Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 70
Filtrer
1.
Nature ; 609(7926): 335-340, 2022 09.
Article de Anglais | MEDLINE | ID: mdl-35853476

RÉSUMÉ

Adhesive pili assembled through the chaperone-usher pathway are hair-like appendages that mediate host tissue colonization and biofilm formation of Gram-negative bacteria1-3. Archaic chaperone-usher pathway pili, the most diverse and widespread chaperone-usher pathway adhesins, are promising vaccine and drug targets owing to their prevalence in the most troublesome multidrug-resistant pathogens1,4,5. However, their architecture and assembly-secretion process remain unknown. Here, we present the cryo-electron microscopy structure of the prototypical archaic Csu pilus that mediates biofilm formation of Acinetobacter baumannii-a notorious multidrug-resistant nosocomial pathogen. In contrast to the thick helical tubes of the classical type 1 and P pili, archaic pili assemble into an ultrathin zigzag architecture secured by an elegant clinch mechanism. The molecular clinch provides the pilus with high mechanical stability as well as superelasticity, a property observed for the first time, to our knowledge, in biomolecules, while enabling a more economical and faster pilus production. Furthermore, we demonstrate that clinch formation at the cell surface drives pilus secretion through the outer membrane. These findings suggest that clinch-formation inhibitors might represent a new strategy to fight multidrug-resistant bacterial infections.


Sujet(s)
Acinetobacter baumannii , Cryomicroscopie électronique , Fimbriae bactériens , Chaperons moléculaires , Acinetobacter baumannii/cytologie , Acinetobacter baumannii/ultrastructure , Élasticité , Protéines de fimbriae/composition chimique , Protéines de fimbriae/métabolisme , Protéines de fimbriae/ultrastructure , Fimbriae bactériens/composition chimique , Fimbriae bactériens/métabolisme , Fimbriae bactériens/ultrastructure , Chaperons moléculaires/composition chimique , Chaperons moléculaires/métabolisme , Chaperons moléculaires/ultrastructure
2.
Nat Commun ; 13(1): 749, 2022 02 08.
Article de Anglais | MEDLINE | ID: mdl-35136069

RÉSUMÉ

Tousled-like kinases (TLKs) are nuclear serine-threonine kinases essential for genome maintenance and proper cell division in animals and plants. A major function of TLKs is to phosphorylate the histone chaperone proteins ASF1a and ASF1b to facilitate DNA replication-coupled nucleosome assembly, but how TLKs selectively target these critical substrates is unknown. Here, we show that TLK2 selectivity towards ASF1 substrates is achieved in two ways. First, the TLK2 catalytic domain recognizes consensus phosphorylation site motifs in the ASF1 C-terminal tail. Second, a short sequence at the TLK2 N-terminus docks onto the ASF1a globular N-terminal domain in a manner that mimics its histone H3 client. Disrupting either catalytic or non-catalytic interactions through mutagenesis hampers ASF1 phosphorylation by TLK2 and cell growth. Our results suggest that the stringent selectivity of TLKs for ASF1 is enforced by an unusual interaction mode involving mutual recognition of a short sequence motifs by both kinase and substrate.


Sujet(s)
Protéines du cycle cellulaire/métabolisme , Chaperons moléculaires/métabolisme , Mimétisme moléculaire , Protein kinases/métabolisme , Motifs d'acides aminés/génétique , Séquence d'acides aminés , Domaine catalytique/génétique , Protéines du cycle cellulaire/génétique , Protéines du cycle cellulaire/isolement et purification , Protéines du cycle cellulaire/ultrastructure , Séquence conservée , Cristallographie aux rayons X , Histone/métabolisme , Humains , Chaperons moléculaires/génétique , Chaperons moléculaires/isolement et purification , Chaperons moléculaires/ultrastructure , Simulation de docking moléculaire , Mutagenèse , Banque de peptides , Phosphorylation , Protein kinases/génétique , Protein kinases/isolement et purification , Protein kinases/ultrastructure , Protéines recombinantes/génétique , Protéines recombinantes/isolement et purification , Protéines recombinantes/métabolisme , Protéines recombinantes/ultrastructure , Spécificité du substrat
3.
Nature ; 601(7893): 465-469, 2022 01.
Article de Anglais | MEDLINE | ID: mdl-34937936

RÉSUMÉ

Hsp90 is a conserved and essential molecular chaperone responsible for the folding and activation of hundreds of 'client' proteins1-3. The glucocorticoid receptor (GR) is a model client that constantly depends on Hsp90 for activity4-9. GR ligand binding was previously shown to nr inhibited by Hsp70 and restored by Hsp90, aided by the co-chaperone p2310. However, a molecular understanding of the chaperone-mediated remodelling that occurs between the inactive Hsp70-Hsp90 'client-loading complex' and an activated Hsp90-p23 'client-maturation complex' is lacking for any client, including GR. Here we present a cryo-electron microscopy (cryo-EM) structure of the human GR-maturation complex (GR-Hsp90-p23), revealing that the GR ligand-binding domain is restored to a folded, ligand-bound conformation, while being simultaneously threaded through the Hsp90 lumen. In addition, p23 directly stabilizes native GR using a C-terminal helix, resulting in enhanced ligand binding. This structure of a client bound to Hsp90 in a native conformation contrasts sharply with the unfolded kinase-Hsp90 structure11. Thus, aided by direct co-chaperone-client interactions, Hsp90 can directly dictate client-specific folding outcomes. Together with the GR-loading complex structure12, we present the molecular mechanism of chaperone-mediated GR remodelling, establishing the first, to our knowledge, complete chaperone cycle for any Hsp90 client.


Sujet(s)
Cryomicroscopie électronique , Protéines du choc thermique HSP90 , Prostaglandin-E synthases , Récepteurs aux glucocorticoïdes , Protéines du choc thermique HSP70/composition chimique , Protéines du choc thermique HSP70/métabolisme , Protéines du choc thermique HSP70/ultrastructure , Protéines du choc thermique HSP90/composition chimique , Protéines du choc thermique HSP90/métabolisme , Protéines du choc thermique HSP90/ultrastructure , Humains , Ligands , Chaperons moléculaires/composition chimique , Chaperons moléculaires/métabolisme , Chaperons moléculaires/ultrastructure , Prostaglandin-E synthases/composition chimique , Prostaglandin-E synthases/métabolisme , Prostaglandin-E synthases/ultrastructure , Liaison aux protéines , Récepteurs aux glucocorticoïdes/composition chimique , Récepteurs aux glucocorticoïdes/métabolisme , Récepteurs aux glucocorticoïdes/ultrastructure
4.
Sci Rep ; 11(1): 12515, 2021 06 15.
Article de Anglais | MEDLINE | ID: mdl-34131228

RÉSUMÉ

The glucocorticoid receptor is a key regulator of essential physiological processes, which under the control of the Hsp90 chaperone machinery, binds to steroid hormones and steroid-like molecules and in a rather complicated and elusive response, regulates a set of glucocorticoid responsive genes. We here examine a human glucocorticoid receptor variant, harboring a point mutation in the last C-terminal residues, L773P, that was associated to Primary Generalized Glucocorticoid Resistance, a condition originating from decreased affinity to hormone, impairing one or multiple aspects of GR action. Using in vitro and in silico methods, we assign the conformational consequences of this mutation to particular GR elements and report on the altered receptor properties regarding its binding to dexamethasone, a NCOA-2 coactivator-derived peptide, DNA, and importantly, its interaction with the chaperone machinery of Hsp90.


Sujet(s)
Glucocorticoïdes/génétique , Protéines du choc thermique HSP90/génétique , Conformation moléculaire/effets des médicaments et des substances chimiques , Récepteurs aux glucocorticoïdes/génétique , Animaux , ADN/génétique , Dexaméthasone/pharmacologie , Glucocorticoïdes/composition chimique , Protéines du choc thermique HSP90/ultrastructure , Humains , Erreurs innées du métabolisme/génétique , Erreurs innées du métabolisme/anatomopathologie , Chaperons moléculaires/génétique , Chaperons moléculaires/ultrastructure , Coactivateur-2 de récepteur nucléaire/composition chimique , Coactivateur-2 de récepteur nucléaire/génétique , Peptides/génétique , Mutation ponctuelle/génétique , Liaison aux protéines/génétique , Récepteurs aux glucocorticoïdes/déficit , Récepteurs aux glucocorticoïdes/ultrastructure
5.
Nat Commun ; 12(1): 3174, 2021 05 26.
Article de Anglais | MEDLINE | ID: mdl-34039964

RÉSUMÉ

Chaperones Tapasin and TAP-binding protein related (TAPBPR) perform the important functions of stabilizing nascent MHC-I molecules (chaperoning) and selecting high-affinity peptides in the MHC-I groove (editing). While X-ray and cryo-EM snapshots of MHC-I in complex with TAPBPR and Tapasin, respectively, have provided important insights into the peptide-deficient MHC-I groove structure, the molecular mechanism through which these chaperones influence the selection of specific amino acid sequences remains incompletely characterized. Based on structural and functional data, a loop sequence of variable lengths has been proposed to stabilize empty MHC-I molecules through direct interactions with the floor of the groove. Using deep mutagenesis on two complementary expression systems, we find that important residues for the Tapasin/TAPBPR chaperoning activity are located on a large scaffolding surface, excluding the loop. Conversely, loop mutations influence TAPBPR interactions with properly conformed MHC-I molecules, relevant for peptide editing. Detailed biophysical characterization by solution NMR, ITC and FP-based assays shows that the loop hovers above the MHC-I groove to promote the capture of incoming peptides. Our results suggest that the longer loop of TAPBPR lowers the affinity requirements for peptide selection to facilitate peptide loading under conditions and subcellular compartments of reduced ligand concentration, and to prevent disassembly of high-affinity peptide-MHC-I complexes that are transiently interrogated by TAPBPR during editing.


Sujet(s)
Présentation d'antigène , Antigènes d'histocompatibilité de classe I/métabolisme , Immunoglobulines/métabolisme , Protéines membranaires/métabolisme , Chaperons moléculaires/métabolisme , Antigènes/métabolisme , Cryomicroscopie électronique , Cristallographie aux rayons X , Techniques de knock-out de gènes , Cellules HEK293 , Antigènes d'histocompatibilité de classe I/génétique , Antigènes d'histocompatibilité de classe I/isolement et purification , Antigènes d'histocompatibilité de classe I/ultrastructure , Humains , Immunoglobulines/génétique , Immunoglobulines/isolement et purification , Immunoglobulines/ultrastructure , Ligands , Protéines membranaires/génétique , Protéines membranaires/isolement et purification , Protéines membranaires/ultrastructure , Protéines de transport membranaire/génétique , Protéines de transport membranaire/métabolisme , Chaperons moléculaires/génétique , Chaperons moléculaires/ultrastructure , Simulation de dynamique moléculaire , Mutagenèse dirigée , Mutation , Banque de peptides , Liaison aux protéines/génétique , Liaison aux protéines/immunologie , Protéines recombinantes/génétique , Protéines recombinantes/isolement et purification , Protéines recombinantes/métabolisme , Protéines recombinantes/ultrastructure
6.
FEBS J ; 288(7): 2222-2237, 2021 04.
Article de Anglais | MEDLINE | ID: mdl-33058391

RÉSUMÉ

The formation of ordered Z (Glu342Lys) α1 -antitrypsin polymers in hepatocytes is central to liver disease in α1 -antitrypsin deficiency. In vitro experiments have identified an intermediate conformational state (M*) that precedes polymer formation, but this has yet to be identified in vivo. Moreover, the mechanism of polymer formation and their fate in cells have been incompletely characterised. We have used cell models of disease in conjunction with conformation-selective monoclonal antibodies and a small molecule inhibitor of polymerisation to define the dynamics of polymer formation, accumulation and secretion. Pulse-chase experiments demonstrate that Z α1 -antitrypsin accumulates as short-chain polymers that partition with soluble cellular components and are partially secreted by cells. These precede the formation of larger, insoluble polymers with a longer half-life (10.9 ± 1.7 h and 20.9 ± 7.4 h for soluble and insoluble polymers, respectively). The M* intermediate (or a by-product thereof) was identified in the cells by a conformation-specific monoclonal antibody. This was completely abrogated by treatment with the small molecule, which also blocked the formation of intracellular polymers. These data allow us to conclude that the M* conformation is central to polymerisation of Z α1 -antitrypsin in vivo; preventing its accumulation represents a tractable approach for pharmacological treatment of this condition; polymers are partially secreted; and polymers exist as two distinct populations in cells whose different dynamics have likely consequences for the aetiology of the disease.


Sujet(s)
Chaperons moléculaires/génétique , Conformation des protéines/effets des médicaments et des substances chimiques , Déficit en alpha-1-antitrypsine/traitement médicamenteux , alpha-1-Antitrypsine/génétique , Anticorps monoclonaux/pharmacologie , Hépatocytes/effets des médicaments et des substances chimiques , Humains , Chaperons moléculaires/antagonistes et inhibiteurs , Chaperons moléculaires/composition chimique , Chaperons moléculaires/ultrastructure , Polymères/composition chimique , Bibliothèques de petites molécules/composition chimique , Bibliothèques de petites molécules/pharmacologie , alpha-1-Antitrypsine/composition chimique , alpha-1-Antitrypsine/effets des médicaments et des substances chimiques , alpha-1-Antitrypsine/ultrastructure , Déficit en alpha-1-antitrypsine/génétique
7.
Biochim Biophys Acta Proteins Proteom ; 1869(2): 140576, 2021 02.
Article de Anglais | MEDLINE | ID: mdl-33253897

RÉSUMÉ

HdeA is a small acid-stress chaperone protein with a unique activity profile. At physiological pH, it forms a folded, but inactive, dimer. Below pH 3.0, HdeA unfolds and dissociates into disordered monomers, utilizing exposed hydrophobic patches to bind other unfolded proteins and prevent their irreversible aggregation. In this way, HdeA has a key role in helping pathogenic bacteria survive our acidic stomach and colonize our intestines, facilitating the spread of dysentery. Despite numerous publications on the topic, there remain questions about the mechanism by which HdeA unfolding and activation are triggered. Previous studies usually assessed HdeA unfolding over pH increments that are too far apart to gain fine detail of the process of unfolding and dimer dissociation, and often employed techniques that prevented thorough evaluation of specific regions of the protein. We used a variety of heteronuclear NMR experiments to investigate changes to backbone and side chain structure and dynamics of HdeA at four pHs between 3.0 and 2.0. We found that the long loop in the dimer interface is an early site of initiation of dimer dissociation, and that a molecular "clasp" near the disulfide bond is broken open at low pH as part, or as a trigger, of unfolding; this process also results in the separation of C-terminal helices and exposure of key hydrophobic client binding sites. Our results highlight important regions of HdeA that may have previously been overlooked because they lie too close to the disulfide bond or are thought to be too dynamic in the folded state to influence unfolding processes.


Sujet(s)
Protéines Escherichia coli/génétique , Escherichia coli/génétique , Chaperons moléculaires/génétique , Conformation des protéines , Acides/pharmacologie , Escherichia coli/composition chimique , Protéines Escherichia coli/composition chimique , Protéines Escherichia coli/ultrastructure , Humains , Concentration en ions d'hydrogène , Chaperons moléculaires/composition chimique , Chaperons moléculaires/ultrastructure , Simulation de dynamique moléculaire , Résonance magnétique nucléaire biomoléculaire , Liaison aux protéines , Multimérisation de protéines/génétique , Dépliement des protéines
8.
FEBS J ; 288(9): 2870-2883, 2021 05.
Article de Anglais | MEDLINE | ID: mdl-32979284

RÉSUMÉ

Proteins destined to various intra- and extra-cellular locations must traverse membranes most frequently in an unfolded form. When the proteins being translocated need to remain in a folded state, specialized cellular transport machinery is used. One such machine is the membrane-bound AAA protein Bcs1 (Bcs1), which assists the iron-sulfur protein, an essential subunit of the respiratory Complex III, across the mitochondrial inner membrane. Recent structure determinations of mouse and yeast Bcs1 in three different nucleotide states reveal its homo-heptameric association and at least two dramatically different conformations. The apo and ADP-bound structures are similar, both containing a large substrate-binding cavity accessible to the mitochondrial matrix space, which contracts by concerted motion of the ATPase domains upon ATP binding, suggesting that bound substrate could then be pushed across the membrane. ATP hydrolysis drives substrate release and resets Bcs1 conformation back to the apo/ADP form. These structures shed new light on the mechanism of folded protein translocation across a membrane, provide better understanding on the assembly process of the respiratory Complex III, and correlate clinical presentations of disease-associated mutations with their locations in the 3D structure.


Sujet(s)
ATPases associated with diverse cellular activities/génétique , Mitochondries/génétique , Protéines mitochondriales/génétique , Chaperons moléculaires/génétique , Conformation des protéines , Protéines de Saccharomyces cerevisiae/génétique , ATPases associated with diverse cellular activities/ultrastructure , Adenosine triphosphatases/génétique , Adénosine triphosphate/génétique , Animaux , Complexe III de la chaîne respiratoire/génétique , Complexe III de la chaîne respiratoire/ultrastructure , Humains , Ferrosulfoprotéines/génétique , Ferrosulfoprotéines/ultrastructure , Souris , Mitochondries/ultrastructure , Protéines mitochondriales/ultrastructure , Chaperons moléculaires/ultrastructure , Domaines protéiques/génétique , Pliage des protéines , Transport des protéines/génétique , Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/ultrastructure
9.
IET Nanobiotechnol ; 14(6): 491-500, 2020 Aug.
Article de Anglais | MEDLINE | ID: mdl-32755959

RÉSUMÉ

Manipulating molecular scale bio-nanorobots and influencing their behaviour is one of the major challenges of new researches. Many coiled coil type proteins are involved in important biological functions due to physical properties that make them ideal for both nanoscale manipulation and sensing. The Prefoldin beta subunit from Thermococcus strain KS-1(Prefoldin ß1) is one of the possible proteins that can serve as a new bio-nano-actuator. Besides having a balanced architecture, Prefoldin ß1 can exhibit a wide range of exclusive authorities. In this study, steered molecular dynamics simulation is applied along with the centre of mass pulling and analyses of Prefoldin ß1 conformational changes to characterise some of those abilities. Thus, applying external mechanical force without any position constraint shows that it has no movement throughout simulations. This proposes a novel method to capture different sizes and shapes of cargoes. During simulations, each arm was found to be very flexible, allowing it to enlarge its central cavity and capture different cargoes. For a more accurate analysis, the variations in the cavity of nano-actuator are investigated qualitatively and quantitatively with different parameters. Also, the force analysis of the arms can provide us with decent information about the performance of this nano-actuator.


Sujet(s)
Chaperons moléculaires , Phénomènes biomécaniques , Chaperons moléculaires/composition chimique , Chaperons moléculaires/métabolisme , Chaperons moléculaires/ultrastructure , Simulation de dynamique moléculaire , Nanostructures/composition chimique , Nanostructures/ultrastructure , Conformation des protéines , Thermococcus/composition chimique
10.
J Mol Biol ; 432(14): 4127-4138, 2020 06 26.
Article de Anglais | MEDLINE | ID: mdl-32450081

RÉSUMÉ

The multi-domain RNA binding protein RBM5 is a molecular signature of metastasis. RBM5 regulates alternative splicing of apoptotic genes including the cell death receptor Fas and the initiator Caspase-2. The RBM5 RanBP2-type zinc finger (Zf1) is known to specifically recognize single-stranded RNAs with high affinity. Here, we study the structure and conformational dynamics of the Zf1 zinc finger of human RBM5 using NMR. We show that the presence of a non-canonical cysteine in Zf1 kinetically destabilizes the protein. Metal-exchange kinetics show that mutation of the cysteine establishes high-affinity coordination of the zinc. Our data indicate that selection of such a structurally destabilizing mutation during the course of evolution could present an opportunity for functional adaptation of the protein.


Sujet(s)
Protéines du cycle cellulaire/ultrastructure , Protéines de liaison à l'ADN/ultrastructure , Chaperons moléculaires/ultrastructure , Complexe protéique du pore nucléaire/ultrastructure , Protéines de liaison à l'ARN/ultrastructure , Protéines suppresseurs de tumeurs/ultrastructure , Doigts de zinc/génétique , Épissage alternatif/génétique , Séquence d'acides aminés/génétique , Apoptose/génétique , Caspase-2/génétique , Protéines du cycle cellulaire/composition chimique , Protéines du cycle cellulaire/génétique , Protéines de liaison à l'ADN/composition chimique , Protéines de liaison à l'ADN/génétique , Humains , Spectroscopie par résonance magnétique , Modèles moléculaires , Chaperons moléculaires/composition chimique , Chaperons moléculaires/génétique , Complexe protéique du pore nucléaire/composition chimique , Complexe protéique du pore nucléaire/génétique , Liaison aux protéines/génétique , Conformation des protéines , Protéines de liaison à l'ARN/composition chimique , Protéines de liaison à l'ARN/génétique , Facteurs de transcription/génétique , Protéines suppresseurs de tumeurs/composition chimique , Protéines suppresseurs de tumeurs/génétique , Zinc/composition chimique
11.
Cell Rep ; 30(11): 3699-3709.e6, 2020 03 17.
Article de Anglais | MEDLINE | ID: mdl-32126208

RÉSUMÉ

Many chaperones promote nascent polypeptide folding followed by substrate release through ATP-dependent conformational changes. Here we show cryoEM structures of Gα subunit folding intermediates in complex with full-length Ric-8A, a unique chaperone-client system in which substrate release is facilitated by guanine nucleotide binding to the client G protein. The structures of Ric-8A-Gαi and Ric-8A-Gαq complexes reveal that the chaperone employs its extended C-terminal region to cradle the Ras-like domain of Gα, positioning the Ras core in contact with the Ric-8A core while engaging its switch2 nucleotide binding region. The C-terminal α5 helix of Gα is held away from the Ras-like domain through Ric-8A core domain interactions, which critically depend on recognition of the Gα C terminus by the chaperone. The structures, complemented with biochemical and cellular chaperoning data, support a folding quality control mechanism that ensures proper formation of the C-terminal α5 helix before allowing GTP-gated release of Gα from Ric-8A.


Sujet(s)
Sous-unités alpha des protéines G/composition chimique , Sous-unités alpha des protéines G/métabolisme , Facteurs d'échange de nucléotides guanyliques/composition chimique , Facteurs d'échange de nucléotides guanyliques/métabolisme , Chaperons moléculaires/composition chimique , Chaperons moléculaires/métabolisme , Séquence d'acides aminés , Sous-unités alpha des protéines G/ultrastructure , Facteurs d'échange de nucléotides guanyliques/ultrastructure , Guanosine triphosphate/métabolisme , Cellules HEK293 , Humains , Modèles biologiques , Modèles moléculaires , Chaperons moléculaires/ultrastructure , Phosphorylation , Liaison aux protéines , Pliage des protéines , Stabilité protéique , Structure secondaire des protéines , Contrôle de qualité
12.
Proc Natl Acad Sci U S A ; 117(14): 7814-7823, 2020 04 07.
Article de Anglais | MEDLINE | ID: mdl-32198203

RÉSUMÉ

Hsp70 is a conserved molecular chaperone that plays an indispensable role in regulating protein folding, translocation, and degradation. The conformational dynamics of Hsp70 and its regulation by cochaperones are vital to its function. Using bulk and single-molecule fluorescence resonance energy transfer (smFRET) techniques, we studied the interdomain conformational distribution of human stress-inducible Hsp70A1 and the kinetics of conformational changes induced by nucleotide and the Hsp40 cochaperone Hdj1. We found that the conformations between and within the nucleotide- and substrate-binding domains show heterogeneity. The conformational distribution in the ATP-bound state can be induced by Hdj1 to form an "ADP-like" undocked conformation, which is an ATPase-stimulated state. Kinetic measurements indicate that Hdj1 binds to monomeric Hsp70 as the first step, then induces undocking of the two domains and closing of the substrate-binding cleft. Dimeric Hdj1 then facilitates dimerization of Hsp70 and formation of a heterotetrameric Hsp70-Hsp40 complex. Our results provide a kinetic view of the conformational cycle of Hsp70 and reveal the importance of the dynamic nature of Hsp70 for its function.


Sujet(s)
Protéines du choc thermique HSP40/génétique , Protéines du choc thermique HSP70/ultrastructure , Chaperons moléculaires/ultrastructure , Conformation des protéines , Adenosine triphosphatases/composition chimique , Adenosine triphosphatases/génétique , Adénosine triphosphate/composition chimique , Transfert d'énergie par résonance de fluorescence , Hétérogénéité génétique , Protéines du choc thermique HSP40/composition chimique , Protéines du choc thermique HSP70/composition chimique , Humains , Cinétique , Modèles moléculaires , Chaperons moléculaires/composition chimique , Liaison aux protéines/génétique , Domaines protéiques/génétique , Pliage des protéines , Multimérisation de protéines/génétique
13.
Nucleic Acids Res ; 48(3): 1531-1550, 2020 02 20.
Article de Anglais | MEDLINE | ID: mdl-31807785

RÉSUMÉ

FKBP53 is one of the seven multi-domain FK506-binding proteins present in Arabidopsis thaliana, and it is known to get targeted to the nucleus. It has a conserved PPIase domain at the C-terminus and a highly charged N-terminal stretch, which has been reported to bind to histone H3 and perform the function of a histone chaperone. To better understand the molecular details of this PPIase with histone chaperoning activity, we have solved the crystal structures of its terminal domains and functionally characterized them. The C-terminal domain showed strong PPIase activity, no role in histone chaperoning and revealed a monomeric five-beta palm-like fold that wrapped over a helix, typical of an FK506-binding domain. The N-terminal domain had a pentameric nucleoplasmin-fold; making this the first report of a plant nucleoplasmin structure. Further characterization revealed the N-terminal nucleoplasmin domain to interact with H2A/H2B and H3/H4 histone oligomers, individually, as well as simultaneously, suggesting two different binding sites for H2A/H2B and H3/H4. The pentameric domain assists nucleosome assembly and forms a discrete complex with pre-formed nucleosomes; wherein two pentamers bind to a nucleosome.


Sujet(s)
Protéines d'Arabidopsis/ultrastructure , Histone/génétique , Chaperons moléculaires/ultrastructure , Nucléoplasmines/composition chimique , Protéines de liaison au tacrolimus/ultrastructure , Arabidopsis/composition chimique , Arabidopsis/génétique , Protéines d'Arabidopsis/composition chimique , Protéines d'Arabidopsis/génétique , Sites de fixation/génétique , Assemblage et désassemblage de la chromatine/génétique , Cristallographie aux rayons X , Histone/composition chimique , Chaperons moléculaires/composition chimique , Chaperons moléculaires/génétique , Nucléoplasmines/génétique , Nucléosomes/composition chimique , Nucléosomes/génétique , Peptidylpropyl isomerase/génétique , Liaison aux protéines/génétique , Domaines protéiques/génétique , Pliage des protéines , Protéines de liaison au tacrolimus/composition chimique , Protéines de liaison au tacrolimus/génétique
14.
Proc Natl Acad Sci U S A ; 117(1): 381-387, 2020 01 07.
Article de Anglais | MEDLINE | ID: mdl-31848241

RÉSUMÉ

The vast majority of biological carbon dioxide fixation relies on the function of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco). In most cases the enzyme exhibits a tendency to become inhibited by its substrate RuBP and other sugar phosphates. The inhibition is counteracted by diverse molecular chaperones known as Rubisco activases (Rcas). In some chemoautotrophic bacteria, the CbbQO-type Rca Q2O2 repairs inhibited active sites of hexameric form II Rubisco. The 2.2-Å crystal structure of the MoxR AAA+ protein CbbQ2 from Acidithiobacillus ferrooxidans reveals the helix 2 insert (H2I) that is critical for Rca function and forms the axial pore of the CbbQ hexamer. Negative-stain electron microscopy shows that the essential CbbO adaptor protein binds to the conserved, concave side of the CbbQ2 hexamer. Site-directed mutagenesis supports a model in which adenosine 5'-triphosphate (ATP)-powered movements of the H2I are transmitted to CbbO via the concave residue L85. The basal ATPase activity of Q2O2 Rca is repressed but strongly stimulated by inhibited Rubisco. The characterization of multiple variants where this repression is released indicates that binding of inhibited Rubisco to the C-terminal CbbO VWA domain initiates a signal toward the CbbQ active site that is propagated via elements that include the CbbQ α4-ß4 loop, pore loop 1, and the presensor 1-ß hairpin (PS1-ßH). Detailed mechanistic insights into the enzyme repair chaperones of the highly diverse CO2 fixation machinery of Proteobacteria will facilitate their successful implementation in synthetic biology ventures.


Sujet(s)
ATPases associated with diverse cellular activities/métabolisme , Acidithiobacillus/enzymologie , Protéines bactériennes/métabolisme , Protéines de transport/métabolisme , Chaperons moléculaires/métabolisme , Ribulose bisphosphate carboxylase/métabolisme , ATPases associated with diverse cellular activities/génétique , ATPases associated with diverse cellular activities/ultrastructure , Acidithiobacillus/génétique , Acidithiobacillus/ultrastructure , Adénosine triphosphate/métabolisme , Protéines bactériennes/génétique , Protéines bactériennes/ultrastructure , Protéines de transport/génétique , Protéines de transport/ultrastructure , Domaine catalytique/génétique , Cristallographie aux rayons X , Activation enzymatique , Dosages enzymatiques , Microscopie électronique , Modèles moléculaires , Chaperons moléculaires/génétique , Chaperons moléculaires/ultrastructure , Mutagenèse dirigée , Multimérisation de protéines , Structure secondaire des protéines , Ribulose bisphosphate carboxylase/génétique , Ribulose bisphosphate carboxylase/ultrastructure
15.
Nat Commun ; 10(1): 3084, 2019 07 12.
Article de Anglais | MEDLINE | ID: mdl-31300652

RÉSUMÉ

Resistance to inhibitors of cholinesterase 8A (Ric8A) is an essential regulator of G protein α-subunits (Gα), acting as a guanine nucleotide exchange factor and a chaperone. We report two crystal structures of Ric8A, one in the apo form and the other in complex with a tagged C-terminal fragment of Gα. These structures reveal two principal domains of Ric8A: an armadillo-fold core and a flexible C-terminal tail. Additionally, they show that the Gα C-terminus binds to a highly-conserved patch on the concave surface of the Ric8A armadillo-domain, with selectivity determinants residing in the Gα sequence. Biochemical analysis shows that the Ric8A C-terminal tail is critical for its stability and function. A model of the Ric8A/Gα complex derived from crosslinking mass spectrometry and molecular dynamics simulations suggests that the Ric8A C-terminal tail helps organize the GTP-binding site of Gα. This study lays the groundwork for understanding Ric8A function at the molecular level.


Sujet(s)
Protéines à domaine armadillo/ultrastructure , Sous-unités alpha des protéines G/métabolisme , Facteurs d'échange de nucléotides guanyliques/ultrastructure , Chaperons moléculaires/ultrastructure , Animaux , Protéines à domaine armadillo/génétique , Protéines à domaine armadillo/métabolisme , Bovins , Facteurs d'échange de nucléotides guanyliques/génétique , Facteurs d'échange de nucléotides guanyliques/métabolisme , Chaperons moléculaires/génétique , Chaperons moléculaires/métabolisme , Simulation de dynamique moléculaire , Mutagenèse dirigée , Protéines recombinantes/génétique , Protéines recombinantes/métabolisme , Protéines recombinantes/ultrastructure , Diffusion aux petits angles , Diffraction des rayons X
16.
Small ; 15(20): e1805558, 2019 05.
Article de Anglais | MEDLINE | ID: mdl-30920729

RÉSUMÉ

Precisely organized enzyme complexes are often found in nature to support complex metabolic reactions in a highly efficient and specific manner. Scaffolding enzymes on artificial materials has thus gained attention as a promising biomimetic strategy to design biocatalytic systems with enhanced productivity. Herein, a versatile scaffolding platform that can immobilize enzymes on customizable nanofibers is reported. An ultrastable self-assembling filamentous protein, the gamma-prefoldin (γ-PFD), is genetically engineered to display an array of peptide tags, which can specifically and stably bind enzymes containing the counterpart domain through simple in vitro mixing. Successful immobilization of proteins along the filamentous template in tunable density is first verified using fluorescent proteins. Then, two different model enzymes, glucose oxidase and horseradish peroxidase, are used to demonstrate that scaffold attachment could enhance the intrinsic catalytic activity of the immobilized enzymes. Considering the previously reported ability of γ-PFD to bind and stabilize a broad range of proteins, the filament's interaction with the bound enzymes may have created a favorable microenvironment for catalysis. It is envisioned that the strategy described here may provide a generally applicable methodology for the scaffolded assembly of multienzymatic complexes for use in biocatalysis.


Sujet(s)
Glucose oxidase/métabolisme , Horseradish peroxidase/métabolisme , Chaperons moléculaires/composition chimique , Biocatalyse , Enzymes immobilisées/métabolisme , Fluorescence , Cinétique , Chaperons moléculaires/ultrastructure
17.
J Mol Biol ; 430(3): 337-347, 2018 02 02.
Article de Anglais | MEDLINE | ID: mdl-29273204

RÉSUMÉ

Antibody Fab fragments have been exploited with significant success to facilitate the structure determination of challenging macromolecules as crystallization chaperones and as molecular fiducial marks for single particle cryo-electron microscopy approaches. However, the inherent flexibility of the "elbow" regions, which link the constant and variable domains of the Fab, can introduce disorder and thus diminish their effectiveness. We have developed a phage display engineering strategy to generate synthetic Fab variants that significantly reduces elbow flexibility, while maintaining their high affinity and stability. This strategy was validated using previously recalcitrant Fab-antigen complexes where introduction of an engineered elbow region enhanced crystallization and diffraction resolution. Furthermore, incorporation of the mutations appears to be generally portable to other synthetic antibodies and may serve as a universal strategy to enhance the success rates of Fabs as structure determination chaperones.


Sujet(s)
Antigènes/composition chimique , Cryomicroscopie électronique/méthodes , Fragments Fab d'immunoglobuline/composition chimique , Antigènes/ultrastructure , Protéines du cycle cellulaire/composition chimique , Protéines du cycle cellulaire/ultrastructure , Cristallisation/méthodes , Humains , Fragments Fab d'immunoglobuline/génétique , Fragments Fab d'immunoglobuline/ultrastructure , Modèles moléculaires , Chaperons moléculaires/composition chimique , Chaperons moléculaires/ultrastructure , Banque de peptides , Conformation des protéines , Ingénierie des protéines , Saccharomyces cerevisiae/composition chimique , Saccharomyces cerevisiae/ultrastructure , Protéines de Saccharomyces cerevisiae/composition chimique , Protéines de Saccharomyces cerevisiae/ultrastructure
18.
Nat Commun ; 8(1): 2081, 2017 12 12.
Article de Anglais | MEDLINE | ID: mdl-29234026

RÉSUMÉ

Protein misfolding and aggregation is increasingly being recognized as a cause of disease. In Alzheimer's disease the amyloid-ß peptide (Aß) misfolds into neurotoxic oligomers and assembles into amyloid fibrils. The Bri2 protein associated with Familial British and Danish dementias contains a BRICHOS domain, which reduces Aß fibrillization as well as neurotoxicity in vitro and in a Drosophila model, but also rescues proteins from irreversible non-fibrillar aggregation. How these different activities are mediated is not known. Here we show that Bri2 BRICHOS monomers potently prevent neuronal network toxicity of Aß, while dimers strongly suppress Aß fibril formation. The dimers assemble into high-molecular-weight oligomers with an apparent two-fold symmetry, which are efficient inhibitors of non-fibrillar protein aggregation. These results indicate that Bri2 BRICHOS affects qualitatively different aspects of protein misfolding and toxicity via different quaternary structures, suggesting a means to generate molecular chaperone diversity.


Sujet(s)
Peptides bêta-amyloïdes/métabolisme , Cataracte/anatomopathologie , Ataxie cérébelleuse/anatomopathologie , Angiopathie amyloïde cérébrale familiale/anatomopathologie , Surdité/anatomopathologie , Démence/anatomopathologie , Glycoprotéines membranaires/métabolisme , Agrégation pathologique de protéines/anatomopathologie , Protéines adaptatrices de la transduction du signal , Amyloïde/métabolisme , Neuropathies amyloïdes familiales , Dichroïsme circulaire , Humains , Glycoprotéines membranaires/composition chimique , Glycoprotéines membranaires/ultrastructure , Microscopie électronique à transmission , Chaperons moléculaires/composition chimique , Chaperons moléculaires/métabolisme , Chaperons moléculaires/ultrastructure , Liaison aux protéines , Domaines protéiques/physiologie , Pliage des protéines , Multimérisation de protéines/physiologie , Protéines recombinantes
19.
Mol Cell ; 67(2): 322-333.e6, 2017 Jul 20.
Article de Anglais | MEDLINE | ID: mdl-28689658

RÉSUMÉ

The proteasome holoenzyme is activated by its regulatory particle (RP) consisting of two subcomplexes, the lid and the base. A key event in base assembly is the formation of a heterohexameric ring of AAA-ATPases, which is guided by at least four RP assembly chaperones in mammals: PAAF1, p28/gankyrin, p27/PSMD9, and S5b. Using cryogenic electron microscopy, we analyzed the non-AAA structure of the p28-bound human RP at 4.5 Å resolution and determined seven distinct conformations of the Rpn1-p28-AAA subcomplex within the p28-bound RP at subnanometer resolutions. Remarkably, the p28-bound AAA ring does not form a channel in the free RP and spontaneously samples multiple "open" and "closed" topologies at the Rpt2-Rpt6 and Rpt3-Rpt4 interfaces. Our analysis suggests that p28 assists the proteolytic core particle to select a specific conformation of the ATPase ring for RP engagement and is released in a shoehorn-like fashion in the last step of the chaperone-mediated proteasome assembly.


Sujet(s)
Chaperons moléculaires/métabolisme , Proteasome endopeptidase complex/métabolisme , Protéines proto-oncogènes/métabolisme , ATPases associated with diverse cellular activities , Protéines adaptatrices de la transduction du signal/métabolisme , Cryomicroscopie électronique , Cellules HEK293 , Humains , Protéines à domaine LIM/métabolisme , Protéines à domaine LIM/ultrastructure , Modèles moléculaires , Chaperons moléculaires/ultrastructure , Proteasome endopeptidase complex/ultrastructure , Liaison aux protéines , Structure quaternaire des protéines , Sous-unités de protéines , Protéines proto-oncogènes/ultrastructure , Relation structure-activité , Facteurs de transcription/métabolisme , Facteurs de transcription/ultrastructure , Transfection
20.
Mol Biotechnol ; 59(4-5): 117-127, 2017 May.
Article de Anglais | MEDLINE | ID: mdl-28324209

RÉSUMÉ

CRM197 is a diphtheria toxin (DT) mutant (G52E) which has been used as a carrier protein for conjugate vaccines. However, it still possesses cytotoxicity toward mammalian cells. The goal of this project was to produce a non-toxic and soluble CRM197EK through introduction of triple amino acid substitutions (K51E/G52E/E148K) in Escherichia coli. The expression of CRM197EKTrxHis was optimized and co-expressed with different molecular chaperones. The soluble CRM197EKTrxHis was produced at a high concentration (97.33 ± 17.47 µg/ml) under the optimal condition (induction with 0.1 mM IPTG at 20 °C for 24 h). Cells containing pG-Tf2, expressing trigger factor and GroEL-GroES, accumulated the highest amount of soluble CRM197EKTrxHis at 111.24 ± 10.40 µg/ml after induction for 24 h at 20 °C. The soluble CRM197EKTrxHis still possesses nuclease activity and completely digest λDNA at 25 and 37 °C with 8- and 4-h incubation, respectively. Molecular modeling of diphtheria toxin, CRM197 and CRM197EK indicated that substitutions of two amino acids (K51E/E148K) may cause poor NAD binding, consistent with the lack of toxicity. Therefore, CRM197EK might be used as a new potential carrier protein. However, further in vivo study is required to confirm its roles as functional carrier protein in conjugate vaccines.


Sujet(s)
Protéines bactériennes/biosynthèse , Protéines bactériennes/composition chimique , Clonage moléculaire/méthodes , Escherichia coli/physiologie , Modèles chimiques , Modèles moléculaires , Protéines bactériennes/génétique , Sites de fixation , Simulation numérique , Génie métabolique/méthodes , Chaperons moléculaires/biosynthèse , Chaperons moléculaires/composition chimique , Chaperons moléculaires/génétique , Chaperons moléculaires/ultrastructure , Liaison aux protéines , Conformation des protéines , Protéines recombinantes/génétique , Protéines recombinantes/métabolisme , Solubilité
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...