Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 280
Filtrer
1.
Crit Rev Immunol ; 44(6): 111-126, 2024.
Article de Anglais | MEDLINE | ID: mdl-38848298

RÉSUMÉ

Steroid receptor coactivator (SRC) family members (SRC1, SRC2 and SRC3) are transcriptional co-regulators. SRCs orchestrate gene transcription by inducing transactivation of nuclear receptors and other transcription factors. Overexpression of SRCs is widely implicated in a range of cancers, especially hormone-related cancers. As coactivators, SRCs regulate multiple metabolic pathways involved in tumor growth, invasion, metastasis, and chemo-resistance. Emerging evidence in recent years suggest that SRCs also regulate maturation, differentiation, and cytotoxicity of T cells by controlling metabolic activities. In this review, we summarize the current understanding of the function of SRCs in T cells as well as cancer cells. Importantly, the controversies of targeting SRCs for cancer immunotherapy as well as possible reconciliation strategies are also discussed.


Sujet(s)
Immunothérapie , Tumeurs , Lymphocytes T , Humains , Tumeurs/thérapie , Tumeurs/immunologie , Tumeurs/métabolisme , Immunothérapie/méthodes , Animaux , Lymphocytes T/immunologie , Lymphocytes T/métabolisme , Coactivateurs de récepteurs nucléaires/métabolisme , Coactivateurs de récepteurs nucléaires/immunologie
2.
Neurochem Res ; 49(8): 1965-1979, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38834843

RÉSUMÉ

Cerebral ischemia-reperfusion injury (CIRI) is the second leading cause of death worldwide, posing a huge risk to human life and health. Therefore, investigating the pathogenesis underlying CIRI and developing effective treatments are essential. Ferroptosis is an iron-dependent mode of cell death, which is caused by disorders in iron metabolism and lipid peroxidation. Previous studies demonstrated that ferroptosis is also a form of autophagic cell death, and nuclear receptor coactivator 4(NCOA4) mediated ferritinophagy was found to regulate ferroptosis by interfering with iron metabolism. Ferritinophagy and ferroptosis are important pathogenic mechanisms in CIRI. This review mainly summarizes the link and regulation between ferritinophagy and ferroptosis and further discusses their mechanisms in CIRI. In addition, the potential treatment methods targeting ferritinophagy and ferroptosis for CIRI are presented, providing new ideas for the prevention and treatment of clinical CIRI in the future.


Sujet(s)
Ferritines , Ferroptose , Lésion d'ischémie-reperfusion , Ferroptose/physiologie , Humains , Lésion d'ischémie-reperfusion/métabolisme , Lésion d'ischémie-reperfusion/anatomopathologie , Animaux , Ferritines/métabolisme , Fer/métabolisme , Encéphalopathie ischémique/métabolisme , Encéphalopathie ischémique/anatomopathologie , Coactivateurs de récepteurs nucléaires/métabolisme , Mort cellulaire par autophagie , Peroxydation lipidique/physiologie
3.
Commun Biol ; 7(1): 732, 2024 Jun 17.
Article de Anglais | MEDLINE | ID: mdl-38886572

RÉSUMÉ

Ferroptosis is a unique iron-dependent form of non-apoptotic cell death characterized by devastating lipid peroxidation. Whilst growing evidence suggests that ferroptosis is a type of autophagy-dependent cell death, the underlying molecular mechanisms regulating ferroptosis are largely unknown. In this study, through an unbiased RNA-sequencing screening, we demonstrate the activation of a multi-faceted tumor-suppressor protein Par-4/PAWR during ferroptosis. Functional studies reveal that genetic depletion of Par-4 effectively blocks ferroptosis, whereas Par-4 overexpression sensitizes cells to undergo ferroptosis. More importantly, we have determined that Par-4-triggered ferroptosis is mechanistically driven by the autophagic machinery. Upregulation of Par-4 promotes activation of ferritinophagy (autophagic degradation of ferritin) via the nuclear receptor co-activator 4 (NCOA4), resulting in excessive release of free labile iron and, hence, enhanced lipid peroxidation and ferroptosis. Inhibition of Par-4 dramatically suppresses the NCOA4-mediated ferritinophagy signaling axis. Our results also establish that Par-4 activation positively correlates with reactive oxygen species (ROS) production, which is critical for ferritinophagy-mediated ferroptosis. Furthermore, Par-4 knockdown effectively blocked ferroptosis-mediated tumor suppression in the mouse xenograft models. Collectively, these findings reveal that Par-4 has a crucial role in ferroptosis, which could be further exploited for cancer therapy.


