Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
J Chem Inf Model ; 63(9): 2609-2627, 2023 05 08.
Article de Anglais | MEDLINE | ID: mdl-37100031

RÉSUMÉ

During the second half of the 20th century, following structural biology hallmark works on DNA and proteins, biochemists shifted their questions from "what does this molecule look like?" to "how does this process work?". Prompted by the theoretical and practical developments in computational chemistry, this led to the emergence of biomolecular simulations and, along with the 2013 Nobel Prize in Chemistry, to the development of hybrid QM/MM methods. QM/MM methods are necessary whenever the problem we want to address involves chemical reactivity and/or a change in the system's electronic structure, with archetypal examples being the studies of an enzyme's reaction mechanism and a metalloprotein's active site. In the last decades QM/MM methods have seen an increasing adoption driven by their incorporation in widely used biomolecular simulation software. However, properly setting up a QM/MM simulation is not an easy task, and several issues need to be properly addressed to obtain meaningful results. In the present work, we describe both the theoretical concepts and practical issues that need to be considered when performing QM/MM simulations. We start with a brief historical perspective on the development of these methods and describe when and why QM/MM methods are mandatory. Then we show how to properly select and analyze the performance of the QM level of theory, the QM system size, and the position and type of the boundaries. We show the relevance of performing prior QM model system (or QM cluster) calculations in a vacuum and how to use the corresponding results to adequately calibrate those derived from QM/MM. We also discuss how to prepare the starting structure and how to select an adequate simulation strategy, including those based on geometry optimizations as well as free energy methods. In particular, we focus on the determination of free energy profiles using multiple steered molecular dynamics (MSMD) combined with Jarzynski's equation. Finally, we describe the results for two illustrative and complementary examples: the reaction performed by chorismate mutase and the study of ligand binding to hemoglobins. Overall, we provide many practical recommendations (or shortcuts) together with important conceptualizations that we hope will encourage more and more researchers to incorporate QM/MM studies into their research projects.


Sujet(s)
Simulation de dynamique moléculaire , Protéines , Protéines/composition chimique , Entropie , Chorismate mutase , Modèles biologiques , Théorie quantique
2.
Methods Enzymol ; 578: 123-43, 2016.
Article de Anglais | MEDLINE | ID: mdl-27497165

RÉSUMÉ

One of the main goals of chemistry is to understand the underlying principles of chemical reactions, in terms of both its reaction mechanism and the thermodynamics that govern it. Using hybrid quantum mechanics/molecular mechanics (QM/MM)-based methods in combination with a biased sampling scheme, it is possible to simulate chemical reactions occurring inside complex environments such as an enzyme, or aqueous solution, and determining the corresponding free energy profile, which provides direct comparison with experimental determined kinetic and equilibrium parameters. Among the most promising biasing schemes is the multiple steered molecular dynamics method, which in combination with Jarzynski's Relationship (JR) allows obtaining the equilibrium free energy profile, from a finite set of nonequilibrium reactive trajectories by exponentially averaging the individual work profiles. However, obtaining statistically converged and accurate profiles is far from easy and may result in increased computational cost if the selected steering speed and number of trajectories are inappropriately chosen. In this small review, using the extensively studied chorismate to prephenate conversion reaction, we first present a systematic study of how key parameters such as pulling speed, number of trajectories, and reaction progress are related to the resulting work distributions and in turn the accuracy of the free energy obtained with JR. Second, and in the context of QM/MM strategies, we introduce the Hybrid Differential Relaxation Algorithm, and show how it allows obtaining more accurate free energy profiles using faster pulling speeds and smaller number of trajectories and thus smaller computational cost.


Sujet(s)
Amidohydrolases/composition chimique , Protéines bactériennes/composition chimique , Chorismate mutase/composition chimique , Acide chorismique/composition chimique , Acides cyclohexanecarboxyliques/composition chimique , Cyclohexènes/composition chimique , Algorithmes , Amidohydrolases/métabolisme , Bacillus subtilis/composition chimique , Bacillus subtilis/enzymologie , Protéines bactériennes/métabolisme , Chorismate mutase/métabolisme , Acide chorismique/métabolisme , Acides cyclohexanecarboxyliques/métabolisme , Cyclohexènes/métabolisme , Cinétique , Simulation de dynamique moléculaire , Mycobacterium tuberculosis/composition chimique , Mycobacterium tuberculosis/enzymologie , Théorie quantique , Électricité statique , Spécificité du substrat , Thermodynamique
3.
FEBS Lett ; 586(4): 466-71, 2012 Feb 17.
Article de Anglais | MEDLINE | ID: mdl-22285487

RÉSUMÉ

T-protein is composed of chorismate mutase (AroQ(T)) fused to the N-terminus of prephenate dehydrogenase (TyrA). Here, we report the replacement of AroQ(T) with the ß1-domain of protein G (Gß1). The TyrA domain shows a strong dehydrogenase activity within the context of this fusion, and our data indicate that Gß1-TyrA folds into a dimeric conformation. Amino acid substitutions in the Gß1 domain of Gß1-TyrA identified residues involved in stabilizing the TyrA dimeric conformation. Gß1 substitutions in the N-terminal ß-hairpin eliminated Gß1-TyrA expression, whereas Gß1-TyrA tolerated Gß1 substitutions in the C-terminal ß-hairpin and in the α-helix. All of the characterized variants folded into a dimeric conformation. The importance of the ß2-strand in forming a Gß1 homo-dimerization interface explains the relevance of the first-ß-hairpin in stabilizing the dimeric TyrA protein.


Sujet(s)
Protéines bactériennes/composition chimique , Chorismate mutase/composition chimique , Protéines Escherichia coli/composition chimique , Complexes multienzymatiques/composition chimique , Prephenate dehydrogenase/composition chimique , Séquence d'acides aminés , Substitution d'acide aminé , Protéines bactériennes/génétique , Chorismate mutase/génétique , Dimérisation , Protéines Escherichia coli/génétique , Modèles moléculaires , Données de séquences moléculaires , Complexes multienzymatiques/génétique , Prephenate dehydrogenase/génétique , Pliage des protéines , Structure tertiaire des protéines , Protéines de fusion recombinantes/composition chimique , Protéines de fusion recombinantes/génétique , Similitude de séquences d'acides aminés
4.
J Ind Microbiol Biotechnol ; 38(11): 1845-52, 2011 Nov.
Article de Anglais | MEDLINE | ID: mdl-21512819

RÉSUMÉ

L-3,4-dihydroxyphenylalanine (L-DOPA) is an aromatic compound employed for the treatment of Parkinson's disease. Metabolic engineering was applied to generate Escherichia coli strains for the production of L-DOPA from glucose by modifying the phosphoenolpyruvate:sugar phosphotransferase system (PTS) and aromatic biosynthetic pathways. Carbon flow was directed to the biosynthesis of L-tyrosine (L-Tyr), an L-DOPA precursor, by transforming strains with compatible plasmids carrying genes encoding a feedback-inhibition resistant version of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase, transketolase, the chorismate mutase domain from chorismate mutase-prephenate dehydratase from E. coli and cyclohexadienyl dehydrogenase from Zymomonas mobilis. The effects on L-Tyr production of PTS inactivation (PTS(-) gluc(+) phenotype), as well as inactivation of the regulatory protein TyrR, were evaluated. PTS inactivation caused a threefold increase in the specific rate of L-Tyr production (q( L-Tyr)), whereas inactivation of TyrR caused 1.7- and 1.9-fold increases in q( L-Tyr) in the PTS(+) and the PTS(-) gluc(+) strains, respectively. An 8.6-fold increase in L-Tyr yield from glucose was observed in the PTS(-) gluc(+) tyrR (-) strain. Expression of hpaBC genes encoding the enzyme 4-hydroxyphenylacetate 3-hydroxylase from E. coli W in the strains modified for L-Tyr production caused the synthesis of L-DOPA. One of such strains, having the PTS(-) gluc(+) tyrR (-) phenotype, displayed the best production parameters in minimal medium, with a specific rate of L-DOPA production of 13.6 mg/g/h, L-DOPA yield from glucose of 51.7 mg/g and a final L-DOPA titer of 320 mg/l. In a batch fermentor culture in rich medium this strain produced 1.51 g/l of L-DOPA in 50 h.


Sujet(s)
Escherichia coli/métabolisme , Glucose/métabolisme , Lévodopa/biosynthèse , 3-Deoxy-7-phosphoheptulonate synthase/génétique , 3-Deoxy-7-phosphoheptulonate synthase/métabolisme , Chorismate mutase/génétique , Chorismate mutase/métabolisme , Escherichia coli/génétique , Génie métabolique , Mixed function oxygenases/génétique , Mixed function oxygenases/métabolisme , Phosphoenolpyruvate-fructose phosphotransferase/génétique , Phosphoenolpyruvate-fructose phosphotransferase/métabolisme , Plasmides , Prephenate dehydratase/génétique , Prephenate dehydratase/métabolisme , Prephenate dehydrogenase/génétique , Prephenate dehydrogenase/métabolisme , Transketolase/génétique , Transketolase/métabolisme , Tyrosine/biosynthèse , Zymomonas/enzymologie
5.
J Bacteriol ; 190(1): 122-34, 2008 Jan.
Article de Anglais | MEDLINE | ID: mdl-17965159

RÉSUMÉ

Chorismate mutase (CM) catalyzes the rearrangement of chorismate to prephenate in the biosynthetic pathway that forms phenylalanine and tyrosine in bacteria, fungi, plants, and apicomplexan parasites. Since this enzyme is absent from mammals, it represents a promising target for the development of new antimycobacterial drugs, which are needed to combat Mycobacterium tuberculosis, the causative agent of tuberculosis. Until recently, two putative open reading frames (ORFs), Rv0948c and Rv1885c, showing low sequence similarity to CMs have been described as "conserved hypothetical proteins" in the M. tuberculosis genome. However, we and others demonstrated that these ORFs are in fact monofunctional CMs of the AroQ structural class and that they are differentially localized in the mycobacterial cell. Since homologues to the M. tuberculosis enzymes are also present in Mycobacterium smegmatis, we cloned the coding sequences corresponding to ORFs MSMEG5513 and MSMEG2114 from the latter. The CM activities of both ORFs was determined, as well as their translational start sites. In addition, we analyzed the promoter activities of three M. tuberculosis loci related to phenylalanine and tyrosine biosynthesis under a variety of conditions using M. smegmatis as a surrogate host. Our results indicate that the aroQ (Rv0948c), *aroQ (Rv1885c), and fbpB (Rv1886c) genes from M. tuberculosis are constitutively expressed or subjected to minor regulation by aromatic amino acids levels, especially tryptophan.


Sujet(s)
Acides aminés aromatiques/pharmacologie , Chorismate mutase/génétique , Chorismate mutase/métabolisme , Régulation de l'expression des gènes bactériens/effets des médicaments et des substances chimiques , Régulation de l'expression des gènes codant pour des enzymes/effets des médicaments et des substances chimiques , Mycobacterium smegmatis/enzymologie , Mycobacterium tuberculosis/enzymologie , Séquence d'acides aminés , Antituberculeux/pharmacologie , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , Séquence nucléotidique , Amorces ADN , Humains , Cinétique , Données de séquences moléculaires , Mycobacterium smegmatis/génétique , Mycobacterium tuberculosis/génétique , Plasmides , Régions promotrices (génétique) , Biosynthèse des protéines
6.
J Am Chem Soc ; 127(19): 6940-1, 2005 May 18.
Article de Anglais | MEDLINE | ID: mdl-15884923

RÉSUMÉ

A novel technique for computing free energy profiles in enzymatic reactions using the multiple steering molecular dynamics approach in the context of an efficient QM-MM density functional scheme is presented. The conversion reaction of chorismate to prephenate catalyzed by the Bacillus subtilis enzyme chorismate mutase has been chosen as an illustrative example.


Sujet(s)
Chorismate mutase/composition chimique , Chorismate mutase/métabolisme , Acide chorismique/composition chimique , Acide chorismique/métabolisme , Acides cyclohexanecarboxyliques/composition chimique , Acides cyclohexanecarboxyliques/métabolisme , Cyclohexènes , Théorie quantique , Thermodynamique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE