mammal central nervous system (CNS) needs further investigations. We studied here the neurodevelopmental effects of different generations of neonicotinoids on CNS cells in mouse fetal brain and primary cultures and in neuronal cells and organoids obtained from human induced pluripotent stem cells (iPSC). Neonicotinoids significantly affect neuron viability, with imidacloprid (IMI) inducing relevant alterations in synaptic protein expression, neurofilament structures, and microglia activation in vitro, and in the brain of prenatally exposed mouse fetuses. IMI induces neurotoxic effects also on developing human iPSC-derived neurons and cortical organoids. Collectively, the current findings show that neonicotinoids might induce impairment during neuro/immune-development in mouse and human CNS cells and provide new insights in the characterization of risk for the exposure to this class of pesticides.


Sujet(s)
Cellules souches pluripotentes induites , Néonicotinoïdes , Neurones , Organoïdes , Animaux , Cellules souches pluripotentes induites/effets des médicaments et des substances chimiques , Cellules souches pluripotentes induites/métabolisme , Cellules souches pluripotentes induites/cytologie , Humains , Néonicotinoïdes/toxicité , Neurones/effets des médicaments et des substances chimiques , Neurones/métabolisme , Organoïdes/effets des médicaments et des substances chimiques , Souris , Pesticides/toxicité , Cellules cultivées , Encéphale/effets des médicaments et des substances chimiques , Femelle , Composés nitrés/toxicité
3.
ACS Nano ; 18(33): 22104-22121, 2024 Aug 20.
Article de Anglais | MEDLINE | ID: mdl-39102149

RÉSUMÉ

Digital light processing (DLP) bioprinting, known for its high resolution and speed, enables the precise spatial arrangement of biomaterials and has become integral to advancing tissue engineering and regenerative medicine. Nevertheless, inherent light scattering presents significant challenges to the fidelity of the manufactured structures. Herein, we introduce a photoinhibition strategy based on Rutin nanoparticles (Rnps), attenuating the scattering effect through concurrent photoabsorption and free radical reaction. Compared to the widely utilized biocompatible photoabsorber tartrazine (Tar), Rnps-infused bioink enhanced printing speed (1.9×), interlayer homogeneity (58% less overexposure), resolution (38.3% improvement), and print tolerance (3× high-precision range) to minimize trial-and-error. The biocompatible and antioxidative Rnps significantly improved cytocompatibility and exhibited resistance to oxidative stress-induced damage in printed constructs, as demonstrated with human induced pluripotent stem cell-derived endothelial cells (hiPSC-ECs). The related properties of Rnps facilitate the facile fabrication of multimaterial, heterogeneous, and cell-laden biomimetic constructs with intricate structures. The developed photoinhibitor, with its profound adaptability, promises wide biomedical applications tailored to specific biological requirements.


Sujet(s)
Bio-impression , Lumière , Nanoparticules , Rutoside , Humains , Rutoside/composition chimique , Rutoside/pharmacologie , Nanoparticules/composition chimique , Ingénierie tissulaire , Matériaux biocompatibles/composition chimique , Matériaux biocompatibles/pharmacologie , Cellules souches pluripotentes induites/cytologie , Cellules souches pluripotentes induites/effets des médicaments et des substances chimiques , Cellules endothéliales/effets des médicaments et des substances chimiques , Stress oxydatif/effets des médicaments et des substances chimiques
4.
Sci Rep ; 14(1): 19075, 2024 08 17.
Article de Anglais | MEDLINE | ID: mdl-39154055

RÉSUMÉ

Human induced pluripotent stem cell-derived sensory neuron (iPSC-dSN) models are a valuable resource for the study of neurotoxicity but are affected by poor replicability and reproducibility, often due to a lack of optimization. Here, we identify experimental factors related to culture conditions that substantially impact cellular drug response in vitro and determine optimal conditions for improved replicability and reproducibility. Treatment duration and cell seeding density were both found to be significant factors, while cell line differences also contributed to variation. A replicable dose-response in viability was demonstrated after 48-h exposure to docetaxel or paclitaxel. Additionally, a replicable dose-dependent reduction in neurite outgrowth was demonstrated, demonstrating the applicability of the model for the examination of additional phenotypes. Overall, we have established an optimized iPSC-dSN model for the study of taxane-induced neurotoxicity.


Sujet(s)
Survie cellulaire , Cellules souches pluripotentes induites , Cellules réceptrices sensorielles , Taxoïdes , Humains , Cellules souches pluripotentes induites/effets des médicaments et des substances chimiques , Cellules souches pluripotentes induites/cytologie , Taxoïdes/pharmacologie , Cellules réceptrices sensorielles/effets des médicaments et des substances chimiques , Survie cellulaire/effets des médicaments et des substances chimiques , Docetaxel/pharmacologie , Syndromes neurotoxiques/étiologie , Composés pontés/pharmacologie , Différenciation cellulaire/effets des médicaments et des substances chimiques , Paclitaxel/pharmacologie , Paclitaxel/toxicité , Lignée cellulaire , Cellules cultivées
5.
J Pharmacol Sci ; 156(2): 69-76, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39179336

RÉSUMÉ

Despite the widespread recognition of the global concern regarding the onset of cardiovascular diseases in a significant number of patients following cancer treatment, definitive strategies for prevention and treatment remain elusive. In this study, we established systems to evaluate the influence of anti-cancer drugs on the quality control of mitochondria, pivotal for energy metabolism, using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Osimertinib, an epidermal growth factor receptor tyrosine kinase inhibitor used for treatment in lung cancer, reportedly increases the risk of cardiovascular disease. However, its underlying mechanism is largely unknown. Here, we found that the treatment of hiPSC-CMs with osimertinib and doxorubicin, but not trastuzumab and cisplatin, revealed a concentration-dependent impairment of respiratory function accompanied by mitochondrial fission. We previously reported the significant role of sulfur metabolism in maintaining mitochondrial quality in the heart. Co-treatment with various inorganic sulfur donors (Na2S, Na2S2, Na2S3) alongside anti-cancer drugs demonstrated that Na2S attenuated the cardiotoxicity of osimertinib but not doxorubicin. Osimertinib decreased intracellular reduced sulfur levels, while Na2S treatment suppressed the sulfur leakage, suggesting its potential in mitigating osimertinib-induced cardiotoxicity. These results imply the prospect of inorganic sulfides, such as Na2S, as a seed for precision pharmacotherapy to alleviate osimertinib's cardiotoxic effects.


Sujet(s)
Acrylamides , Dérivés de l'aniline , Antinéoplasiques , Doxorubicine , Cellules souches pluripotentes induites , Mitochondries , Myocytes cardiaques , Sulfures , Humains , Acrylamides/pharmacologie , Myocytes cardiaques/effets des médicaments et des substances chimiques , Myocytes cardiaques/métabolisme , Dérivés de l'aniline/pharmacologie , Cellules souches pluripotentes induites/effets des médicaments et des substances chimiques , Antinéoplasiques/effets indésirables , Antinéoplasiques/pharmacologie , Doxorubicine/effets indésirables , Sulfures/pharmacologie , Mitochondries/effets des médicaments et des substances chimiques , Mitochondries/métabolisme , Cardiotoxicité/prévention et contrôle , Cardiotoxicité/étiologie , Cellules cultivées , Dynamique mitochondriale/effets des médicaments et des substances chimiques , Soufre , Indoles , Pyrimidines
6.
Biomed Pharmacother ; 178: 117270, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39126773

RÉSUMÉ

The blood supply in the retina ensures photoreceptor function and maintains regular vision. Leber's hereditary optic neuropathy (LHON), caused by the mitochondrial DNA mutations that deteriorate complex I activity, is characterized by progressive vision loss. Although some reports indicated retinal vasculature abnormalities as one of the comorbidities in LHON, the paracrine influence of LHON-affected retinal ganglion cells (RGCs) on vascular endothelial cell physiology remains unclear. To address this, we established an in vitro model of mitochondrial complex I deficiency using induced pluripotent stem cell-derived RGCs (iPSC-RGCs) treated with a mitochondrial complex I inhibitor rotenone (Rot) to recapitulate LHON pathologies. The secretomes from Rot-treated iPSC-RGCs (Rot-iPSC-RGCs) were collected, and their treatment effect on human umbilical vein endothelial cells (HUVECs) was studied. Rot induced LHON-like characteristics in iPSC-RGCs, including decreased mitochondrial complex I activity and membrane potential, and increased mitochondrial reactive oxygen species (ROS) and apoptosis, leading to mitochondrial dysfunction. When HUVECs were exposed to conditioned media (CM) from Rot-iPSC-RGCs, the angiogenesis of HUVECs was suppressed compared to those treated with CM from control iPSC-RGCs (Ctrl-iPSC-RGCs). Angiogenesis-related proteins were altered in the secretomes from Rot-iPSC-RGC-derived CM, particularly angiopoietin, MMP-9, uPA, collagen XVIII, and VEGF were reduced. Notably, GeneMANIA analysis indicated that VEGFA emerged as the pivotal angiogenesis-related protein among the identified proteins secreted by health iPSC-RGCs but reduced in the secretomes from Rot-iPSC-RGCs. Quantitative real-time PCR and western blots confirmed the reduction of VEGFA at both transcription and translation levels, respectively. Our study reveals that Rot-iPSC-RGCs establish a microenvironment to diminish the angiogenic potential of vascular cells nearby, shedding light on the paracrine regulation of LHON-affected RGCs on retinal vasculature.


Sujet(s)
Cellules endothéliales de la veine ombilicale humaine , Cellules souches pluripotentes induites , Atrophie optique héréditaire de Leber , Cellules ganglionnaires rétiniennes , Humains , Atrophie optique héréditaire de Leber/métabolisme , Atrophie optique héréditaire de Leber/anatomopathologie , Atrophie optique héréditaire de Leber/génétique , Cellules souches pluripotentes induites/effets des médicaments et des substances chimiques , Cellules souches pluripotentes induites/métabolisme , Cellules endothéliales de la veine ombilicale humaine/métabolisme , Cellules endothéliales de la veine ombilicale humaine/effets des médicaments et des substances chimiques , Cellules ganglionnaires rétiniennes/métabolisme , Cellules ganglionnaires rétiniennes/effets des médicaments et des substances chimiques , Cellules ganglionnaires rétiniennes/anatomopathologie , Mitochondries/effets des médicaments et des substances chimiques , Mitochondries/métabolisme , Phénotype , Espèces réactives de l'oxygène/métabolisme , Roténone/pharmacologie , Milieux de culture conditionnés/pharmacologie , Apoptose/effets des médicaments et des substances chimiques , Complexe I de la chaîne respiratoire/métabolisme , Potentiel de membrane mitochondriale/effets des médicaments et des substances chimiques , Néovascularisation pathologique/métabolisme ,
7.
Nat Commun ; 15(1): 5571, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38956041

RÉSUMÉ

Statin drugs lower blood cholesterol levels for cardiovascular disease prevention. Women are more likely than men to experience adverse statin effects, particularly new-onset diabetes (NOD) and muscle weakness. Here we find that impaired glucose homeostasis and muscle weakness in statin-treated female mice are associated with reduced levels of the omega-3 fatty acid, docosahexaenoic acid (DHA), impaired redox tone, and reduced mitochondrial respiration. Statin adverse effects are prevented in females by administering fish oil as a source of DHA, by reducing dosage of the X chromosome or the Kdm5c gene, which escapes X chromosome inactivation and is normally expressed at higher levels in females than males. As seen in female mice, we find that women experience more severe reductions than men in DHA levels after statin administration, and that DHA levels are inversely correlated with glucose levels. Furthermore, induced pluripotent stem cells from women who developed NOD exhibit impaired mitochondrial function when treated with statin, whereas cells from men do not. These studies identify X chromosome dosage as a genetic risk factor for statin adverse effects and suggest DHA supplementation as a preventive co-therapy.


Sujet(s)
Acide docosahexaénoïque , Inhibiteurs de l'hydroxyméthylglutaryl-CoA réductase , Mitochondries , Chromosome X , Animaux , Femelle , Inhibiteurs de l'hydroxyméthylglutaryl-CoA réductase/effets indésirables , Mâle , Souris , Mitochondries/effets des médicaments et des substances chimiques , Mitochondries/métabolisme , Humains , Chromosome X/génétique , Acide docosahexaénoïque/pharmacologie , Cellules souches pluripotentes induites/métabolisme , Cellules souches pluripotentes induites/effets des médicaments et des substances chimiques , Dosage génique , Souris de lignée C57BL , Glycémie/métabolisme , Glycémie/effets des médicaments et des substances chimiques , Glucose/métabolisme , Diabète/génétique , Diabète/induit chimiquement , Diabète/traitement médicamenteux , Diabète/métabolisme
8.
Curr Protoc ; 4(7): e1101, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38980221

RÉSUMÉ

Cardiovascular diseases have emerged as one of the leading causes of human mortality, but the discovery of new drugs has been hindered by the absence of suitable in vitro platforms. In recent decades, continuously refined protocols for differentiating human induced pluripotent stem cells (hiPSCs) into hiPSC-derived cardiomyocytes (hiPSC-CMs) have significantly advanced disease modeling and drug screening; however, this has led to an increasing need to monitor the function of hiPSC-CMs. The precise regulation of action potentials (APs) and intracellular calcium (Ca2+) transients is critical for proper excitation-contraction coupling and cardiomyocyte function. These important parameters are usually adversely affected in cardiovascular diseases or under cardiotoxic conditions and can be measured using optical imaging-based techniques. However, this procedure is complex and technologically challenging. We have adapted the IonOptix system to simultaneously measure APs and Ca2+ transients in hiPSC-CMs loaded with the fluorescent dyes FluoVolt and Rhod 2, respectively. This system serves as a powerful high-throughput platform to facilitate the discovery of new compounds to treat cardiovascular diseases with the cellular phenotypes of abnormal APs and Ca2+ handling. Here, we present a comprehensive protocol for hiPSC-CM preparation, device setup, optical imaging, and data analysis. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Maintenance and seeding of hiPSC-CMs Basic Protocol 2: Simultaneous detection of action potentials and Ca2+ transients in hiPSC-CMs.


Sujet(s)
Potentiels d'action , Calcium , Cellules souches pluripotentes induites , Myocytes cardiaques , Imagerie optique , Humains , Cellules souches pluripotentes induites/métabolisme , Cellules souches pluripotentes induites/cytologie , Cellules souches pluripotentes induites/effets des médicaments et des substances chimiques , Myocytes cardiaques/métabolisme , Myocytes cardiaques/effets des médicaments et des substances chimiques , Potentiels d'action/effets des médicaments et des substances chimiques , Calcium/métabolisme , Imagerie optique/méthodes , Différenciation cellulaire/effets des médicaments et des substances chimiques
9.
Toxicology ; 506: 153885, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39004335

RÉSUMÉ

Cannabidiol (CBD) has been reported to induce hepatotoxicity in clinical trials and research studies; however, little is known about the safety of other nonintoxicating cannabinoids. New approach methodologies (NAMs) based on bioinformatic analysis of high-throughput transcriptomic data are gaining increasing importance in risk assessment and regulatory decision-making of data-poor chemicals. In the current study, we conducted a concentration response transcriptomic analysis of hemp extract and its four major constituent cannabinoids [CBD, cannabichromene (CBC), cannabigerol (CBG), and cannabinol (CBN)] in hepatocytes derived from human induced pluripotent stem cells (iPSCs). Each compound impacted a distinctive combination of biological functions and pathways. However, all the cannabinoids impaired liver metabolism and caused oxidative stress in the cells. Benchmark concentration (BMC) analysis showed potencies in transcriptional activity of the cannabinoids were in the order of CBN > CBD > CBC > CBG, consistent with the order of their cytotoxicity IC50 values. Patterns of transcriptomic changes induced by hemp extract and its median overall BMC were very similar to CBD but differed significantly from other cannabinoids, suggesting that potential adverse effects of hemp extract were largely due to its major constituent CBD. Lastly, transcriptomic point-of-departure (tPoD) values were determined for each of the compounds, with the value for CBD (0.106 µM) being concordant with a previously reported one derived from apical endpoints of clinical and animal studies. Taken together, the current study demonstrates the potential utility of transcriptomic BMC analysis as a NAM for hazard assessment of data-poor chemicals, improves our understanding of the possible health effects of hemp extract and its constituent cannabinoids, and provides important tPoD data that could contribute to inform human safety assessment of these cannabinoid compounds.


Sujet(s)
Cannabinoïdes , Cannabis , Hépatocytes , Extraits de plantes , Humains , Cannabis/toxicité , Cannabinoïdes/toxicité , Extraits de plantes/toxicité , Hépatocytes/effets des médicaments et des substances chimiques , Hépatocytes/métabolisme , Lésions hépatiques dues aux substances/étiologie , Cellules souches pluripotentes induites/effets des médicaments et des substances chimiques , Cellules souches pluripotentes induites/métabolisme , Transcriptome/effets des médicaments et des substances chimiques , Relation dose-effet des médicaments , Stress oxydatif/effets des médicaments et des substances chimiques
10.
ACS Appl Mater Interfaces ; 16(28): 36030-36046, 2024 Jul 17.
Article de Anglais | MEDLINE | ID: mdl-38951110

RÉSUMÉ

Differentiation of induced pluripotent stem cells (iPSCs) is an extremely complex process that has proven difficult to study. In this research, we utilized nanotopography to elucidate details regarding iPSC differentiation by developing a nanodot platform consisting of nanodot arrays of increasing diameter. Subjecting iPSCs cultured on the nanodot platform to a cardiomyocyte (CM) differentiation protocol revealed several significant gene expression profiles that were associated with poor differentiation. The observed expression trends were used to select existing small-molecule drugs capable of modulating differentiation efficiency. BRD K98 was repurposed to inhibit CM differentiation, while iPSCs treated with NSC-663284, carmofur, and KPT-330 all exhibited significant increases in not only CM marker expression but also spontaneous beating, suggesting improved CM differentiation. In addition, quantitative polymerase chain reaction was performed to determine the gene regulation responsible for modulating differentiation efficiency. Multiple genes involved in extracellular matrix remodeling were correlated with a CM differentiation efficiency, while genes involved in the cell cycle exhibited contrasting expression trends that warrant further studies. The results suggest that expression profiles determined via short time-series expression miner analysis of nanodot-cultured iPSC differentiation can not only reveal drugs capable of enhancing differentiation efficiency but also highlight crucial sets of genes related to processes such as extracellular matrix remodeling and the cell cycle that can be targeted for further investigation. Our findings confirm that the nanodot platform can be used to reveal complex mechanisms behind iPSC differentiation and could be an indispensable tool for optimizing iPSC technology for clinical applications.


Sujet(s)
Différenciation cellulaire , Cellules souches pluripotentes induites , Myocytes cardiaques , Cellules souches pluripotentes induites/cytologie , Cellules souches pluripotentes induites/effets des médicaments et des substances chimiques , Cellules souches pluripotentes induites/métabolisme , Différenciation cellulaire/effets des médicaments et des substances chimiques , Myocytes cardiaques/cytologie , Myocytes cardiaques/métabolisme , Myocytes cardiaques/effets des médicaments et des substances chimiques , Humains , Nanoparticules/composition chimique , Cellules cultivées , Nanostructures/composition chimique
13.
Chem Res Toxicol ; 37(8): 1428-1444, 2024 Aug 19.
Article de Anglais | MEDLINE | ID: mdl-39046974

RÉSUMÉ

Environmental chemicals may contribute to the global burden of cardiovascular disease, but experimental data are lacking to determine which substances pose the greatest risk. Human-induced pluripotent stem cell (iPSC)-derived cardiomyocytes are a high-throughput cardiotoxicity model that is widely used to test drugs and chemicals; however, most studies focus on exploring electro-physiological readouts. Gene expression data may provide additional molecular insights to be used for both mechanistic interpretation and dose-response analyses. Therefore, we hypothesized that both transcriptomic and functional data in human iPSC-derived cardiomyocytes may be used as a comprehensive screening tool to identify potential cardiotoxicity hazards and risks of the chemicals. To test this hypothesis, we performed concentration-response analysis of 464 chemicals from 12 classes, including both pharmaceuticals and nonpharmaceutical substances. Functional effects (beat frequency, QT prolongation, and asystole), cytotoxicity, and whole transcriptome response were evaluated. Points of departure were derived from phenotypic and transcriptomic data, and risk characterization was performed. Overall, 244 (53%) substances were active in at least one phenotype; as expected, pharmaceuticals with known cardiac liabilities were the most active. Positive chronotropy was the functional phenotype activated by the largest number of tested chemicals. No chemical class was particularly prone to pose a potential hazard to cardiomyocytes; a varying proportion (10-44%) of substances in each class had effects on cardiomyocytes. Transcriptomic data showed that 69 (15%) substances elicited significant gene expression changes; most perturbed pathways were highly relevant to known key characteristics of human cardiotoxicants. The bioactivity-to-exposure ratios showed that phenotypic- and transcriptomic-based POD led to similar results for risk characterization. Overall, our findings demonstrate how the integrative use of in vitro transcriptomic and phenotypic data from iPSC-derived cardiomyocytes not only offers a complementary approach for hazard and risk prioritization, but also enables mechanistic interpretation of the in vitro test results to increase confidence in decision-making.


Sujet(s)
Cellules souches pluripotentes induites , Myocytes cardiaques , Transcriptome , Humains , Myocytes cardiaques/effets des médicaments et des substances chimiques , Myocytes cardiaques/métabolisme , Myocytes cardiaques/cytologie , Cellules souches pluripotentes induites/effets des médicaments et des substances chimiques , Cellules souches pluripotentes induites/métabolisme , Cellules souches pluripotentes induites/cytologie , Transcriptome/effets des médicaments et des substances chimiques , Polluants environnementaux/toxicité , Relation dose-effet des médicaments , Cellules cultivées
14.
Neuropharmacology ; 258: 110062, 2024 Nov 01.
Article de Anglais | MEDLINE | ID: mdl-38972371

RÉSUMÉ

BACKGROUND: and Purpose: Chemotherapy-induced peripheral neuropathy (CIPN) constitutes a significant health problem due to the increasing prevalence and lack of therapies for treatment and prevention. While pivotal for routine cancer treatment, paclitaxel and vincristine frequently cause CIPN and impact the quality of life among cancer patients and survivors. Here, we investigate molecular mechanisms and drug transport in CIPN. EXPERIMENTAL APPROACH: Human sensory neurons were derived from induced pluripotent stem cells (iPSC-SNs), which were characterized using flow cytometry and immunolabeling. These iPSC-SNs were exposed to different concentrations of the two microtubule-targeting agents, paclitaxel and vincristine, with and without pre-exposure to inhibitors and inducers of efflux transporters. Neuronal networks were quantified via fluorescent staining against sensory neuron markers. Transcriptional effects of the chemotherapeutics were examined using quantitative polymerase chain reactions (qPCR). KEY RESULTS: Paclitaxel exposure resulted in axonal retraction and thickening, while vincristine caused fragmentation and abolishment of axons. Both agents increased the mRNA expression of the pain receptor, transient receptor potential vanilloid (TRPV1), and highly induced neuronal damage, as measured by activating transcription factor 3 (ATF3) mRNA. iPSC-SNs express the efflux transporters, P-glycoprotein (P-gp, encoded by ABCB1) and multidrug resistance-associated protein 1 (MPR1, encoded by ABCC1). Modulation of efflux transporters indicate that P-gp and MRP1 play a role in modulating neuronal accumulation and neurotoxicity in preliminary experiments. CONCLUSION: and Implications: iPSC-SNs are a valuable and robust model to study the role of efflux transporters and other mechanistic targets in CIPN. Efflux transporters may play a role in CIPN pathogenesis as they regulate the disposition of chemotherapy to the peripheral nervous system, and they may present potential therapeutic targets for CIPN.


Sujet(s)
Cellules souches pluripotentes induites , Protéines associées à la multirésistance aux médicaments , Paclitaxel , Neuropathies périphériques , Cellules réceptrices sensorielles , Vincristine , Cellules souches pluripotentes induites/effets des médicaments et des substances chimiques , Cellules souches pluripotentes induites/métabolisme , Humains , Paclitaxel/toxicité , Neuropathies périphériques/induit chimiquement , Neuropathies périphériques/métabolisme , Cellules réceptrices sensorielles/effets des médicaments et des substances chimiques , Cellules réceptrices sensorielles/métabolisme , Protéines associées à la multirésistance aux médicaments/métabolisme , Protéines associées à la multirésistance aux médicaments/génétique , Antinéoplasiques/effets indésirables , Antinéoplasiques/toxicité , Canaux cationiques TRPV/métabolisme , Sous-famille B de transporteurs à cassette liant l'ATP/métabolisme , Sous-famille B de transporteurs à cassette liant l'ATP/génétique , Cellules cultivées
15.
J Mol Cell Cardiol ; 194: 105-117, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39019395

RÉSUMÉ

A better understanding of the underlying pathomechanisms of diastolic dysfunction is crucial for the development of targeted therapeutic options with the aim to increase the patients' quality of life. In order to shed light on the processes involved, suitable models are required. Here, effects of endothelin-1 (ET-1) treatment on cardiomyocytes derived from human induced pluripotent stem cells (hiPSCs) were investigated. While it is well established, that ET-1 treatment induces hypertrophy in cardiomyocytes, resulting changes in cell mechanics and contractile behavior with focus on relaxation have not been examined before. Cardiomyocytes were treated with 10 nM of ET-1 for 24 h and 48 h, respectively. Hypertrophy was confirmed by real-time deformability cytometry (RT-DC) which was also used to assess the mechanical properties of cardiomyocytes. For investigation of the contractile behavior, 24 h phase contrast video microscopy was applied. To get a deeper insight into changes on the molecular biological level, gene expression analysis was performed using the NanoString nCounter® cardiovascular disease panel. Besides an increased cell size, ET-1 treated cardiomyocytes are stiffer and show an impaired relaxation. Gene expression patterns in ET-1 treated hiPSC derived cardiomyocytes showed that pathways associated with cardiovascular diseases, cardiac hypertrophy and extracellular matrix were upregulated while those associated with fatty acid metabolism were downregulated. We conclude that alterations in cardiomyocytes after ET-1 treatment go far beyond hypertrophy and represent a useful model for diastolic dysfunction.


Sujet(s)
Diastole , Endothéline-1 , Cellules souches pluripotentes induites , Contraction myocardique , Myocytes cardiaques , Endothéline-1/métabolisme , Endothéline-1/pharmacologie , Myocytes cardiaques/métabolisme , Myocytes cardiaques/effets des médicaments et des substances chimiques , Humains , Cellules souches pluripotentes induites/métabolisme , Cellules souches pluripotentes induites/effets des médicaments et des substances chimiques , Cellules souches pluripotentes induites/cytologie , Contraction myocardique/effets des médicaments et des substances chimiques , Diastole/effets des médicaments et des substances chimiques , Régulation de l'expression des gènes/effets des médicaments et des substances chimiques , Phénomènes biomécaniques , Différenciation cellulaire/effets des médicaments et des substances chimiques
16.
Cell Mol Life Sci ; 81(1): 315, 2024 Jul 27.
Article de Anglais | MEDLINE | ID: mdl-39066803

RÉSUMÉ

Chemotherapy-induced peripheral neuropathy (CIPN) is a disabling side effect of cancer chemotherapy that can often limit treatment options for cancer patients or have life-long neurodegenerative consequences that reduce the patient's quality of life. CIPN is caused by the detrimental actions of various chemotherapeutic agents on peripheral axons. Currently, there are no approved preventative measures or treatment options for CIPN, highlighting the need for the discovery of novel therapeutics and improving our understanding of disease mechanisms. In this study, we utilized human-induced pluripotent stem cell (hiPSC)-derived motor neurons as a platform to mimic axonal damage after treatment with vincristine, a chemotherapeutic used for the treatment of breast cancers, osteosarcomas, and leukemia. We screened a total of 1902 small molecules for neuroprotective properties in rescuing vincristine-induced axon growth deficits. From our primary screen, we identified 38 hit compounds that were subjected to secondary dose response screens. Six compounds showed favorable pharmacological profiles - AZD7762, A-674563, Blebbistatin, Glesatinib, KW-2449, and Pelitinib, all novel neuroprotectants against vincristine toxicity to neurons. In addition, four of these six compounds also showed efficacy against vincristine-induced growth arrest in human iPSC-derived sensory neurons. In this study, we utilized high-throughput screening of a large library of compounds in a therapeutically relevant assay. We identified several novel compounds that are efficacious in protecting different neuronal subtypes from the toxicity induced by a common chemotherapeutic agent, vincristine which could have therapeutic potential in the clinic.


Sujet(s)
Cellules souches pluripotentes induites , Neuroprotecteurs , Vincristine , Vincristine/pharmacologie , Humains , Cellules souches pluripotentes induites/effets des médicaments et des substances chimiques , Cellules souches pluripotentes induites/métabolisme , Cellules souches pluripotentes induites/cytologie , Neuroprotecteurs/pharmacologie , Motoneurones/effets des médicaments et des substances chimiques , Motoneurones/anatomopathologie , Motoneurones/métabolisme , Axones/effets des médicaments et des substances chimiques , Axones/métabolisme , Axones/anatomopathologie , Neurones/effets des médicaments et des substances chimiques , Neurones/métabolisme , Neurones/anatomopathologie , Cellules cultivées , Neuropathies périphériques/induit chimiquement , Neuropathies périphériques/anatomopathologie , Neuropathies périphériques/traitement médicamenteux
17.
ACS Biomater Sci Eng ; 10(7): 4525-4540, 2024 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-38973308

RÉSUMÉ

Lumenogenesis within the epiblast represents a critical step in early human development, priming the embryo for future specification and patterning events. However, little is known about the specific mechanisms that drive this process due to the inability to study the early embryo in vivo. While human pluripotent stem cell (hPSC)-based models recapitulate many aspects of the human epiblast, most approaches for generating these 3D structures rely on ill-defined, reconstituted basement membrane matrices. Here, we designed synthetic, nonadhesive polyethylene glycol (PEG) hydrogel matrices to better understand the role of matrix mechanical cues in iPSC morphogenesis, specifically elastic modulus. First, we identified a narrow range of hydrogel moduli that were conducive to the hPSC viability, pluripotency, and differentiation. We then used this platform to investigate the effects of the hydrogel modulus on lumenogenesis, finding that matrices of intermediate stiffness yielded the most epiblast-like aggregates. Conversely, stiffer matrices impeded lumen formation and apico-basal polarization, while the softest matrices yielded polarized but aberrant structures. Our approach offers a simple, modular platform for modeling the human epiblast and investigating the role of matrix cues in its morphogenesis.


Sujet(s)
Différenciation cellulaire , Hydrogels , Morphogenèse , Polyéthylène glycols , Humains , Hydrogels/composition chimique , Hydrogels/pharmacologie , Polyéthylène glycols/composition chimique , Polyéthylène glycols/pharmacologie , Différenciation cellulaire/effets des médicaments et des substances chimiques , Cellules souches pluripotentes/cytologie , Cellules souches pluripotentes/effets des médicaments et des substances chimiques , Feuillets embryonnaires/cytologie , Module d'élasticité , Cellules souches pluripotentes induites/cytologie , Cellules souches pluripotentes induites/effets des médicaments et des substances chimiques
18.
Int J Mol Sci ; 25(12)2024 Jun 15.
Article de Anglais | MEDLINE | ID: mdl-38928302

RÉSUMÉ

An accumulation of reactive oxygen species (ROS) in cardiomyocytes can induce pro-arrhythmogenic late Na+ currents by removing the inactivation of voltage-gated Na+ channels including the tetrodotoxin (TTX)-resistant cardiac α-subunit Nav1.5 as well as TTX-sensitive α-subunits like Nav1.2 and Nav1.3. Here, we explored oxidant-induced late Na+ currents in mouse cardiomyocytes and human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) as well as in HEK 293 cells expressing Nav1.2, Nav1.3, or Nav1.5. Na+ currents in mouse cardiomyocytes and hiPSC-CMs treated with the oxidant chloramine T (ChT) developed a moderate reduction in peak current amplitudes accompanied by large late Na+ currents. While ChT induced a strong reduction in peak current amplitudes but only small persistent currents on Nav1.5, both Nav1.2 and Nav1.3 produced increased peak current amplitudes and large persistent currents following oxidation. TTX (300 nM) blocked ChT-induced late Na+ currents significantly stronger as compared to peak Na+ currents in both mouse cardiomyocytes and hiPSC-CMs. Similar differences between Nav1.2, Nav1.3, and Nav1.5 regarding ROS sensitivity were also evident when oxidation was induced with UVA-light (380 nm) or the cysteine-selective oxidant nitroxyl (HNO). To conclude, our data on TTX-sensitive Na+ channels expressed in cardiomyocytes may be relevant for the generation of late Na+ currents following oxidative stress.


Sujet(s)
Cellules souches pluripotentes induites , Myocytes cardiaques , Oxydoréduction , Tétrodotoxine , Myocytes cardiaques/métabolisme , Myocytes cardiaques/effets des médicaments et des substances chimiques , Humains , Animaux , Tétrodotoxine/pharmacologie , Souris , Cellules souches pluripotentes induites/métabolisme , Cellules souches pluripotentes induites/cytologie , Cellules souches pluripotentes induites/effets des médicaments et des substances chimiques , Cellules HEK293 , Chloramines/pharmacologie , Espèces réactives de l'oxygène/métabolisme , Canal sodique voltage-dépendant NAV1.5/métabolisme , Sodium/métabolisme , Potentiels d'action/effets des médicaments et des substances chimiques , Composés tosyliques
19.
Nat Commun ; 15(1): 5427, 2024 Jun 26.
Article de Anglais | MEDLINE | ID: mdl-38926342

RÉSUMÉ

Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) are powerful in vitro models to study the mechanisms underlying cardiomyopathies and cardiotoxicity. Quantification of the contractile function in single hiPSC-CMs at high-throughput and over time is essential to disentangle how cellular mechanisms affect heart function. Here, we present CONTRAX, an open-access, versatile, and streamlined pipeline for quantitative tracking of the contractile dynamics of single hiPSC-CMs over time. Three software modules enable: parameter-based identification of single hiPSC-CMs; automated video acquisition of >200 cells/hour; and contractility measurements via traction force microscopy. We analyze >4,500 hiPSC-CMs over time in the same cells under orthogonal conditions of culture media and substrate stiffnesses; +/- drug treatment; +/- cardiac mutations. Using undirected clustering, we reveal converging maturation patterns, quantifiable drug response to Mavacamten and significant deficiencies in hiPSC-CMs with disease mutations. CONTRAX empowers researchers with a potent quantitative approach to develop cardiac therapies.


Sujet(s)
Cellules souches pluripotentes induites , Contraction myocardique , Myocytes cardiaques , Logiciel , Cellules souches pluripotentes induites/cytologie , Cellules souches pluripotentes induites/effets des médicaments et des substances chimiques , Humains , Myocytes cardiaques/effets des médicaments et des substances chimiques , Myocytes cardiaques/cytologie , Myocytes cardiaques/physiologie , Contraction myocardique/effets des médicaments et des substances chimiques , Contraction myocardique/physiologie , Différenciation cellulaire/effets des médicaments et des substances chimiques , Analyse sur cellule unique/méthodes , Cellules cultivées
20.
Biomolecules ; 14(6)2024 Jun 13.
Article de Anglais | MEDLINE | ID: mdl-38927091

RÉSUMÉ

BACKGROUND: Induced pluripotent stem cell (iPSC) based neuronal differentiation is valuable for studying neuropsychiatric disorders and pharmacological mechanisms at the cellular level. We aimed to examine the effects of typical and atypical antipsychotics on human iPSC-derived neural progenitor cells (NPCs). METHODS: Proliferation and neurite outgrowth were measured by live cell imaging, and gene expression levels related to neuronal identity were analyzed by RT-QPCR and immunocytochemistry during differentiation into hippocampal dentate gyrus granule cells following treatment of low- and high-dose antipsychotics (haloperidol, olanzapine, and risperidone). RESULTS: Antipsychotics did not modify the growth properties of NPCs after 3 days of treatment. However, the characteristics of neurite outgrowth changed significantly in response to haloperidol and olanzapine. After three weeks of differentiation, mRNA expression levels of the selected neuronal markers increased (except for MAP2), while antipsychotics caused only subtle changes. Additionally, we found no changes in MAP2 or GFAP protein expression levels as a result of antipsychotic treatment. CONCLUSIONS: Altogether, antipsychotic medications promoted neurogenesis in vitro by influencing neurite outgrowth rather than changing cell survival or gene expression. This study provides insights into the effects of antipsychotics on neuronal differentiation and highlights the importance of considering neurite outgrowth as a potential target of action.


Sujet(s)
Neuroleptiques , Différenciation cellulaire , Halopéridol , Hippocampe , Cellules souches pluripotentes induites , Cellules souches neurales , Neurogenèse , Olanzapine , Rispéridone , Humains , Olanzapine/pharmacologie , Rispéridone/pharmacologie , Neurogenèse/effets des médicaments et des substances chimiques , Hippocampe/cytologie , Hippocampe/effets des médicaments et des substances chimiques , Hippocampe/métabolisme , Halopéridol/pharmacologie , Neuroleptiques/pharmacologie , Cellules souches pluripotentes induites/effets des médicaments et des substances chimiques , Cellules souches pluripotentes induites/cytologie , Cellules souches pluripotentes induites/métabolisme , Cellules souches neurales/effets des médicaments et des substances chimiques , Cellules souches neurales/métabolisme , Cellules souches neurales/cytologie , Différenciation cellulaire/effets des médicaments et des substances chimiques , Prolifération cellulaire/effets des médicaments et des substances chimiques , Cellules cultivées , Excroissance neuronale/effets des médicaments et des substances chimiques
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE