Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 296
Filtrer
1.
Oncogene ; 43(35): 2613-2620, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39107463

RÉSUMÉ

The DNA replication stress (DRS) response is a crucial homeostatic mechanism for maintaining genome integrity in the face of intrinsic and extrinsic barriers to DNA replication. Importantly, DRS is often significantly increased in tumor cells, making tumors dependent on the cellular DRS response for growth and survival. Rad9-Hus1-Rad1 Interacting Nuclear Orphan 1 (RHNO1), a protein involved in the DRS response, has recently emerged as a potential therapeutic target in cancer. RHNO1 interacts with the 9-1-1 checkpoint clamp and TopBP1 to activate the ATR/Chk1 signaling pathway, the crucial mediator of the DRS response. Moreover, RHNO1 was also recently identified as a key facilitator of theta-mediated end joining (TMEJ), a DNA repair mechanism implicated in cancer progression and chemoresistance. In this literature review, we provide an overview of our current understanding of RHNO1, including its structure, function in the DRS response, and role in DNA repair, and discuss its potential as a cancer therapeutic target. Therapeutic targeting of RHNO1 holds promise for tumors with elevated DRS as well as tumors with DNA repair deficiencies, including homologous recombination DNA repair deficient (HRD) tumors. Further investigation into RHNO1 function in cancer, and development of approaches to target RHNO1, are expected to yield novel strategies for cancer treatment.


Sujet(s)
Réparation de l'ADN , Réplication de l'ADN , Tumeurs , Humains , Tumeurs/génétique , Tumeurs/anatomopathologie , Tumeurs/métabolisme , Réplication de l'ADN/génétique , Protéines du cycle cellulaire/génétique , Protéines du cycle cellulaire/métabolisme , Animaux , Checkpoint kinase 1/métabolisme , Checkpoint kinase 1/génétique , Transduction du signal/génétique , Protéines de liaison à l'ADN/génétique , Protéines de liaison à l'ADN/métabolisme , Altération de l'ADN/génétique , Protéines nucléaires/génétique , Protéines nucléaires/métabolisme , Protéines mutées dans l'ataxie-télangiectasie/métabolisme , Protéines mutées dans l'ataxie-télangiectasie/génétique
2.
Br J Cancer ; 131(5): 905-917, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-38965423

RÉSUMÉ

PURPOSE: PARP inhibitors (PARPi) are effective in homologous recombination repair (HRR) defective (HRD) cancers. To (re)sensitise HRR proficient (HRP) tumours to PARPi combinations with other drugs are being explored. Our aim was to determine the mechanism underpinning the sensitisation to PARPi by inhibitors of cell cycle checkpoint kinases ATR, CHK1 and WEE1. EXPERIMENTAL DESIGN: A panel of HRD and HRP cells (including matched BRCA1 or 2 mutant and corrected pairs) and ovarian cancer ascites cells were used. Rucaparib (PARPi) induced replication stress (RS) and HRR (immunofluorescence microscopy for γH2AX and RAD51 foci, respectively), cell cycle changes (flow cytometry), activation of ATR, CHK1 and WEE1 (Western Blot for pCHK1S345, pCHK1S296 and pCDK1Y15, respectively) and cytotoxicity (colony formation assay) was determined, followed by investigations of the impact on all of these parameters by inhibitors of ATR (VE-821, 1 µM), CHK1 (PF-477736, 50 nM) and WEE1 (MK-1775, 100 nM). RESULTS: Rucaparib induced RS (3 to10-fold), S-phase accumulation (2-fold) and ATR, CHK1 and WEE1 activation (up to 3-fold), and VE-821, PF-477736 and MK-1775 inhibited their targets and abrogated these rucaparib-induced cell cycle changes in HRP and HRD cells. Rucaparib activated HRR in HRP cells only and was (60-1,000x) more cytotoxic to HRD cells. VE-821, PF-477736 and MK-1775 blocked HRR and sensitised HRP but not HRD cells and primary ovarian ascites to rucaparib. CONCLUSIONS: Our data indicate that, rather than acting via abrogation of cell cycle checkpoints, ATR, CHK1 and WEE1 inhibitors cause an HRD phenotype and hence "induced synthetic lethality" with PARPi.


Sujet(s)
Protéines mutées dans l'ataxie-télangiectasie , Protéines du cycle cellulaire , Checkpoint kinase 1 , Indoles , Protéines nucléaires , Inhibiteurs de poly(ADP-ribose) polymérases , Protein-tyrosine kinases , Pyrazoles , Pyrimidines , Réparation de l'ADN par recombinaison , Humains , Checkpoint kinase 1/antagonistes et inhibiteurs , Checkpoint kinase 1/génétique , Protein-tyrosine kinases/antagonistes et inhibiteurs , Inhibiteurs de poly(ADP-ribose) polymérases/pharmacologie , Protéines du cycle cellulaire/antagonistes et inhibiteurs , Protéines du cycle cellulaire/génétique , Protéines du cycle cellulaire/métabolisme , Protéines mutées dans l'ataxie-télangiectasie/antagonistes et inhibiteurs , Protéines mutées dans l'ataxie-télangiectasie/génétique , Indoles/pharmacologie , Pyrazoles/pharmacologie , Pyrimidines/pharmacologie , Femelle , Réparation de l'ADN par recombinaison/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Protéines nucléaires/génétique , Protéines nucléaires/antagonistes et inhibiteurs , Protéines nucléaires/métabolisme , Pyrimidinones/pharmacologie , Mutations synthétiques létales/effets des médicaments et des substances chimiques , Tumeurs de l'ovaire/traitement médicamenteux , Tumeurs de l'ovaire/génétique , Tumeurs de l'ovaire/anatomopathologie , Protéine BRCA1/génétique , Protéine BRCA2/génétique , Inhibiteurs de protéines kinases/pharmacologie , Phtalazines/pharmacologie , Benzodiazépinones , Morpholines , Sulfonamides
3.
Nat Commun ; 15(1): 5776, 2024 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-38982062

RÉSUMÉ

The Ser/Thr protein phosphatase 2 A (PP2A) regulates the dephosphorylation of many phosphoproteins. Substrate recognition are mediated by B regulatory subunits. Here, we report the identification of a substrate conserved motif [RK]-V-x-x-[VI]-R in FAM122A, an inhibitor of B55α/PP2A. This motif is necessary for FAM122A binding to B55α, and computational structure prediction suggests the motif, which is helical, blocks substrate docking to the same site. In this model, FAM122A also spatially constrains substrate access by occluding the catalytic subunit. Consistently, FAM122A functions as a competitive inhibitor as it prevents substrate binding and dephosphorylation of CDK substrates by B55α/PP2A in cell lysates. FAM122A deficiency in human cell lines reduces the proliferation rate, cell cycle progression, and hinders G1/S and intra-S phase cell cycle checkpoints. FAM122A-KO in HEK293 cells attenuates CHK1 and CHK2 activation in response to replication stress. Overall, these data strongly suggest that FAM122A is a short helical motif (SHeM)-dependent, substrate-competitive inhibitor of B55α/PP2A that suppresses multiple functions of B55α in the DNA damage response and in timely progression through the cell cycle interphase.


Sujet(s)
Motifs d'acides aminés , Interphase , Protein Phosphatase 2 , Humains , Points de contrôle du cycle cellulaire/génétique , Prolifération cellulaire , Checkpoint kinase 1/métabolisme , Checkpoint kinase 1/génétique , Checkpoint kinase 2/métabolisme , Checkpoint kinase 2/génétique , Cellules HEK293 , Phosphorylation , Liaison aux protéines , Protein Phosphatase 2/métabolisme , Protein Phosphatase 2/génétique
4.
PLoS Genet ; 20(7): e1011341, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38954736

RÉSUMÉ

The drug floxuridine (5-fluorodeoxyuridine, FUdR) is an active metabolite of 5-Fluorouracil (5-FU). It converts to 5-fluorodeoxyuridine monophosphate (FdUMP) and 5-fluorodeoxyuridine triphosphate (FdUTP), which on incorporation into the genome inhibits DNA replication. Additionally, it inhibits thymidylate synthase, causing dTMP shortage while increasing dUMP availability, which induces uracil incorporation into the genome. However, the mechanisms underlying cellular tolerance to FUdR are yet to be fully elucidated. In this study, we explored the mechanisms underlying cellular resistance to FUdR by screening for FUdR hypersensitive mutants from a collection of DT40 mutants deficient in each genomic maintenance system. We identified REV3, which is involved in translesion DNA synthesis (TLS), to be a critical factor in FUdR tolerance. Replication using a FUdR-damaged template was attenuated in REV3-/- cells, indicating that the TLS function of REV3 is required to maintain replication on the FUdR-damaged template. Notably, FUdR-exposed REV3-/- cells exhibited defective cell cycle arrest in the early S phase, suggesting that REV3 is involved in intra-S checkpoint activation. Furthermore, REV3-/- cells showed defects in Chk1 phosphorylation, which is required for checkpoint activation, but the survival of FUdR-exposed REV3-/- cells was further reduced by the inhibition of Chk1 or ATR. These data indicate that REV3 mediates DNA checkpoint activation at least through Chk1 phosphorylation, but this signal acts in parallel with ATR-Chk1 DNA damage checkpoint pathway. Collectively, we reveal a previously unappreciated role of REV3 in FUdR tolerance.


Sujet(s)
Altération de l'ADN , Réplication de l'ADN , Floxuridine , Floxuridine/pharmacologie , Animaux , Checkpoint kinase 1/métabolisme , Checkpoint kinase 1/génétique , Points de contrôle de la phase S du cycle cellulaire/génétique , Points de contrôle de la phase S du cycle cellulaire/effets des médicaments et des substances chimiques , DNA-directed DNA polymerase/métabolisme , DNA-directed DNA polymerase/génétique , Nucleotidyltransferases/métabolisme , Nucleotidyltransferases/génétique , Poulets , Humains , Réparation de l'ADN/génétique , Phosphorylation , Protéines de liaison à l'ADN/génétique , Protéines de liaison à l'ADN/métabolisme , , Désoxyuridine/analogues et dérivés
5.
Blood Cancer Discov ; 5(5): 353-370, 2024 Sep 03.
Article de Anglais | MEDLINE | ID: mdl-38856693

RÉSUMÉ

Splicing factor SF3B1 mutations are frequent somatic lesions in myeloid neoplasms that transform hematopoietic stem cells (HSCs) by inducing mis-splicing of target genes. However, the molecular and functional consequences of SF3B1 mutations in human HSCs and progenitors (HSPCs) remain unclear. Here, we identify the mis-splicing program in human HSPCs as a targetable vulnerability by precise gene editing of SF3B1 K700E mutations in primary CD34+ cells. Mutant SF3B1 induced pervasive mis-splicing and reduced expression of genes regulating mitosis and genome maintenance leading to altered differentiation, delayed G2/M progression, and profound sensitivity to CHK1 inhibition (CHK1i). Mis-splicing or reduced expression of mitotic regulators BUBR1 and CDC27 delayed G2/M transit and promoted CHK1i sensitivity. Clinical CHK1i prexasertib selectively targeted SF3B1-mutant immunophenotypic HSCs and abrogated engraftment in vivo. These findings identify mis-splicing of mitotic regulators in SF3B1-mutant HSPCs as a targetable vulnerability engaged by pharmacological CHK1 inhibition. Significance: In this study, we engineer precise SF3B1 mutations in human HSPCs and identify CHK1 inhibition as a selective vulnerability promoted by mis-splicing of mitotic regulators. These findings uncover the mis-splicing program induced by mutant SF3B1 in human HSPCs and show that it can be therapeutically targeted by clinical CHK1 inhibitors.


Sujet(s)
Checkpoint kinase 1 , Cellules souches hématopoïétiques , Mitose , Mutation , Facteurs d'épissage des ARN , Humains , Checkpoint kinase 1/génétique , Checkpoint kinase 1/métabolisme , Checkpoint kinase 1/antagonistes et inhibiteurs , Facteurs d'épissage des ARN/génétique , Facteurs d'épissage des ARN/métabolisme , Cellules souches hématopoïétiques/effets des médicaments et des substances chimiques , Cellules souches hématopoïétiques/métabolisme , Mitose/effets des médicaments et des substances chimiques , Mitose/génétique , Phosphoprotéines/génétique , Phosphoprotéines/métabolisme , Souris , Animaux , Inhibiteurs de protéines kinases/pharmacologie
6.
Int Immunopharmacol ; 138: 112521, 2024 Sep 10.
Article de Anglais | MEDLINE | ID: mdl-38917519

RÉSUMÉ

Spinal cord injury (SCI) is a devastating neurotraumatic condition characterized by severe motor dysfunction and paralysis. Accumulating evidence suggests that DNA damage is involved in SCI pathology. However, the underlying mechanisms remain elusive. Although checkpoint kinase 1 (Chk1)-regulated DNA damage is involved in critical cellular processes, its role in SCI regulation remains unclear. This study aimed to explore the role and potential mechanism of Chk1 in SCI-induced motor dysfunction. Adult female C57BL/6J mice subjected to T9-T10 spinal cord contusions were used as models of SCI. Western blotting, immunoprecipitation, histomorphology, and Chk1 knockdown or overexpression achieved by adeno-associated virus were performed to explore the underlying mechanisms. Levels of p-Chk1 and γ-H2AX (a cellular DNA damage marker) were upregulated, while ferroptosis-related protein levels, including glutathione peroxidase 4 (GPX4) and x-CT were downregulated, in the spinal cord and hippocampal tissues of SCI mice. Functional experiments revealed increased Basso Mouse Scale (BMS) scores, indicating that Chk1 downregulation promoted motor function recovery after SCI, whereas Chk1 overexpression aggravated SCI-induced motor dysfunction. In addition, Chk1 downregulation reversed the SCI-increased levels of GPX4 and x-CT expression in the spinal cord and hippocampus, while immunoprecipitation assays revealed strengthened interactions between p-Chk1 and GPX4 in the spinal cord after SCI. Finally, Chk1 downregulation promoted while Chk1 overexpression inhibited NeuN cellular immunoactivity in the spinal cord after SCI, respectively. Collectively, these preliminary results imply that Chk1 is a novel regulator of SCI-induced motor dysfunction, and that interventions targeting Chk1 may represent promising therapeutic targets for neurotraumatic diseases such as SCI.


Sujet(s)
Checkpoint kinase 1 , Souris de lignée C57BL , Traumatismes de la moelle épinière , Moelle spinale , Animaux , Traumatismes de la moelle épinière/métabolisme , Checkpoint kinase 1/métabolisme , Checkpoint kinase 1/génétique , Femelle , Souris , Moelle spinale/métabolisme , Moelle spinale/anatomopathologie , Modèles animaux de maladie humaine , Altération de l'ADN , Hippocampe/métabolisme , Hippocampe/anatomopathologie , Ferroptose , Récupération fonctionnelle , Histone/métabolisme , Activité motrice
7.
J Am Heart Assoc ; 13(13): e034805, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38934866

RÉSUMÉ

BACKGROUND: The regenerative capacity of the adult mammalian hearts is limited. Numerous studies have explored mechanisms of adult cardiomyocyte cell-cycle withdrawal. This translational study evaluated the effects and underlying mechanism of rhCHK1 (recombinant human checkpoint kinase 1) on the survival and proliferation of cardiomyocyte and myocardial repair after ischemia/reperfusion injury in swine. METHODS AND RESULTS: Intramyocardial injection of rhCHK1 protein (1 mg/kg) encapsulated in hydrogel stimulated cardiomyocyte proliferation and reduced cardiac inflammation response at 3 days after ischemia/reperfusion injury, improved cardiac function and attenuated ventricular remodeling, and reduced the infarct area at 28 days after ischemia/reperfusion injury. Mechanistically, multiomics sequencing analysis demonstrated enrichment of glycolysis and mTOR (mammalian target of rapamycin) pathways after rhCHK1 treatment. Co-Immunoprecipitation (Co-IP) experiments and protein docking prediction showed that CHK1 (checkpoint kinase 1) directly bound to and activated the Serine 37 (S37) and Tyrosine 105 (Y105) sites of PKM2 (pyruvate kinase isoform M2) to promote metabolic reprogramming. We further constructed plasmids that knocked out different CHK1 and PKM2 amino acid domains and transfected them into Human Embryonic Kidney 293T (HEK293T) cells for CO-IP experiments. Results showed that the 1-265 domain of CHK1 directly binds to the 157-400 amino acids of PKM2. Furthermore, hiPSC-CM (human iPS cell-derived cardiomyocyte) in vitro and in vivo experiments both demonstrated that CHK1 stimulated cardiomyocytes renewal and cardiac repair by activating PKM2 C-domain-mediated cardiac metabolic reprogramming. CONCLUSIONS: This study demonstrates that the 1-265 amino acid domain of CHK1 binds to the 157-400 domain of PKM2 and activates PKM2-mediated metabolic reprogramming to promote cardiomyocyte proliferation and myocardial repair after ischemia/reperfusion injury in adult pigs.


Sujet(s)
Prolifération cellulaire , Checkpoint kinase 1 , Modèles animaux de maladie humaine , Lésion de reperfusion myocardique , Myocytes cardiaques , Animaux , Myocytes cardiaques/métabolisme , Myocytes cardiaques/anatomopathologie , Lésion de reperfusion myocardique/métabolisme , Lésion de reperfusion myocardique/anatomopathologie , Lésion de reperfusion myocardique/enzymologie , Lésion de reperfusion myocardique/génétique , Checkpoint kinase 1/métabolisme , Checkpoint kinase 1/génétique , Humains , Pyruvate kinase/métabolisme , Pyruvate kinase/génétique , Cellules HEK293 , Suidae , Reprogrammation cellulaire , , Régénération , Liaison aux protéines , Sus scrofa , Remodelage ventriculaire/physiologie , Protéines recombinantes/métabolisme , Protéines recombinantes/pharmacologie , Métabolisme énergétique/effets des médicaments et des substances chimiques , Hormones thyroïdiennes/métabolisme ,
8.
Oncol Res ; 32(6): 1021-1030, 2024.
Article de Anglais | MEDLINE | ID: mdl-38827321

RÉSUMÉ

Background: Apolipoprotein B mRNA editing catalytic polypeptide (APOBEC), an endogenous mutator, induces DNA damage and activates the ataxia telangiectasia and Rad3-related (ATR)-checkpoint kinase 1 (Chk1) pathway. Although cisplatin-based therapy is the mainstay for muscle-invasive bladder cancer (MIBC), it has a poor survival rate. Therefore, this study aimed to evaluate the efficacy of an ATR inhibitor combined with cisplatin in the treatment of APOBEC catalytic subunit 3B (APOBEC3B) expressing MIBC. Methods: Immunohistochemical staining was performed to analyze an association between APOBEC3B and ATR in patients with MIBC. The APOBEC3B expression in MIBC cell lines was assessed using real-time polymerase chain reaction and western blot analysis. Western blot analysis was performed to confirm differences in phosphorylated Chk1 (pChk1) expression according to the APOBEC3B expression. Cell viability and apoptosis analyses were performed to examine the anti-tumor activity of ATR inhibitors combined with cisplatin. Conclusion: There was a significant association between APOBEC3B and ATR expression in the tumor tissues obtained from patients with MIBC. Cells with higher APOBEC3B expression showed higher pChk1 expression than cells expressing low APOBEC3B levels. Combination treatment of ATR inhibitor and cisplatin inhibited cell growth in MIBC cells with a higher APOBEC3B expression. Compared to cisplatin single treatment, combination treatment induced more apoptotic cell death in the cells with higher APOBEC3B expression. Conclusion: Our study shows that APOBEC3B's higher expression status can enhance the sensitivity of MIBC to cisplatin upon ATR inhibition. This result provides new insight into appropriate patient selection for the effective application of ATR inhibitors in MIBC.


Sujet(s)
Protéines mutées dans l'ataxie-télangiectasie , Cytidine deaminase , Antigènes mineurs d'histocompatibilité , Tumeurs de la vessie urinaire , Sujet âgé , Femelle , Humains , Mâle , Adulte d'âge moyen , Apoptose/effets des médicaments et des substances chimiques , Protéines mutées dans l'ataxie-télangiectasie/métabolisme , Protéines mutées dans l'ataxie-télangiectasie/antagonistes et inhibiteurs , Lignée cellulaire tumorale , Prolifération cellulaire , Survie cellulaire/effets des médicaments et des substances chimiques , Checkpoint kinase 1/métabolisme , Checkpoint kinase 1/antagonistes et inhibiteurs , Checkpoint kinase 1/génétique , Cisplatine/pharmacologie , Cisplatine/usage thérapeutique , Cytidine deaminase/génétique , Cytidine deaminase/métabolisme , Antigènes mineurs d'histocompatibilité/métabolisme , Antigènes mineurs d'histocompatibilité/génétique , Invasion tumorale , Tumeurs de la vessie urinaire/traitement médicamenteux , Tumeurs de la vessie urinaire/anatomopathologie , Tumeurs de la vessie urinaire/génétique , Tumeurs de la vessie urinaire/métabolisme
9.
Cancer Lett ; 596: 216993, 2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-38801884

RÉSUMÉ

Ribonucleotide Reductase (RNR) is a rate-limiting enzyme in the production of deoxyribonucleoside triphosphates (dNTPs), which are essential substrates for DNA repair after radiation damage. We explored the radiosensitization property of RNR and investigated a selective RRM2 inhibitor, 3-AP, as a radiosensitizer in the treatment of metastatic pNETs. We investigated the role of RNR subunit, RRM2, in pancreatic neuroendocrine (pNET) cells and responses to radiation in vitro. We also evaluated the selective RRM2 subunit inhibitor, 3-AP, as a radiosensitizer to treat pNET metastases in vivo. Knockdown of RNR subunits demonstrated that RRM1 and RRM2 subunits, but not p53R3, play significant roles in cell proliferation. RRM2 inhibition activated DDR pathways through phosphorylation of ATM and DNA-PK protein kinases but not ATR. RRM2 inhibition also induced Chk1 and Chk2 phosphorylation, resulting in G1/S phase cell cycle arrest. RRM2 inhibition sensitized pNET cells to radiotherapy and induced apoptosis in vitro. In vivo, we utilized pNET subcutaneous and lung metastasis models to examine the rationale for RNR-targeted therapy and 3-AP as a radiosensitizer in treating pNETs. Combination treatment significantly increased apoptosis of BON (human pNET) xenografts and significantly reduced the burden of lung metastases. Together, our results demonstrate that selective RRM2 inhibition induced radiosensitivity of metastatic pNETs both in vitro and in vivo. Therefore, treatment with the selective RRM2 inhibitor, 3-AP, is a promising radiosensitizer in the therapeutic armamentarium for metastatic pNETs.


Sujet(s)
Apoptose , Prolifération cellulaire , Souris nude , Tumeurs du pancréas , Radiotolérance , Radiosensibilisants , Ribonucleoside diphosphate reductase , Tests d'activité antitumorale sur modèle de xénogreffe , Humains , Tumeurs du pancréas/anatomopathologie , Tumeurs du pancréas/radiothérapie , Tumeurs du pancréas/génétique , Tumeurs du pancréas/traitement médicamenteux , Tumeurs du pancréas/enzymologie , Ribonucleoside diphosphate reductase/génétique , Ribonucleoside diphosphate reductase/antagonistes et inhibiteurs , Ribonucleoside diphosphate reductase/métabolisme , Animaux , Lignée cellulaire tumorale , Radiosensibilisants/pharmacologie , Apoptose/effets des médicaments et des substances chimiques , Prolifération cellulaire/effets des médicaments et des substances chimiques , Radiotolérance/effets des médicaments et des substances chimiques , Phosphorylation , Tumeurs neuroendocrines/anatomopathologie , Tumeurs neuroendocrines/génétique , Tumeurs neuroendocrines/radiothérapie , Tumeurs neuroendocrines/traitement médicamenteux , Tumeurs neuroendocrines/enzymologie , Tumeurs neuroendocrines/métabolisme , Tumeurs du poumon/secondaire , Tumeurs du poumon/radiothérapie , Tumeurs du poumon/anatomopathologie , Tumeurs du poumon/génétique , Protéines mutées dans l'ataxie-télangiectasie/antagonistes et inhibiteurs , Protéines mutées dans l'ataxie-télangiectasie/métabolisme , Protéines mutées dans l'ataxie-télangiectasie/génétique , Protéines suppresseurs de tumeurs/génétique , Protéines suppresseurs de tumeurs/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques , Checkpoint kinase 1/antagonistes et inhibiteurs , Checkpoint kinase 1/métabolisme , Checkpoint kinase 1/génétique , Souris , Checkpoint kinase 2/métabolisme , Checkpoint kinase 2/génétique , Checkpoint kinase 2/antagonistes et inhibiteurs , Femelle , Interférence par ARN , DNA-activated protein kinase
10.
Biochem Pharmacol ; 226: 116297, 2024 08.
Article de Anglais | MEDLINE | ID: mdl-38801925

RÉSUMÉ

Apelin-13, a type of active peptide, can alleviate lipopolysaccharide (LPS)-induced acute lung injury (ALI). However, the specific mechanism is unclear. Cell cycle checkpoint kinase 1 (Chk1) plays an important role in DNA damage. Here, we investigated the regulatory effect of Apelin on Chk1 in ALI. Chk1-knockout and -overexpression mice were used to explore the role of Chk1 in LPS-induced ALI mice treated with or without Apelin-13. In addition, A549 cells were also treated with LPS to establish a cell model. Chk1 knockdown inhibited the destruction of alveolar structure, the damage of lung epithelial barrier function, and DNA damage in the ALI mouse model. Conversely, Chk1 overexpression had the opposite effect. Furthermore, Apelin-13 reduced Chk1 expression and DNA damage to improve the impaired lung epithelial barrier function in the ALI model. However, the high expression of Chk1 attenuated the protective effect of Apelin-13 on ALI. Notably, Apelin-13 promoted Chk1 degradation through autophagy to regulate DNA damage in LPS-treated A549 cells. In summary, Apelin-13 regulates the expression of Chk1 by promoting autophagy, thereby inhibiting epithelial DNA damage and repairing epithelial barrier function.


Sujet(s)
Lésion pulmonaire aigüe , Checkpoint kinase 1 , Altération de l'ADN , Lipopolysaccharides , Souris de lignée C57BL , Souris knockout , Animaux , Lésion pulmonaire aigüe/induit chimiquement , Lésion pulmonaire aigüe/métabolisme , Lipopolysaccharides/toxicité , Souris , Altération de l'ADN/effets des médicaments et des substances chimiques , Altération de l'ADN/physiologie , Checkpoint kinase 1/métabolisme , Checkpoint kinase 1/génétique , Humains , Cellules A549 , Mâle , Modèles animaux de maladie humaine , Protéines et peptides de signalisation intercellulaire/métabolisme , Protéines et peptides de signalisation intercellulaire/génétique , Muqueuse respiratoire/métabolisme , Muqueuse respiratoire/effets des médicaments et des substances chimiques
11.
Cells ; 13(10)2024 May 17.
Article de Anglais | MEDLINE | ID: mdl-38786089

RÉSUMÉ

Resistance to olaparib is the major obstacle in targeted therapy for ovarian cancer (OC) with poly(ADP-ribose) polymerase inhibitors (PARPis), prompting studies on novel combination therapies to enhance olaparib efficacy. Despite identifying various mechanisms, understanding how OC cells acquire PARPi resistance remains incomplete. This study investigated microRNA (miRNA) expression in olaparib-sensitive (PEO1, PEO4) and previously established olaparib-resistant OC cell lines (PEO1-OR) using high-throughput RT-qPCR and bioinformatic analyses. The role of miRNAs was explored regarding acquired resistance and resensitization with the ATR/CHK1 pathway inhibitors. Differentially expressed miRNAs were used to construct miRNA-mRNA regulatory networks and perform functional enrichment analyses for target genes with miRNet 2.0. TCGA-OV dataset was analyzed to explore the prognostic value of selected miRNAs and target genes in clinical samples. We identified potential processes associated with olaparib resistance, including cell proliferation, migration, cell cycle, and growth factor signaling. Resensitized PEO1-OR cells were enriched in growth factor signaling via PDGF, EGFR, FGFR1, VEGFR2, and TGFßR, regulation of the cell cycle via the G2/M checkpoint, and caspase-mediated apoptosis. Antibody microarray analysis confirmed dysregulated growth factor expression. The addition of the ATR/CHK1 pathway inhibitors to olaparib downregulated FGF4, FGF6, NT-4, PLGF, and TGFß1 exclusively in PEO1-OR cells. Survival and differential expression analyses for serous OC patients revealed prognostic miRNAs likely associated with olaparib resistance (miR-99b-5p, miR-424-3p, and miR-505-5p) and resensitization to olaparib (miR-324-5p and miR-424-3p). Essential miRNA-mRNA interactions were reconstructed based on prognostic miRNAs and target genes. In conclusion, our data highlight distinct miRNA profiles in olaparib-sensitive and olaparib-resistant cells, offering molecular insights into overcoming resistance with the ATR/CHK1 inhibitors in OC. Moreover, some miRNAs might serve as potential predictive signature molecules of resistance and therapeutic response.


Sujet(s)
Protéines mutées dans l'ataxie-télangiectasie , Protéine BRCA2 , Checkpoint kinase 1 , Résistance aux médicaments antinéoplasiques , Régulation de l'expression des gènes tumoraux , Réseaux de régulation génique , microARN , Tumeurs de l'ovaire , Phtalazines , Pipérazines , ARN messager , Humains , Phtalazines/pharmacologie , Phtalazines/usage thérapeutique , microARN/génétique , microARN/métabolisme , Femelle , Pipérazines/pharmacologie , Pipérazines/usage thérapeutique , Tumeurs de l'ovaire/génétique , Tumeurs de l'ovaire/traitement médicamenteux , Tumeurs de l'ovaire/anatomopathologie , Checkpoint kinase 1/métabolisme , Checkpoint kinase 1/génétique , Résistance aux médicaments antinéoplasiques/génétique , Résistance aux médicaments antinéoplasiques/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Réseaux de régulation génique/effets des médicaments et des substances chimiques , Protéines mutées dans l'ataxie-télangiectasie/métabolisme , Protéines mutées dans l'ataxie-télangiectasie/génétique , ARN messager/génétique , ARN messager/métabolisme , Protéine BRCA2/génétique , Protéine BRCA2/métabolisme , Régulation de l'expression des gènes tumoraux/effets des médicaments et des substances chimiques , Transduction du signal/effets des médicaments et des substances chimiques
12.
Cancer Lett ; 592: 216898, 2024 Jun 28.
Article de Anglais | MEDLINE | ID: mdl-38670306

RÉSUMÉ

Radiotherapy (RT) is used for over 50 % of cancer patients and can promote adaptive immunity against tumour antigens. However, the underlying mechanisms remain unclear. Here, we discovered that RT induces the release of irradiated tumour cell-derived microparticles (RT-MPs), which significantly upregulate MHC-I expression on the membranes of non-irradiated cells, enhancing the recognition and killing of these cells by T cells. Mechanistically, RT-MPs induce DNA double-strand breaks (DSB) in tumour cells, activating the ATM/ATR/CHK1-mediated DNA repair signalling pathway, and upregulating MHC-I expression. Inhibition of ATM/ATR/CHK1 reversed RT-MP-induced upregulation of MHC-I. Furthermore, phosphorylation of STAT1/3 following the activation of ATM/ATR/CHK1 is indispensable for the DSB-dependent upregulation of MHC-I. Therefore, our findings reveal the role of RT-MP-induced DSBs and the subsequent DNA repair signalling pathway in MHC-I expression and provide mechanistic insights into the regulation of MHC-I expression after DSBs.


Sujet(s)
Protéines mutées dans l'ataxie-télangiectasie , Microparticules membranaires , Cassures double-brin de l'ADN , Réparation de l'ADN , Antigènes d'histocompatibilité de classe I , Transduction du signal , Régulation positive , Humains , Microparticules membranaires/métabolisme , Protéines mutées dans l'ataxie-télangiectasie/métabolisme , Protéines mutées dans l'ataxie-télangiectasie/génétique , Antigènes d'histocompatibilité de classe I/métabolisme , Antigènes d'histocompatibilité de classe I/génétique , Lignée cellulaire tumorale , Checkpoint kinase 1/métabolisme , Checkpoint kinase 1/génétique , Animaux , Phosphorylation , Régulation de l'expression des gènes tumoraux , Facteur de transcription STAT-3/métabolisme , Facteur de transcription STAT-3/génétique , Souris , Tumeurs/génétique , Tumeurs/anatomopathologie , Tumeurs/métabolisme , Tumeurs/radiothérapie , Tumeurs/immunologie
13.
PLoS One ; 19(4): e0302075, 2024.
Article de Anglais | MEDLINE | ID: mdl-38669256

RÉSUMÉ

Endometrial cancer is the most prevalent gynecologic malignancy with a high risk of recurrence. Local recurrence occurs in 7-20% of patients with treated stage I cancer within 3 years after primary treatment. In this study, we found significantly elevated mRNA expression levels of the oncoprotein KRAS, along with two replicative stress markers, ATR and CHEK1, in samples of endometrial carcinomas of endometrium (ECE) from patients with relapse. In contrast, mRNA expression levels of the studied genes were low and uniform in samples from patients without relapse. Elevated levels of KRAS protein and the phosphorylated form of ATR/CHEK1 were distinguishing features of recurrent ECE. A strong positive correlation was found between elevated mRNA and protein levels of the studied molecules. Elevated KRAS protein levels are characteristic of poorly differentiated (G3) endometrial carcinomas with deep myometrial invasion in patients without recurrence. In contrast, in patients with recurrence, higher protein levels of KRAS, pATR and pCHEK1 were observed in samples of G1-2 endometrial carcinomas, with statistically significant differences confirmed for pATR. High pCHEK1 protein levels are associated with deep tumor invasion in the myometrium among patients with recurrence. ROC analysis confirmed that evaluating the specificity and sensitivity of KRAS, pATR and pCHEK1 predicts recurrence development in patients with ECE. Our findings indicate that markers of replicative stress may play a significant role in ECE pathogenesis. Determining their levels in tumor samples after primary treatment could help define patients at high risk of recurrence and guide consequent courses of treatment.


Sujet(s)
Protéines mutées dans l'ataxie-télangiectasie , Checkpoint kinase 1 , Tumeurs de l'endomètre , Récidive tumorale locale , Protéines proto-oncogènes p21(ras) , Humains , Femelle , Tumeurs de l'endomètre/génétique , Tumeurs de l'endomètre/anatomopathologie , Tumeurs de l'endomètre/métabolisme , Protéines proto-oncogènes p21(ras)/génétique , Adulte d'âge moyen , Checkpoint kinase 1/métabolisme , Checkpoint kinase 1/génétique , Protéines mutées dans l'ataxie-télangiectasie/génétique , Protéines mutées dans l'ataxie-télangiectasie/métabolisme , Récidive tumorale locale/génétique , Récidive tumorale locale/anatomopathologie , Récidive tumorale locale/métabolisme , Facteurs de risque , Sujet âgé , Protéines G ras/génétique , Protéines G ras/métabolisme , Régulation de l'expression des gènes tumoraux , Adulte , Marqueurs biologiques tumoraux/génétique , Marqueurs biologiques tumoraux/métabolisme , ARN messager/génétique , ARN messager/métabolisme , Protéines proto-oncogènes/génétique , Protéines proto-oncogènes/métabolisme
14.
Proc Natl Acad Sci U S A ; 121(18): e2322520121, 2024 Apr 30.
Article de Anglais | MEDLINE | ID: mdl-38657044

RÉSUMÉ

The S-phase checkpoint involving CHK1 is essential for fork stability in response to fork stalling. PARP1 acts as a sensor of replication stress and is required for CHK1 activation. However, it is unclear how the activity of PARP1 is regulated. Here, we found that UFMylation is required for the efficient activation of CHK1 by UFMylating PARP1 at K548 during replication stress. Inactivation of UFL1, the E3 enzyme essential for UFMylation, delayed CHK1 activation and inhibits nascent DNA degradation during replication blockage as seen in PARP1-deficient cells. An in vitro study indicated that PARP1 is UFMylated at K548, which enhances its catalytic activity. Correspondingly, a PARP1 UFMylation-deficient mutant (K548R) and pathogenic mutant (F553L) compromised CHK1 activation, the restart of stalled replication forks following replication blockage, and chromosome stability. Defective PARP1 UFMylation also resulted in excessive nascent DNA degradation at stalled replication forks. Finally, we observed that PARP1 UFMylation-deficient knock-in mice exhibited increased sensitivity to replication stress caused by anticancer treatments. Thus, we demonstrate that PARP1 UFMylation promotes CHK1 activation and replication fork stability during replication stress, thus safeguarding genome integrity.


Sujet(s)
Checkpoint kinase 1 , Réplication de l'ADN , Poly (ADP-Ribose) polymerase-1 , Animaux , Poly (ADP-Ribose) polymerase-1/métabolisme , Poly (ADP-Ribose) polymerase-1/génétique , Checkpoint kinase 1/métabolisme , Checkpoint kinase 1/génétique , Souris , Humains , Altération de l'ADN , Ubiquitin-protein ligases/métabolisme , Ubiquitin-protein ligases/génétique
15.
J Biol Chem ; 300(5): 107277, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38588804

RÉSUMÉ

Protein phosphatase 2A (PP2A) is an essential serine/threonine protein phosphatase, and its dysfunction is involved in the onset of cancer and neurodegenerative disorders. PP2A functions as a trimeric holoenzyme whose composition is regulated by the methyl-esterification (methylation) of the PP2A catalytic subunit (PP2Ac). Protein phosphatase methylesterase-1 (PME-1) is the sole PP2Ac methylesterase, and the higher PME-1 expression is observed in various cancer and neurodegenerative diseases. Apart from serving as a methylesterase, PME-1 acts as a PP2A inhibitory protein, binding directly to PP2Ac and suppressing its activity. The intricate function of PME-1 hinders drug development by targeting the PME-1/PP2Ac axis. This study applied the NanoBiT system, a bioluminescence-based protein interaction assay, to elucidate the molecular mechanism that modulates unknown PME-1/PP2Ac protein-protein interaction (PPI). Compound screening identified that the CHK1 inhibitors inhibited PME-1/PP2Ac association without affecting PP2Ac methylation levels. CHK1 directly phosphorylates PP2Ac to promote PME-1 association. Phospho-mass spectrometry identified multiple phospho-sites on PP2Ac, including the Thr219, that affect PME-1 interaction. An anti-phospho-Thr219 PP2Ac antibody was generated and showed that CHK1 regulates the phosphorylation levels of this site in cells. On the contrary, in vitro phosphatase assay showed that CHK1 is the substrate of PP2A, and PME-1 hindered PP2A-mediated dephosphorylation of CHK1. Our data provides novel insights into the molecular mechanisms governing the PME-1/PP2Ac PPI and the triad relationship between PP2A, PME-1, and CHK1.


Sujet(s)
Carboxylic ester hydrolases , Checkpoint kinase 1 , Protein Phosphatase 2 , Protein Phosphatase 2/métabolisme , Protein Phosphatase 2/génétique , Humains , Checkpoint kinase 1/métabolisme , Checkpoint kinase 1/génétique , Carboxylic ester hydrolases/métabolisme , Carboxylic ester hydrolases/génétique , Phosphorylation , Luciferases/métabolisme , Luciferases/génétique , Liaison aux protéines , Cellules HEK293
16.
J Clin Invest ; 134(10)2024 Mar 26.
Article de Anglais | MEDLINE | ID: mdl-38530355

RÉSUMÉ

The mammalian SUMO-targeted E3 ubiquitin ligase Rnf4 has been reported to act as a regulator of DNA repair, but the importance of RNF4 as a tumor suppressor has not been tested. Using a conditional-knockout mouse model, we deleted Rnf4 in the B cell lineage to test the importance of RNF4 for growth of somatic cells. Although Rnf4-conditional-knockout B cells exhibited substantial genomic instability, Rnf4 deletion caused no increase in tumor susceptibility. In contrast, Rnf4 deletion extended the healthy lifespan of mice expressing an oncogenic c-myc transgene. Rnf4 activity is essential for normal DNA replication, and in its absence, there was a failure in ATR-CHK1 signaling of replication stress. Factors that normally mediate replication fork stability, including members of the Fanconi anemia gene family and the helicases PIF1 and RECQL5, showed reduced accumulation at replication forks in the absence of RNF4. RNF4 deficiency also resulted in an accumulation of hyper-SUMOylated proteins in chromatin, including members of the SMC5/6 complex, which contributes to replication failure by a mechanism dependent on RAD51. These findings indicate that RNF4, which shows increased expression in multiple human tumor types, is a potential target for anticancer therapy, especially in tumors expressing c-myc.


Sujet(s)
Réplication de l'ADN , Protéines proto-oncogènes c-myc , Animaux , Humains , Souris , Protéines mutées dans l'ataxie-télangiectasie/métabolisme , Protéines mutées dans l'ataxie-télangiectasie/génétique , Lymphocytes B/métabolisme , Lymphocytes B/anatomopathologie , Carcinogenèse/génétique , Carcinogenèse/métabolisme , Checkpoint kinase 1/métabolisme , Checkpoint kinase 1/génétique , Instabilité du génome , Souris knockout , Protéines nucléaires/génétique , Protéines nucléaires/métabolisme , Protéines proto-oncogènes c-myc/génétique , Protéines proto-oncogènes c-myc/métabolisme , Transduction du signal , Sumoylation , Ubiquitin-protein ligases/génétique , Ubiquitin-protein ligases/métabolisme
17.
Methods Cell Biol ; 182: 221-236, 2024.
Article de Anglais | MEDLINE | ID: mdl-38359979

RÉSUMÉ

The ATR/Chk1 pathway is an important regulator of cell cycle progression, notably upon genotoxic stress where it can detect a large variety of DNA alterations and induce a transient cell cycle arrest that promotes DNA repair. In addition to its role in DNA damage response (DDR), Chk1 is also active during a non-perturbed S phase and contributes to prevent a premature entry into mitosis with an incompletely replicated genome, meaning the ATR/Chk1 pathway is an integral part of the cell cycle machinery that preserves genome integrity during cell growth. We recently developed a FRET-based Chk1 kinase activity reporter to directly monitor and quantify the kinetics of Chk1 activation in live single cell imaging assays with unprecedented sensitivity and time resolution. This tool allowed us to monitor Chk1 activity dynamics over time during a normal S phase and following genotoxic stress, and to elucidate the underlying mechanisms leading to its activation. Here, we review available fluorescent tools to study the interplay of cell cycle progression, DNA damage and DDR in individual live cells, and present the full protocol and image analysis pipeline to monitor Chk1 activity in two imaging assays.


Sujet(s)
Altération de l'ADN , Checkpoint kinase 1/génétique , Checkpoint kinase 1/métabolisme , Protéines mutées dans l'ataxie-télangiectasie/génétique , Protéines mutées dans l'ataxie-télangiectasie/métabolisme , Phosphorylation , Cycle cellulaire/génétique
18.
Phytomedicine ; 126: 155177, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38412667

RÉSUMÉ

BACKGROUND: The mortality rate of liver cancer ranks third in the world, and hepatocellular carcinoma (HCC) is a malignant tumor of the digestive tract. Cucurbitacin B (CuB), a natural compound extracted from Cucurbitaceae spp., is the main active component of Chinese patent medicine the Cucurbitacin Tablet, which has been widely used in the treatment of various malignant tumors in clinics, especially HCC. PURPOSE: This study explored the role and mechanism of CuB in the suppression of liver cancer progression. METHODS: Cell Counting Kit-8 (CCK-8) and colony formation assays were used to detect the inhibitory function of CuB in Huh7, Hep3B, and Hepa1/6 hepatoma cells. Calcein-AM/propidium iodide (PI) staining and lactate dehydrogenase (LDH) measurement assays were performed to determine cell death. Mitochondrial membrane potential (Δψm) was measured, and flow cytometry was performed to evaluate cell apoptosis and cell cycle. Several techniques, such as proteomics, Western blotting (WB), and ribonucleic acid (RNA) interference, were utilized to explore the potential mechanism. The animal experiment was performed to verify the results of in vitro experiments. RESULTS: CuB significantly inhibited the growth of Huh7, Hep3B, and Hepa1/6 cells and triggered the cell cycle arrest in G2/M phage without leading to cell death, especially apoptosis. Knockdown of insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1), a target of CuB, did not reverse CuB elicited cell cycle arrest. CuB enhanced phosphorylated ataxia telangiectasia mutated (p-ATM) and phosphorylated H2A histone family member X (γ-H2AX) levels. Moreover, CuB increased p53 and p21 levels and decreased cyclin-dependent kinase 1 (CDK1) expression, accompanied by improving phosphorylated checkpoint kinase 1 (p-CHK1) level and suppressing cell division cycle 25C (CDC25C) protein level. Interestingly, these phenomena were partly abolished by a deoxyribonucleic acid (DNA) protector methylproamine (MPA). Animal studies showed that CuB also significantly suppressed tumor growth in BALB/c mice bearing Hepa1/6 cells. In tumor tissues, CuB reduced the expression levels of proliferating cell nuclear antigen (PCNA) and γ-H2AX but did not change the terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick-end labeling (TUNEL) level. CONCLUSION: This study demonstrated for the first time that CuB could effectively impede HCC progression by inducing DNA damage-dependent cell cycle arrest without directly triggering cell death, such as necrosis and apoptosis. The effect was achieved through ataxia telangiectasia mutated (ATM)-dependent p53-p21-CDK1 and checkpoint kinase 1 (CHK1)-CDC25C signaling pathways. These findings indicate that CuB may be used as an anti-HCC drug, when the current findings are confirmed by independent studies and after many more clinical phase 1, 2, 3, and 4 testings have been done.


Sujet(s)
Ataxie-télangiectasie , Carcinome hépatocellulaire , Tumeurs du foie , Triterpènes , Animaux , Souris , Carcinome hépatocellulaire/traitement médicamenteux , Carcinome hépatocellulaire/métabolisme , Checkpoint kinase 1/génétique , Checkpoint kinase 1/métabolisme , Checkpoint kinase 1/usage thérapeutique , Protéine p53 suppresseur de tumeur/métabolisme , Tumeurs du foie/traitement médicamenteux , Tumeurs du foie/métabolisme , Protéines mutées dans l'ataxie-télangiectasie/génétique , Protéines mutées dans l'ataxie-télangiectasie/métabolisme , Protéines mutées dans l'ataxie-télangiectasie/usage thérapeutique , Points de contrôle du cycle cellulaire , Altération de l'ADN , Apoptose , Lignée cellulaire tumorale , Prolifération cellulaire
19.
OMICS ; 28(1): 8-23, 2024 01.
Article de Anglais | MEDLINE | ID: mdl-38190280

RÉSUMÉ

Checkpoint kinase 1 (CHK1), a serine/threonine kinase, plays a crucial role in cell cycle arrest and is a promising therapeutic target for drug development against cancers. CHK1 coordinates cell cycle checkpoints in response to DNA damage, facilitating repair of single-strand breaks, and maintains the genome integrity in response to replication stress. In this study, we employed an integrated computational and experimental approach to drug discovery and repurposing, aiming to identify a potent CHK1 inhibitor among existing drugs. An e-pharmacophore model was developed based on the three-dimensional crystal structure of the CHK1 protein in complex with CCT245737. This model, characterized by seven key molecular features, guided the screening of a library of drugs through molecular docking. The top 10% of scored ligands were further examined, with procaterol emerging as the leading candidate. Procaterol demonstrated interaction patterns with the CHK1 active site similar to CHK1 inhibitor (CCT245737), as shown by molecular dynamics analysis. Subsequent in vitro assays, including cell proliferation, colony formation, and cell cycle analysis, were conducted on gastric adenocarcinoma cells treated with procaterol, both as a monotherapy and in combination with cisplatin. Procaterol, in synergy with cisplatin, significantly inhibited cell growth, suggesting a potentiated therapeutic effect. Thus, we propose the combined application of cisplatin and procaterol as a novel potential therapeutic strategy against human gastric cancer. The findings also highlight the relevance of CHK1 kinase as a drug target for enhancing the sensitivity of cytotoxic agents in cancer.


Sujet(s)
4-Amino-pyridine/analogues et dérivés , Antinéoplasiques , Pyrazines , Tumeurs de l'estomac , Humains , Cisplatine/pharmacologie , Checkpoint kinase 1/génétique , Procatérol , Tumeurs de l'estomac/traitement médicamenteux , Protein kinases/génétique , Protein kinases/métabolisme , Repositionnement des médicaments , Simulation de docking moléculaire , Lignée cellulaire tumorale , Antinéoplasiques/pharmacologie , Découverte de médicament , Altération de l'ADN , Inhibiteurs de protéines kinases/pharmacologie , Inhibiteurs de protéines kinases/composition chimique
20.
Int J Mol Sci ; 25(2)2024 Jan 19.
Article de Anglais | MEDLINE | ID: mdl-38279263

RÉSUMÉ

Replication stress (RS) is a characteristic state of cancer cells as they tend to exchange precision of replication for fast proliferation and increased genomic instability. To overcome the consequences of improper replication control, malignant cells frequently inactivate parts of their DNA damage response (DDR) pathways (the ATM-CHK2-p53 pathway), while relying on other pathways which help to maintain replication fork stability (ATR-CHK1). This creates a dependency on the remaining DDR pathways, vulnerability to further destabilization of replication and synthetic lethality of DDR inhibitors with common oncogenic alterations such as mutations of TP53, RB1, ATM, amplifications of MYC, CCNE1 and others. The response to RS is normally limited by coordination of cell cycle, transcription and replication. Inhibition of WEE1 and PKMYT1 kinases, which prevent unscheduled mitosis entry, leads to fragility of under-replicated sites. Recent evidence also shows that inhibition of Cyclin-dependent kinases (CDKs), such as CDK4/6, CDK2, CDK8/19 and CDK12/13 can contribute to RS through disruption of DNA repair and replication control. Here, we review the main causes of RS in cancers as well as main therapeutic targets-ATR, CHK1, PARP and their inhibitors.


Sujet(s)
Altération de l'ADN , Tumeurs , Protéines mutées dans l'ataxie-télangiectasie/métabolisme , Checkpoint kinase 1/génétique , Checkpoint kinase 1/métabolisme , Points de contrôle du cycle cellulaire , Protéines du cycle cellulaire/génétique , Protéines du cycle cellulaire/métabolisme , Réplication de l'ADN , Tumeurs/traitement médicamenteux , Tumeurs/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE