Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 13.724
Filtrer
1.
Environ Geochem Health ; 46(8): 276, 2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38958774

RÉSUMÉ

The occurrence of microplastics (MPs) and organic pollutants (OPs) residues is commonly observed in diverse environmental settings, where their interactions can potentially alter the behavior, availability, and toxicity of OPs, thereby posing risks to ecosystems. Herein, we particularly emphasize the potential for bioaccumulation and the biomagnification effect of MPs in the presence of OPs within the food chain. Despite the ongoing influx of novel information, there exists a dearth of data concerning the destiny and consequences of MPs in the context of food pollution. Further endeavors are imperative to unravel the destiny and repercussions of MPs/OPs within food ecosystems and processing procedures, aiming to gain a deeper understanding of the joint effect on human health and food quality. Nevertheless, the adsorption and desorption behavior of coexisting pollutants can be significantly influenced by MPs forming biofilms within real-world environments, including temperature, pH, and food constituents. A considerable portion of MPs tend to accumulate in the epidermis of vegetables and fruits, thus necessitating further research to comprehend the potential ramifications of MPs on the infiltration behavior of OPs on agricultural product surfaces.


Sujet(s)
Chaine alimentaire , Contamination des aliments , Microplastiques , Humains , Contamination des aliments/analyse , Bioaccumulation , Surveillance de l'environnement
2.
Proc Biol Sci ; 291(2026): 20240868, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38955327

RÉSUMÉ

Biotic interactions play a critical role in shaping patterns of global biodiversity. While several macroecological studies provide evidence for stronger predation in tropical regions compared with higher latitudes, results are variable even within the tropics, and the drivers of this variability are not well understood. We conducted two complementary standardized experiments on communities of sessile marine invertebrate prey and their associated predators to test for spatial and seasonal differences in predation across the tropical Atlantic and Pacific coastlines of Panama. We further tested the prediction that higher predator diversity contributes to stronger impacts of predation, using both direct observations of predators and data from extensive reef surveys. Our results revealed substantially higher predation rates and stronger effects of predators on prey in the Pacific than in the Atlantic, demonstrating striking variation within tropical regions. While regional predator diversity was high in the Atlantic, functional diversity at local scales was markedly low. Peak predation strength in the Pacific occurred during the wet, non-upwelling season when ocean temperatures were warmer and predator communities were more functionally diverse. Our results highlight the importance of regional biotic and abiotic drivers that shape interaction strength and the maintenance of tropical communities, which are experiencing rapid environmental change.


Sujet(s)
Chaine alimentaire , Comportement prédateur , Saisons , Climat tropical , Animaux , Biodiversité , Panama , Océan Atlantique , Océan Pacifique , Invertébrés/physiologie
3.
J Math Biol ; 89(2): 24, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38955850

RÉSUMÉ

The assembly and persistence of ecological communities can be understood as the result of the interaction and migration of species. Here we study a single community subject to migration from a species pool in which inter-specific interactions are organised according to a bipartite network. Considering the dynamics of species abundances to be governed by generalised Lotka-Volterra equations, we extend work on unipartite networks to we derive exact results for the phase diagram of this model. Focusing on antagonistic interactions, we describe factors that influence the persistence of the two guilds, locate transitions to multiple-attractor and unbounded phases, as well as identifying a region of parameter space in which consumers are essentially absent in the local community.


Sujet(s)
Écosystème , Concepts mathématiques , Modèles biologiques , Dynamique des populations , Dynamique des populations/statistiques et données numériques , Animaux , Chaine alimentaire
4.
BMC Ecol Evol ; 24(1): 90, 2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38956464

RÉSUMÉ

BACKGROUND: Assessing the historical dynamics of key food web components is crucial to understand how climate change impacts the structure of Arctic marine ecosystems. Most retrospective stable isotopic studies to date assessed potential ecosystem shifts in the Arctic using vertebrate top predators and filter-feeding invertebrates as proxies. However, due to long life histories and specific ecologies, ecosystem shifts are not always detectable when using these taxa. Moreover, there are currently no retrospective stable isotopic studies on various other ecological and taxonomic groups of Arctic biota. To test whether climate-driven shifts in marine ecosystems are reflected in the ecology of short-living mesopredators, ontogenetic changes in stable isotope signatures in chitinous hard body structures were analysed in two abundant squids (Gonatus fabricii and Todarodes sagittatus) from the low latitude Arctic and adjacent waters, collected between 1844 and 2023. RESULTS: We detected a temporal increase in diet and habitat-use generalism (= opportunistic choice rather than specialization), trophic position and niche width in G. fabricii from the low latitude Arctic waters. These shifts in trophic ecology matched with the Atlantification of the Arctic ecosystems, which includes increased generalization of food webs and higher primary production, and the influx of boreal species from the North Atlantic as a result of climate change. The Atlantification is especially marked since the late 1990s/early 2000s. The temporal patterns we found in G. fabricii's trophic ecology were largely unreported in previous Arctic retrospective isotopic ecology studies. Accordingly, T. sagittatus that occur nowadays in the high latitude North Atlantic have a more generalist diet than in the XIXth century. CONCLUSIONS: Our results suggest that abundant opportunistic mesopredators with short life cycles (such as squids) are good candidates for retrospective ecology studies in the marine ecosystems, and to identify ecosystem shifts driven by climate change. Enhanced generalization of Arctic food webs is reflected in increased diet generalism and niche width in squids, while increased abundance of boreal piscivorous fishes is reflected in squids' increased trophic position. These findings support opportunism and adaptability in squids, which renders them as potential winners of short-term shifts in Arctic ecosystems.


Sujet(s)
Changement climatique , Decapodiformes , Écosystème , Chaine alimentaire , Animaux , Régions arctiques , Changement climatique/histoire , Isotopes du carbone/analyse , Isotopes de l'azote/analyse , Régime alimentaire/histoire
5.
J Math Biol ; 89(2): 22, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38951257

RÉSUMÉ

Group defense in prey and hunting cooperation in predators are two important ecological phenomena and can occur concurrently. In this article, we consider cooperative hunting in generalist predators and group defense in prey under a mathematical framework to comprehend the enormous diversity the model could capture. To do so, we consider a modified Holling-Tanner model where we implement Holling type IV functional response to characterize grazing pattern of predators where prey species exhibit group defense. Additionally, we allow a modification in the attack rate of predators to quantify the hunting cooperation among them. The model admits three boundary equilibria and up to three coexistence equilibrium points. The geometry of the nontrivial prey and predator nullclines and thus the number of coexistence equilibria primarily depends on a specific threshold of the availability of alternative food for predators. We use linear stability analysis to determine the types of hyperbolic equilibrium points and characterize the non-hyperbolic equilibrium points through normal form and center manifold theory. Change in the model parameters leading to the occurrences of a series of local bifurcations from non-hyperbolic equilibrium points, namely, transcritical, saddle-node, Hopf, cusp and Bogdanov-Takens bifurcation; there are also occurrences of global bifurcations such as homoclinic bifurcation and saddle-node bifurcation of limit cycles. We observe two interesting closed 'bubble' form induced by global bifurcations due to change in the strength of hunting cooperation and the availability of alternative food for predators. A three dimensional bifurcation diagram, concerning the original system parameters, captures how the alternation in model formulation induces gradual changes in the bifurcation scenarios. Our model highlights the stabilizing effects of group or gregarious behaviour in both prey and predator, hence supporting the predator-herbivore regulation hypothesis. Additionally, our model highlights the occurrence of "saltatory equilibria" in ecological systems and capture the dynamics observed for lion-herbivore interactions.


Sujet(s)
Écosystème , Chaine alimentaire , Concepts mathématiques , Modèles biologiques , Dynamique des populations , Comportement prédateur , Animaux , Dynamique des populations/statistiques et données numériques , Comportement coopératif , Simulation numérique , Herbivorie , Modèles linéaires
6.
Ying Yong Sheng Tai Xue Bao ; 35(4): 961-969, 2024 Apr 18.
Article de Chinois | MEDLINE | ID: mdl-38884231

RÉSUMÉ

Research about feeding ecology of fish is important to understand individual behavior and population development, which is also the basic to analyze trophic structure and function of aquatic ecosystems. Chaetrichthys stigmatias is one of the key species in the Haizhou Bay fisheries ecosystem, which has critical ecological niche within the food web. In this study, we collected samples through bottom trawl surveys during the fall of 2018 in the Haizhou Bay, and analyzed the feeding ecology of C. stigmatias based on both stomach content analysis and stable isotope technology. The results showed that the primary diet groups for C. stigmatias were Ophiuroidea and Shrimp, including Ophiothrix marenzelleri, Ophiopholis mirabilis, Ophiura sarsii, Penaeidae, and Alpheus japonicus. The range of δ13C values of C. stigmatias was from -19.39‰ to -15.74‰, with an average value of (-18.07±0.87)‰, which had no significant correlation with body length. The range of δ15N values was from 8.16‰ to 12.86‰, with an average value of (10.14±1.51)‰, which was positively correlated with body length. The trophic level of C. stigmatias showed a positive relationship with body length, with an average value of (3.74±0.34) and a range value of 3.32 to 4.20 among different size groups. The contribution rates of different prey groups varied significantly. Based on the structural equation modeling, we found that the feeding intensity of C. stigmatias was primally influenced by body length, sea bottom salinity, sea bottom temperature, and water depth, with a particularly signi-ficant positive correlation with body length. The combination of stable isotope technology and stomach content analysis methods could contribute to comprehensive understanding on the feeding ecology of C. stigmatias, providing essential data and foundation for research on trophic structures and resource conservation in the Haizhou Bay ecosystem.


Sujet(s)
Baies (géographie) , Écosystème , Comportement alimentaire , Saisons , Animaux , Chine , Chaine alimentaire , Poissons , Océans et mers , Contenus gastro-intestinaux/composition chimique
7.
J Math Biol ; 89(2): 15, 2024 Jun 17.
Article de Anglais | MEDLINE | ID: mdl-38884837

RÉSUMÉ

Mycoloop is an important aquatic food web composed of phytoplankton, chytrids (one dominant group of parasites in aquatic ecosystems), and zooplankton. Chytrids infect phytoplankton and fragment them for easy consumption by zooplankton. The free-living chytrid zoospores are also a food resource for zooplankton. A dynamic reaction-diffusion-advection mycoloop model is proposed to describe the Phytoplankton-chytrid-zooplankton interactions in a poorly mixed aquatic environment. We analyze the dynamics of the mycoloop model to obtain dissipativity, steady state solutions, and persistence. We rigorously derive several critical thresholds for phytoplankton or zooplankton invasion and chytrid transmission among phytoplankton. Numerical diagrams show that varying ecological factors affect the formation and breakup of the mycoloop, and zooplankton can inhibit chytrid transmission among phytoplankton. Furthermore, this study suggests that mycoloop may either control or cause phytoplankton blooms.


Sujet(s)
Chaine alimentaire , Concepts mathématiques , Modèles biologiques , Phytoplancton , Zooplancton , Phytoplancton/physiologie , Phytoplancton/microbiologie , Phytoplancton/croissance et développement , Zooplancton/physiologie , Zooplancton/microbiologie , Animaux , Chytridiomycota/physiologie , Chytridiomycota/pathogénicité , Écosystème , Dynamique des populations/statistiques et données numériques , Simulation numérique
8.
PLoS One ; 19(6): e0304495, 2024.
Article de Anglais | MEDLINE | ID: mdl-38875228

RÉSUMÉ

Discerning assimilated diets of wild animals using stable isotopes is well established where potential dietary items in food webs are isotopically distinct. With the advent of mixing models, and Bayesian extensions of such models (Bayesian Stable Isotope Mixing Models, BSIMMs), statistical techniques available for these efforts have been rapidly increasing. The accuracy with which BSIMMs quantify diet, however, depends on several factors including uncertainty in tissue discrimination factors (TDFs; Δ) and identification of appropriate error structures. Whereas performance of BSIMMs has mostly been evaluated with simulations, here we test the efficacy of BSIMMs by raising domestic broiler chicks (Gallus gallus domesticus) on four isotopically distinct diets under controlled environmental conditions, ideal for evaluating factors that affect TDFs and testing how BSIMMs allocate individual birds to diets that vary in isotopic similarity. For both liver and feather tissues, δ13C and δ 15N values differed among dietary groups. Δ13C of liver, but not feather, was negatively related to the rate at which individuals gained body mass. For Δ15N, we identified effects of dietary group, sex, and tissue type, as well as an interaction between sex and tissue type, with females having higher liver Δ15N relative to males. For both tissues, BSIMMs allocated most chicks to correct dietary groups, especially for models using combined TDFs rather than diet-specific TDFs, and those applying a multiplicative error structure. These findings provide new information on how biological processes affect TDFs and confirm that adequately accounting for variability in consumer isotopes is necessary to optimize performance of BSIMMs. Moreover, results demonstrate experimentally that these models reliably characterize consumed diets when appropriately parameterized.


Sujet(s)
Théorème de Bayes , Isotopes du carbone , Poulets , Isotopes de l'azote , Animaux , Poulets/croissance et développement , Femelle , Isotopes du carbone/analyse , Mâle , Isotopes de l'azote/analyse , Régime alimentaire/médecine vétérinaire , Foie/métabolisme , Plumes/composition chimique , Plumes/métabolisme , Chaine alimentaire , Modèles biologiques
9.
Curr Biol ; 34(12): R587-R603, 2024 Jun 17.
Article de Anglais | MEDLINE | ID: mdl-38889684

RÉSUMÉ

Cultivated species diversity can provide numerous benefits to agricultural systems. Many ecological theories have been proposed to understand the relationships between plant species diversity and trophic interactions. However, extending such theories to socioeconomic systems has been rare for agriculture. Here, we establish ten hypotheses (e.g., the natural enemy hypothesis, resource concentration hypothesis, insurance hypothesis, and aggregation hypothesis) about the relationships between cultivated species diversity (i.e., crop diversification, co-cultures of crops and domestic animals, and co-cultures of crops and edible fungi) and trophic cascades of crops, invertebrate herbivores and natural enemies in cropping systems. We then explore the socioeconomic advantages (e.g., yield, economic and environmental performance) of these trophic cascades. Finally, we propose a multi-perspective framework to promote the cascading social-ecological benefits of species diversity for agricultural sustainability. Integrating the benefits of trophic cascades into agricultural socioeconomic systems requires policies and legislation that support multi-species co-culture practices and the willingness of consumers to pay for these practices through higher prices for agricultural products.


Sujet(s)
Agriculture , Biodiversité , Produits agricoles , Agriculture/méthodes , Animaux , Produits agricoles/croissance et développement , Chaine alimentaire , Conservation des ressources naturelles/méthodes , Facteurs socioéconomiques
10.
Philos Trans R Soc Lond B Biol Sci ; 379(1907): 20230125, 2024 Jul 29.
Article de Anglais | MEDLINE | ID: mdl-38913054

RÉSUMÉ

Dispersal plays a pivotal role in the eco-evolutionary dynamics of spatially structured populations, communities and ecosystems. As an individual-based trait, dispersal is subject to both plasticity and evolution. Its dependence on conditions and context is well understood within single-species metapopulations. However, species do not exist in isolation; they interact locally through various horizontal and vertical interactions. While the significance of species interactions is recognized for species coexistence and food web functioning, our understanding of their influence on regional dynamics, such as their impact on spatial dynamics in metacommunities and meta-food webs, remains limited. Building upon insights from behavioural and community ecology, we aim to elucidate biodiversity as both a driver and an outcome of connectivity. By synthesizing conceptual, theoretical and empirical contributions from global experts in the field, we seek to explore how a more mechanistic understanding of diversity-dispersal relationships influences the distribution of species in spatially and temporally changing environments. Our findings highlight the importance of explicitly considering interspecific interactions as drivers of dispersal, thus reshaping our understanding of fundamental dynamics including species coexistence and the emergent dynamics of metacommunities and meta-ecosystems. We envision that this initiative will pave the way for advanced forecasting approaches to understanding biodiversity dynamics under the pressures of global change. This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.


Sujet(s)
Répartition des animaux , Biodiversité , Évolution biologique , Chaine alimentaire , Animaux , Écosystème , Dynamique des populations , Modèles biologiques
11.
Philos Trans R Soc Lond B Biol Sci ; 379(1907): 20230136, 2024 Jul 29.
Article de Anglais | MEDLINE | ID: mdl-38913053

RÉSUMÉ

Decisions to disperse from a habitat stand out among organismal behaviours as pivotal drivers of ecosystem dynamics across scales. Encounters with other species are an important component of adaptive decision-making in dispersal, resulting in widespread behaviours like tracking resources or avoiding consumers in space. Despite this, metacommunity models often treat dispersal as a function of intraspecific density alone. We show, focusing initially on three-species network motifs, that interspecific dispersal rules generally drive a transition in metacommunities from homogeneous steady states to self-organized heterogeneous spatial patterns. However, when ecologically realistic constraints reflecting adaptive behaviours are imposed-prey tracking and predator avoidance-a pronounced homogenizing effect emerges where spatial pattern formation is suppressed. We demonstrate this effect for each motif by computing master stability functions that separate the contributions of local and spatial interactions to pattern formation. We extend this result to species-rich food webs using a random matrix approach, where we find that eventually, webs become large enough to override the homogenizing effect of adaptive dispersal behaviours, leading once again to predominately pattern-forming dynamics. Our results emphasize the critical role of interspecific dispersal rules in shaping spatial patterns across landscapes, highlighting the need to incorporate adaptive behavioural constraints in efforts to link local species interactions and metacommunity structure. This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.


Sujet(s)
Répartition des animaux , Chaine alimentaire , Modèles biologiques , Animaux , Écosystème , Dynamique des populations , Comportement prédateur
12.
Philos Trans R Soc Lond B Biol Sci ; 379(1907): 20230126, 2024 Jul 29.
Article de Anglais | MEDLINE | ID: mdl-38913056

RÉSUMÉ

Dispersal among local communities is fundamental to the metacommunity concept but is only important to the metacommunity structure if dispersal causes distortions of species abundances away from what local ecological conditions favour. We know from much previous work that dispersal can cause such abundance distortions. However, almost all previous theoretical studies have only considered one species alone or two interacting species (e.g. competitors or predator and prey). Moreover, a systematic analysis is needed of whether different dispersal strategies (e.g. passive dispersal versus demographic habitat selection) result in different abundance distortion patterns, how these distortion patterns change with local food web structure, and how the dispersal propensities of the interacting species might evolve in response to one another. In this article, we show using computer simulations and analytical models that abundance distortions occur in simple food webs with both passive dispersal and habitat selection, but habitat selection causes larger distortions. Additionally, patterns in the evolution of dispersal propensity in interacting species are very different for these two dispersal strategies. This study identifies that the dispersal strategies employed by interacting species critically shape how dispersal will influence metacommunity structure. This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.


Sujet(s)
Évolution biologique , Écosystème , Chaine alimentaire , Modèles biologiques , Répartition des animaux , Animaux , Simulation numérique , Biote , Dynamique des populations
13.
Philos Trans R Soc Lond B Biol Sci ; 379(1907): 20230138, 2024 Jul 29.
Article de Anglais | MEDLINE | ID: mdl-38913064

RÉSUMÉ

Spatial and trophic processes profoundly influence biodiversity, yet ecological theories often treat them independently. The theory of island biogeography and related theories on metacommunities predict higher species richness with increasing area across islands or habitat patches. In contrast, food-web theory explores the effects of traits and network structure on coexistence within local communities. Exploring the mechanisms by which landscape configurations interact with food-web dynamics in shaping metacommunities is important for our understanding of biodiversity. Here, we use a meta-food-web model to explore the role of landscape configuration in determining species richness and show that when habitat patches are interconnected by dispersal, more species can persist on smaller islands than predicted by classical theory. When patch sizes are spatially aggregated, this effect flattens the slope of the species-area relationship. Surprisingly, when landscapes have random patch-size distributions, the slope of the species-area relationships can even flip and become negative. This could be explained by higher biomass densities of lower trophic levels that then support species occupying higher trophic levels, which only persist on small and well-connected patches. This highlights the importance of simultaneously considering landscape configuration and local food-web dynamics to understand drivers of species-area relationships in metacommunities.This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.


Sujet(s)
Biodiversité , Chaine alimentaire , Modèles biologiques , Écosystème , Animaux
14.
Sci Rep ; 14(1): 14102, 2024 06 19.
Article de Anglais | MEDLINE | ID: mdl-38890338

RÉSUMÉ

Large predators have disproportionate effects on their underlying food webs. Thus, appropriately assigning trophic positions has important conservation implications both for the predators themselves and for their prey. Large-bodied predators are often referred to as apex predators, implying that they are many trophic levels above primary producers. However, theoretical considerations predict both higher and lower trophic position with increasing body size. Nitrogen stable isotope values (δ15N) are increasingly replacing stomach contents or behavioral observations to assess trophic position and it is often assumed that ontogenetic dietary shifts result in higher trophic positions. Intraspecific studies based on δ15N values found a positive relationship between size and inferred trophic position. Here, we use datasets of predatory vertebrate ectotherms (crocodilians, turtles, lizards and fishes) to show that, although there are positive intraspecific relationships between size and δ15N values, relationships between stomach-content-based trophic level (TPdiet) and size are undetectable or negative. As there is usually no single value for 15N trophic discrimination factor (TDF) applicable to a predator species or its prey, estimates of trophic position based on δ15N in ectotherm vertebrates with large size ranges, may be inaccurate and biased. We urge a reconsideration of the sole use of δ15N values to assess trophic position and encourage the combined use of isotopes and stomach contents to assess diet and trophic level.


Sujet(s)
Mensurations corporelles , Chaine alimentaire , Isotopes de l'azote , Comportement prédateur , Vertébrés , Animaux , Isotopes de l'azote/analyse , Isotopes de l'azote/métabolisme , Comportement prédateur/physiologie , Lézards/physiologie , Lézards/métabolisme , Poissons/physiologie , Contenus gastro-intestinaux/composition chimique , Tortues/physiologie , Tortues/métabolisme
16.
Sci Rep ; 14(1): 13334, 2024 06 10.
Article de Anglais | MEDLINE | ID: mdl-38858480

RÉSUMÉ

The Namib Desert is a hyperarid coastal desert where fog is a major moisture source. We hypothesized that the fog-harvesting grass Stipagrostis sabulicola establishes an important ecological niche, termed the "Fog-Plant-Oases" (FPOs), and serves as the primary carbon source for the invertebrate community. To determine this, we measured the natural variations of the stable carbon and nitrogen isotopes (δ13C and δ15N) of invertebrates as well as that of plant biomass and belowground detritus and estimated the contributions of the fog plants in their diets. Our findings revealed a complex trophic structure and demonstrated that S. sabulicola fuels carbon flow from lower to higher trophic levels in the aboveground food web. The distinct δ13C values of bacterial- and fungal-feeding nematodes indicated however the separation of the aboveground niche, which is primarily sustained by S. sabulicola, from the belowground niche, where wind-blown sediments may serve as the main energy source for the soil biota. Our findings further accentuate the critical role of S. sabulicola FPOs in establishing complex trophic dynamics and a distinctive food web within the hyperarid Namib dunes.


Sujet(s)
Écosystème , Chaine alimentaire , Animaux , Namibie , Poaceae/métabolisme , Isotopes de l'azote/analyse , Isotopes de l'azote/métabolisme , Isotopes du carbone/analyse , Biomasse , Climat désertique , Sol/composition chimique , Carbone/métabolisme , Invertébrés
17.
Chaos ; 34(6)2024 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-38922199

RÉSUMÉ

This paper investigates the dynamics of a tritrophic food chain model incorporating an Allee effect, sexually reproductive generalist top predators, and Holling type IV and Beddington-DeAngelis functional responses for interactions across different trophic levels. Analytically, we explore the feasible equilibria, their local stability, and various bifurcations, including Hopf, saddle-node, transcritical, and Bogdanov-Takens bifurcations. Numerical findings suggest that higher Allee intensity in prey growth leads to the inability of species coexistence, resulting in a decline in species density. Likewise, a lower reproduction rate and a higher strength of intraspecific competition among top predators also prevent the coexistence of species. Conversely, a rapid increase in the reproduction rate and a decrease in the strength of intraspecific competition among top predators enhance the densities of prey and top predators while decreasing intermediate predator density. We also reveal the presence of bistability and tristability phenomena within the system. Furthermore, we extend our autonomous model to its nonautonomous counterpart by introducing seasonally perturbed parameters. Numerical analysis of the nonautonomous model reveals that higher seasonal strength in the reproduction rate and intraspecific competition of top predators induce chaotic behavior, which is also confirmed by the maximum Lyapunov exponent. Additionally, we observe that seasonality may lead to the extinction of species from the ecosystem. Factors such as the Allee effect and growth rate of prey can cause periodicity in population densities. Understanding these trends is critical for controlling changes in population density within the ecosystem. Ecologists, environmentalists, and policymakers stand to benefit significantly from the invaluable insights garnered from this study. Specifically, our findings offer pivotal guidance for shaping future strategies aimed at safeguarding biodiversity and maintaining ecological stability amidst changing environmental conditions. By contributing to the existing body of knowledge, our study advances the field of ecological science, enhancing the comprehension of predator-prey dynamics across diverse ecological conditions.


Sujet(s)
Chaine alimentaire , Dynamique non linéaire , Comportement prédateur , Reproduction , Saisons , Animaux , Comportement prédateur/physiologie , Reproduction/physiologie , Modèles biologiques , Extinction biologique , Dynamique des populations , Simulation numérique
18.
An Acad Bras Cienc ; 96(2): e20230652, 2024.
Article de Anglais | MEDLINE | ID: mdl-38922275

RÉSUMÉ

Trophic plasticity is a distinctive feature of freshwater fishes, representing an essential strategy for fish living in resource-variable environments. We analyzed the stomach contents of individuals sampled in two Atlantic Forest streams to identify the primary food sources consumed by Psalidodon aff. fasciatus and verify the existence of spatial, seasonal, and ontogenetic variations. The diet was determined by analyzing the stomach contents using the Volume Method to quantify the importance of food items. In general, Psalidodon aff. fasciatus was classified as an omnivorous species, consuming mainly insects, plant material, and filamentous algae. The results also showed significant effects for all factors considered (spatial, seasonal, and ontogenetic). Finally, Psalidodon aff. fasciatus demonstrated considerable trophic plasticity, which can result in better use of available resources in the environment and improved resource partitioning, reducing intraspecific and interspecific competition.


Sujet(s)
Characidae , Contenus gastro-intestinaux , Rivières , Saisons , Animaux , Brésil , Characidae/physiologie , Characidae/classification , Comportement alimentaire/physiologie , Forêts , Chaine alimentaire
19.
Proc Natl Acad Sci U S A ; 121(27): e2322939121, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38935564

RÉSUMÉ

Indeterminacy of ecological networks-the unpredictability of ecosystem responses to persistent perturbations-is an emergent property of indirect effects a species has on another through interaction chains. Thus, numerous indirect pathways in large, complex ecological communities could make forecasting the long-term outcomes of environmental changes challenging. However, a comprehensive understanding of ecological structures causing indeterminacy has not yet been reached. Here, using random matrix theory (RMT), we provide mathematical criteria determining whether network indeterminacy emerges across various ecological communities. Our analytical and simulation results show that indeterminacy intricately depends on the characteristics of species interaction. Specifically, contrary to conventional wisdom, network indeterminacy is unlikely to emerge in large competitive and mutualistic communities, while it is a common feature in top-down regulated food webs. Furthermore, we found that predictable and unpredictable perturbations can coexist in the same community and that indeterminate responses to environmental changes arise more frequently in networks where predator-prey relationships predominate than competitive and mutualistic ones. These findings highlight the importance of elucidating direct species relationships and analyzing them with an RMT perspective on two fronts: It aids in 1) determining whether the network's responses to environmental changes are ultimately indeterminate and 2) identifying the types of perturbations causing less predictable outcomes in a complex ecosystem. In addition, our framework should apply to the inverse problem of network identification, i.e., determining whether observed responses to sustained perturbations can reconstruct their proximate causalities, potentially impacting other fields such as microbial and medical sciences.


Sujet(s)
Écosystème , Chaine alimentaire , Modèles biologiques , Animaux
20.
Ecol Appl ; 34(5): e3002, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38840322

RÉSUMÉ

Direct exploitation through fishing is driving dramatic declines of wildlife populations in ocean environments, particularly for predatory and large-bodied taxa. Despite wide recognition of this pattern and well-established consequences of such trophic downgrading on ecosystem function, there have been few empirical studies examining the effects of fishing on whole system trophic architecture. Understanding these kinds of structural impacts is especially important in coral reef ecosystems-often heavily fished and facing multiple stressors. Given the often high dietary flexibility and numerous functional redundancies in diverse ecosystems such as coral reefs, it is important to establish whether web architecture is strongly impacted by fishing pressure or whether it might be resilient, at least to moderate-intensity pressure. To examine this question, we used a combination of bulk and compound-specific stable isotope analyses measured across a range of predatory and low-trophic-level consumers between two coral reef ecosystems that differed with respect to fishing pressure but otherwise remained largely similar. We found that even in a high-diversity system with relatively modest fishing pressure, there were strong reductions in the trophic position (TP) of the three highest TP consumers examined in the fished system but no effects on the TP of lower-level consumers. We saw no evidence that this shortening of the affected food webs was being driven by changes in basal resource consumption, for example, through changes in the spatial location of foraging by consumers. Instead, this likely reflected internal changes in food web architecture, suggesting that even in diverse systems and with relatively modest pressure, human harvest causes significant compressions in food chain length. This observed shortening of these food webs may have many important emergent ecological consequences for the functioning of ecosystems impacted by fishing or hunting. Such important structural shifts may be widespread but unnoticed by traditional surveys. This insight may also be useful for applied ecosystem managers grappling with choices about the relative importance of protection for remote and pristine areas and the value of strict no-take areas to protect not just the raw constituents of systems affected by fishing and hunting but also the health and functionality of whole systems.


Sujet(s)
Récifs de corail , Poissons , Chaine alimentaire , Animaux , Poissons/physiologie , Pêcheries , Isotopes du carbone/analyse , Conservation des ressources naturelles , Isotopes de l'azote/analyse
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...