Sujet(s)
Autophagie , Ferroptose , Coactivateurs de récepteurs nucléaires , Espèces réactives de l'oxygène , Ferroptose/génétique , Humains , Animaux , Coactivateurs de récepteurs nucléaires/métabolisme , Coactivateurs de récepteurs nucléaires/génétique , Souris , Espèces réactives de l'oxygène/métabolisme , Lignée cellulaire tumorale , Peroxydation lipidique , Fer/métabolisme , Protéines régulatrices de l'apoptose/métabolisme , Protéines régulatrices de l'apoptose/génétique , Transduction du signal
4.
Mol Med ; 30(1): 63, 2024 May 17.
Article de Anglais | MEDLINE | ID: mdl-38760678

RÉSUMÉ

BACKGROUND: Diabetic wounds are one of the long-term complications of diabetes, with a disordered microenvironment, diabetic wounds can easily develop into chronic non-healing wounds, which can impose a significant burden on healthcare. In diabetic condition, senescent cells accumulate in the wound area and suppress the wound healing process. AMPK, as a molecule related to metabolism, has a close relationship with aging and diabetes. The purpose of this study was to investigate the effects of AMPK activation on wound healing and explore the underlying mechanisms. METHODS: AMPK activator A769662 was topically applied in wound models of diabetic mice. Alterations in the wound site were observed and analyzed by immunohistochemistry. The markers related to autophagy and ferritinophagy were analyzed by western blotting and immunofluorescence staining. The role of AMPK activation and ferritinophagy were also analyzed by western blotting. RESULTS: Our results show that AMPK activation improved diabetic wound healing and reduced the accumulation of senescent cells. Intriguingly, we found that AMPK activation-induced ferroptosis is autophagy-dependent. We detected that the level of ferritin had deceased and NCOA4 was markedly increased after AMPK activation treatment. We further investigated that NCOA4-mediated ferritinophagy was involved in ferroptosis triggered by AMPK activation. Most importantly, AMPK activation can reverse the ferroptosis-insensitive of senescent fibroblast cells in diabetic mice wound area and promote wound healing. CONCLUSIONS: These results suggest that activating AMPK can promote diabetic wound healing by reversing the ferroptosis-insensitive of senescent fibroblast cells. AMPK may serve as a regulatory factor in senescent cells in the diabetic wound area, therefore AMPK activation can become a promising therapeutic method for diabetic non-healing wounds.


Sujet(s)
AMP-Activated Protein Kinases , Autophagie , Vieillissement de la cellule , Diabète expérimental , Ferritines , Coactivateurs de récepteurs nucléaires , Cicatrisation de plaie , Animaux , Souris , Ferritines/métabolisme , AMP-Activated Protein Kinases/métabolisme , Diabète expérimental/métabolisme , Coactivateurs de récepteurs nucléaires/métabolisme , Mâle , Ferroptose , Humains , Modèles animaux de maladie humaine , Activation enzymatique
5.
Front Immunol ; 15: 1389041, 2024.
Article de Anglais | MEDLINE | ID: mdl-38698860

RÉSUMÉ

Steroid receptor coactivators (SRCs) are master regulators of transcription that play key roles in human physiology and pathology. SRCs are particularly important for the regulation of the immune system with major roles in lymphocyte fate determination and function, macrophage activity, regulation of nuclear factor κB (NF-κB) transcriptional activity and other immune system biology. The three members of the p160 SRC family comprise a network of immune-regulatory proteins that can function independently or act in synergy with each other, and compensate for - or moderate - the activity of other SRCs. Recent evidence indicates that the SRCs are key participants in governing numerous aspects of CD4+ T cell biology. Here we review findings that establish the SRCs as essential regulators of regulatory T cells (Tregs) and T helper 17 (Th17) cells, with a focus on their crucial roles in Treg immunity in cancer and Treg-Th17 cell phenotypic plasticity.


Sujet(s)
Lymphocytes T régulateurs , Cellules Th17 , Humains , Tumeurs/immunologie , Tumeurs/métabolisme , Coactivateurs de récepteurs nucléaires/métabolisme , Lymphocytes T régulateurs/immunologie , Cellules Th17/immunologie , Cellules Th17/métabolisme
6.
Nat Commun ; 15(1): 3802, 2024 May 07.
Article de Anglais | MEDLINE | ID: mdl-38714719

RÉSUMÉ

The interaction between nuclear receptor coactivator 4 (NCOA4) and the iron storage protein ferritin is a crucial component of cellular iron homeostasis. The binding of NCOA4 to the FTH1 subunits of ferritin initiates ferritinophagy-a ferritin-specific autophagic pathway leading to the release of the iron stored inside ferritin. The dysregulation of NCOA4 is associated with several diseases, including neurodegenerative disorders and cancer, highlighting the NCOA4-ferritin interface as a prime target for drug development. Here, we present the cryo-EM structure of the NCOA4-FTH1 interface, resolving 16 amino acids of NCOA4 that are crucial for the interaction. The characterization of mutants, designed to modulate the NCOA4-FTH1 interaction, is used to validate the significance of the different features of the binding site. Our results explain the role of the large solvent-exposed hydrophobic patch found on the surface of FTH1 and pave the way for the rational development of ferritinophagy modulators.


Sujet(s)
Cryomicroscopie électronique , Ferritines , Coactivateurs de récepteurs nucléaires , Ferritines/métabolisme , Ferritines/composition chimique , Ferritines/génétique , Humains , Coactivateurs de récepteurs nucléaires/métabolisme , Coactivateurs de récepteurs nucléaires/composition chimique , Coactivateurs de récepteurs nucléaires/génétique , Liaison aux protéines , Sites de fixation , Fer/métabolisme , Autophagie , Modèles moléculaires , Cellules HEK293 , Oxidoreductases/métabolisme , Oxidoreductases/composition chimique , Oxidoreductases/génétique , Protéolyse , Mutation
7.
Nat Commun ; 15(1): 4195, 2024 May 17.
Article de Anglais | MEDLINE | ID: mdl-38760351

RÉSUMÉ

Osimertinib (Osi) is a widely used epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI). However, the emergence of resistance is inevitable, partly due to the gradual evolution of adaptive resistant cells during initial treatment. Here, we find that Osi treatment rapidly triggers adaptive resistance in tumor cells. Metabolomics analysis reveals a significant enhancement of oxidative phosphorylation (OXPHOS) in Osi adaptive-resistant cells. Mechanically, Osi treatment induces an elevation of NCOA4, a key protein of ferritinophagy, which maintains the synthesis of iron-sulfur cluster (ISC) proteins of electron transport chain and OXPHOS. Additionally, active ISC protein synthesis in adaptive-resistant cells significantly increases the sensitivity to copper ions. Combining Osi with elesclomol, a copper ion ionophore, significantly increases the efficacy of Osi, with no additional toxicity. Altogether, this study reveals the mechanisms of NCOA4-mediated ferritinophagy in Osi adaptive resistance and introduces a promising new therapy of combining copper ionophores to improve its initial efficacy.


Sujet(s)
Acrylamides , Dérivés de l'aniline , Carcinome pulmonaire non à petites cellules , Résistance aux médicaments antinéoplasiques , Récepteurs ErbB , Ferritines , Tumeurs du poumon , Inhibiteurs de protéines kinases , Humains , Carcinome pulmonaire non à petites cellules/traitement médicamenteux , Carcinome pulmonaire non à petites cellules/métabolisme , Carcinome pulmonaire non à petites cellules/génétique , Carcinome pulmonaire non à petites cellules/anatomopathologie , Résistance aux médicaments antinéoplasiques/effets des médicaments et des substances chimiques , Récepteurs ErbB/métabolisme , Récepteurs ErbB/antagonistes et inhibiteurs , Tumeurs du poumon/traitement médicamenteux , Tumeurs du poumon/métabolisme , Tumeurs du poumon/génétique , Tumeurs du poumon/anatomopathologie , Acrylamides/pharmacologie , Acrylamides/usage thérapeutique , Inhibiteurs de protéines kinases/pharmacologie , Lignée cellulaire tumorale , Ferritines/métabolisme , Dérivés de l'aniline/pharmacologie , Dérivés de l'aniline/usage thérapeutique , Coactivateurs de récepteurs nucléaires/métabolisme , Coactivateurs de récepteurs nucléaires/génétique , Phosphorylation oxydative/effets des médicaments et des substances chimiques , Animaux , Souris , Cuivre/métabolisme , Autophagie/effets des médicaments et des substances chimiques , Souris nude , Indoles , Pyrimidines
8.
Toxicology ; 505: 153831, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38768701

RÉSUMÉ

Cadmium (Cd) is a common pollutant with reproductive toxicity. Our previous study revealed that Cd triggered spermatogonia ferroptosis. However, the underlying mechanisms remain unclear. Nuclear receptor coactivator 4 (NCOA4) mediates ferritinophagy and specific degradation of ferritin through lysosomes, resulting in the release of ferrous ions. Excessive autophagy can lead to ferroptosis. This study investigated the role of autophagy in Cd-triggered ferroptosis using GC-1 spermatogonial (spg) cells which exposed to CdCl2 (5 µM, 10 µM, or 20 µM) for 24 without/with CQ. The cells which transfected with Ncoa4-siRNA were used to explore the role of NCOA4-mediated ferritinophagy in Cd-triggered ferroptosis. The results revealed that Cd caused mitochondrial swelling, rupture of cristae, and vacuolar-like changes. The Cd-treated cells exhibited more autophagosomes. Simultaneously, Cd increased intracellular iron, reactive oxygen species, and malondialdehyde concentrations while decreasing glutathione content and Superoxide Dismutase-2 activity. Moreover, Cd upregulated mRNA levels of ferritinophagy-associated genes (Ncoa4, Lc3b and Fth1), as well as enhanced protein expression of NCOA4, LC3B, and FTH1. While Cd decreased the mRNA and protein expression of p62/SQSTM1. These results showed that Cd caused ferritinophagy and ferroptosis. The use of chloroquine to inhibit autophagy ameliorated Cd-induced iron overload and ferroptosis. Moreover, Ncoa4 knockdown in spermatogonia significantly reduced intracellular iron concentration and alleviated Cd-triggered ferroptosis. In conclusion, our findings demonstrate that Cd activates the ferritinophagy pathway mediated by NCOA4, resulting in iron accumulation through ferritin degradation. This causes oxidative stress, ultimately initiating ferroptosis in spermatogonia. Our results may provide new perspectives and potential strategies for preventing and treating Cd-induced reproductive toxicity.


Sujet(s)
Autophagie , Cadmium , Ferritines , Ferroptose , Coactivateurs de récepteurs nucléaires , Spermatogonies , Ferroptose/effets des médicaments et des substances chimiques , Coactivateurs de récepteurs nucléaires/métabolisme , Coactivateurs de récepteurs nucléaires/génétique , Mâle , Spermatogonies/effets des médicaments et des substances chimiques , Spermatogonies/métabolisme , Ferritines/métabolisme , Autophagie/effets des médicaments et des substances chimiques , Cadmium/toxicité , Animaux , Lignée cellulaire , Souris , Espèces réactives de l'oxygène/métabolisme
9.
Neurochem Res ; 49(7): 1806-1822, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38713437

RÉSUMÉ

Ischemic stroke presents a global health challenge, necessitating an in-depth comprehension of its pathophysiology and therapeutic strategies. While reperfusion therapy salvages brain tissue, it also triggers detrimental cerebral ischemia-reperfusion injury (CIRI). In our investigation, we observed the activation of nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy in an oxygen-glucose deprivation/reoxygenation (OGD/R) model using HT22 cells (P < 0.05). This activation contributed to oxidative stress (P < 0.05), enhanced autophagy (P < 0.05) and cell death (P < 0.05) during CIRI. Silencing NCOA4 effectively mitigated OGD/R-induced damage (P < 0.05). These findings suggested that targeting NCOA4-mediated ferritinophagy held promise for preventing and treating CIRI. Subsequently, we substantiated the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway effectively regulated the NCOA4-mediated ferritinophagy, by applying the cGAS inhibitor RU.521 and performing NCOA4 overexpression (P < 0.05). Suppressing the cGAS-STING pathway efficiently curtailed ferritinophagy (P < 0.05), oxidative stress (P < 0.05), and cell damage (P < 0.05) of CIRI, while NCOA4 overexpression could alleviate this effect (P < 0.05). Finally, we elucidated the specific molecular mechanism underlying the protective effect of the iron chelator deferoxamine (DFO) on CIRI. Our findings revealed that DFO alleviated hypoxia-reoxygenation injury in HT22 cells through inhibiting NCOA4-mediated ferritinophagy and reducing ferrous ion levels (P < 0.05). However, the protective effects of DFO were counteracted by cGAS overexpression (P < 0.05). In summary, our results indicated that the activation of the cGAS-STING pathway intensified cerebral damage during CIRI by inducing NCOA4-mediated ferritinophagy. Administering the iron chelator DFO effectively attenuated NCOA4-induced ferritinophagy, thereby alleviating CIRI. Nevertheless, the role of the cGAS-STING pathway in CIRI regulation likely involves intricate mechanisms, necessitating further validation in subsequent investigations.


Sujet(s)
Autophagie , Ferritines , Coactivateurs de récepteurs nucléaires , Lésion d'ischémie-reperfusion , Coactivateurs de récepteurs nucléaires/métabolisme , Animaux , Lésion d'ischémie-reperfusion/métabolisme , Lésion d'ischémie-reperfusion/traitement médicamenteux , Ferritines/métabolisme , Souris , Autophagie/effets des médicaments et des substances chimiques , Autophagie/physiologie , Lignée cellulaire , Stress oxydatif/effets des médicaments et des substances chimiques , Stress oxydatif/physiologie , Encéphalopathie ischémique/métabolisme , Encéphalopathie ischémique/traitement médicamenteux
10.
Redox Biol ; 73: 103190, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38744191

RÉSUMÉ

Parkinson's disease (PD) poses a significant challenge in neurodegenerative disorders, characterized by the progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc). The intricate mechanisms orchestrating DA neurodegeneration in PD are not fully understood, necessitating the exploration of innovative therapeutic approaches. Recent studies have implicated ferroptosis as a major contributor to the loss of DA neurons, revealing a complex interplay between iron accumulation and neurodegeneration. However, the sophisticated nature of this process challenges the conventional belief that mere iron removal could effectively prevent DA neuronal ferroptosis. Here, we report JWA, alternatively referred to as ARL6IP5, as a negative regulator of ferroptosis, capable of ameliorating DA neuronal loss in the context of PD. In this study, synchronized expression patterns of JWA and tyrosine hydroxylase (TH) in PD patients and mice were observed, underscoring the importance of JWA for DA neuronal survival. Screening of ferroptosis-related genes unraveled the engagement of iron metabolism in the JWA-dependent inhibition of DA neuronal ferroptosis. Genetic manipulation of JWA provided compelling evidence linking its neuroprotective effects to the attenuation of NCOA4-mediated ferritinophagy. Molecular docking, co-immunoprecipitation, and immunofluorescence studies confirmed that JWA mitigated DA neuronal ferroptosis by occupying the ferritin binding site of NCOA4. Moreover, the JWA-activating compound, JAC4, demonstrated promising neuroprotective effects in cellular and animal PD models by elevating JWA expression, offering a potential avenue for neuroprotection in PD. Collectively, our work establishes JWA as a novel regulator of ferritinophagy, presenting a promising therapeutic target for addressing DA neuronal ferroptosis in PD.


Sujet(s)
Neurones dopaminergiques , Ferritines , Ferroptose , Coactivateurs de récepteurs nucléaires , Maladie de Parkinson , Maladie de Parkinson/métabolisme , Maladie de Parkinson/anatomopathologie , Maladie de Parkinson/génétique , Neurones dopaminergiques/métabolisme , Neurones dopaminergiques/anatomopathologie , Animaux , Souris , Humains , Coactivateurs de récepteurs nucléaires/métabolisme , Coactivateurs de récepteurs nucléaires/génétique , Ferritines/métabolisme , Ferritines/génétique , Fer/métabolisme , Modèles animaux de maladie humaine , Liaison aux protéines , Autophagie , Mâle
11.
J Ethnopharmacol ; 332: 118363, 2024 Oct 05.
Article de Anglais | MEDLINE | ID: mdl-38763373

RÉSUMÉ

ETHNOPHARMACOLOGICAL RELEVANCE: Ganoderma lucidum, a renowned tonic traditional Chinese medicine, is widely recognized for the exceptional activity in soothing nerves and nourishing the brain. It has been extensively employed to alleviate various neurological disorders, notably Parkinson's disease (PD). AIM OF THE STUDY: To appraise the antiparkinsonian effect of GAA, the main bioactive constituent of G. lucidum, and clarify the molecular mechanism through the perspective of ferritinophagy-mediated dopaminergic neuron ferroptosis. MATERIALS AND METHODS: PD mouse and cell models were established using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenylpyridinium (MPP+), respectively. Cell viability, behavioral tests and immunofluorescence analysis were performed to evaluate the neurotoxicity, motor dysfunction and dopaminergic loss, respectively. Biochemical assay kits were used to determine the levels of iron, lipid reactive oxygen species (ROS), malondialdehyde (MDA), total ROS and glutathione (GSH). Western blot and immunofluorescence were applied to detect the expressions of nuclear receptor co-activator 4 (NCOA4), ferritin heavy chain 1 (FTH1), p62 and LC3B. Additionally, NCOA4-overexpressing plasmid vector was constructed to verify the inhibitory effect of GAA on the neurotoxicity and ferroptosis-related parameters in PD models. RESULTS: GAA significantly mitigated MPP+/MPTP-induced neurotoxicity, motor dysfunction and dopaminergic neuron loss (p<0.01 or p<0.05). In contrast to MPP+/MPTP treatment, GAA treatment decreased the levels of iron, MDA, lipid and total ROS, while increasing the GSH level. GAA also reduced the levels of NCOA4 and LC3B, and enhanced the expressions of FTH1 and p62 in PD models (p<0.01 or p<0.05). However, the protective effect of GAA against the neurotoxicity, NCOA4-mediated ferritinophagy and ferroptosis in PD model was abolished by the overexpression of NCOA4 (p<0.01). CONCLUSION: GAA exerted a protective effect on PD, and this effect was achieved by suppressing dopaminergic neuron ferroptosis through the inhibition of NCOA4-mediated ferritinophagy.


Sujet(s)
Neurones dopaminergiques , Ferritines , Ferroptose , Souris de lignée C57BL , Coactivateurs de récepteurs nucléaires , Animaux , Ferroptose/effets des médicaments et des substances chimiques , Neurones dopaminergiques/effets des médicaments et des substances chimiques , Neurones dopaminergiques/métabolisme , Neurones dopaminergiques/anatomopathologie , Coactivateurs de récepteurs nucléaires/métabolisme , Souris , Mâle , Ferritines/métabolisme , Neuroprotecteurs/pharmacologie , Autophagie/effets des médicaments et des substances chimiques , Antiparkinsoniens/pharmacologie , Syndromes parkinsoniens/traitement médicamenteux , Syndromes parkinsoniens/métabolisme , Syndromes parkinsoniens/induit chimiquement , Maladie de Parkinson/traitement médicamenteux , Maladie de Parkinson/métabolisme , Modèles animaux de maladie humaine
12.
Oncogene ; 43(26): 2000-2014, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38744953

RÉSUMÉ

Esophageal squamous cell carcinoma (ESCC) is a prevalent malignancy of the digestive system. Hypoxia is a crucial player in tumor ferroptosis resistance. However, the molecular mechanism of hypoxia-mediated ferroptosis resistance in ESCC remains unclear. Here, USP2 expression was decreased in ESCC cell lines subjected to hypoxia treatment and was lowly expressed in clinical ESCC specimens. Ubiquitin-specific protease 2 (USP2) depletion facilitated cell growth, which was blocked in USP2-overexpressing cells. Moreover, USP2 silencing enhanced the iron ion concentration and lipid peroxidation accumulation as well as suppressed ferroptosis, while upregulating USP2 promoted ferroptotic cell death in ESCC cells. Furthermore, knockout of USP2 in ESCC models discloses the essential role of USP2 in promoting ESCC tumorigenesis and inhibiting ferroptosis. In contrast, overexpression of USP2 contributes to antitumor effect and ferroptosis events in vivo. Specifically, USP2 stably bound to and suppressed the degradation of nuclear receptor coactivator 4 (NCOA4) by eliminating the Lys48-linked chain, which in turn triggered ferritinophagy and ferroptosis in ESCC cells. Our findings suggest that USP2 plays a crucial role in iron metabolism and ferroptosis and that the USP2/NCOA4 axis is a promising therapeutic target for the management of ESCC.


Sujet(s)
Tumeurs de l'oesophage , Carcinome épidermoïde de l'oesophage , Ferroptose , Ubiquitin thiolesterase , Humains , Ferroptose/génétique , Carcinome épidermoïde de l'oesophage/anatomopathologie , Carcinome épidermoïde de l'oesophage/génétique , Carcinome épidermoïde de l'oesophage/métabolisme , Tumeurs de l'oesophage/anatomopathologie , Tumeurs de l'oesophage/métabolisme , Tumeurs de l'oesophage/génétique , Ubiquitin thiolesterase/métabolisme , Ubiquitin thiolesterase/génétique , Animaux , Souris , Lignée cellulaire tumorale , Coactivateurs de récepteurs nucléaires/métabolisme , Coactivateurs de récepteurs nucléaires/génétique , Régulation de l'expression des gènes tumoraux , Ferritines/métabolisme , Ferritines/génétique , Souris nude , Autophagie/génétique , Hypoxie/métabolisme , Prolifération cellulaire/génétique , Mâle
13.
Redox Biol ; 72: 103158, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38631121

RÉSUMÉ

Exposure to PM2.5 is correlated with cardiac remodeling, of which cardiac hypertrophy is one of the main clinical manifestations. Ferroptosis plays an important role in cardiac hypertrophy. However, the potential mechanism of PM2.5-induced cardiac hypertrophy through ferroptosis remains unclear. This study aimed to explore the molecular mechanism of cardiac hypertrophy caused by PM2.5 and the intervention role of MitoQ involved in this process. The results showed that PM2.5 could induce cardiac hypertrophy and dysfunction in mice. Meanwhile, the characteristics of ferroptosis were observed, such as iron homeostasis imbalance, lipid peroxidation, mitochondrial damage and abnormal expression of key molecules. MitoQ treatment could effectively mitigate these alternations. After treating human cardiomyocyte AC16 with PM2.5, ferroptosis activator (Erastin) and inhibitor (Fer-1), it was found that PM2.5 could promote ferritinophagy and lead to lipid peroxidation, mitochondrial dysfunction as well as the accumulation of intracellular and mitochondrial labile iron. Subsequently, mitophagy was activated and provided an additional source of labile iron, enhancing the sensitivity of AC16 cells to ferroptosis. Furthermore, Fer-1 alleviated PM2.5-induced cytotoxicity and iron overload in the cytoplasm and mitochondria of AC16 cells. It was worth noting that during the process of PM2.5 caused ferroptosis, abnormal iron metabolism mediated the activation of ferritinophagy and mitophagy in a temporal order. In addition, NCOA4 knockdown reversed the iron homeostasis imbalance and lipid peroxidation caused by PM2.5, thereby alleviating ferroptosis. In summary, our study found that iron homeostasis imbalance-mediated the crosstalk of ferritinophagy and mitophagy played an important role in PM2.5-induced ferroptosis and cardiac hypertrophy.


Sujet(s)
Autophagie , Cardiomégalie , Ferroptose , Homéostasie , Fer , Myocytes cardiaques , Matière particulaire , Cardiomégalie/métabolisme , Cardiomégalie/étiologie , Cardiomégalie/anatomopathologie , Animaux , Souris , Fer/métabolisme , Autophagie/effets des médicaments et des substances chimiques , Humains , Matière particulaire/effets indésirables , Myocytes cardiaques/métabolisme , Myocytes cardiaques/anatomopathologie , Myocytes cardiaques/effets des médicaments et des substances chimiques , Coactivateurs de récepteurs nucléaires/métabolisme , Coactivateurs de récepteurs nucléaires/génétique , Peroxydation lipidique/effets des médicaments et des substances chimiques , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Lignée cellulaire
14.
Environ Pollut ; 349: 123958, 2024 May 15.
Article de Anglais | MEDLINE | ID: mdl-38621452

RÉSUMÉ

Exposure to environmental cadmium (Cd) is known to cause neuronal death and cognitive decline in humans. Ferroptosis, a novel iron-dependent type of regulated cell death, is involved in various neurological disorders. In the present study, Cd exposure triggered ferroptosis in the mouse hippocampus and in the HT22 murine hippocampal neuronal cell line, as indicated by significant increases in ferroptotic marker expression, intracellular iron levels, and lipid peroxidation. Interestingly, ferroptosis of hippocampal neurons in response to Cd exposure relied on the induction of autophagy since the suppression of autophagy by 3-methyladenine (3-MA) and chloroquine (CQ) substantially ameliorated Cd-induced ferroptosis. Furthermore, nuclear receptor coactivator 4 (NCOA4)-mediated degradation of ferritin was required for the Cd-induced ferroptosis of hippocampal neurons, demonstrating that NCOA4 knockdown decreased intracellular iron levels and lipid peroxidation and increased cell survival, following Cd exposure. Moreover, Cd-induced mitochondrial reactive oxygen species (mtROS) generation was essential for the ferritinophagy-mediated ferroptosis of hippocampal neurons. Importantly, pretreatment with the ferroptosis inhibitor ferrostatin-1 (Fer-1) effectively attenuated Cd-induced hippocampal neuronal death and cognitive impairment in mice. Taken together, these findings indicate that ferroptosis is a novel mechanism underlying Cd-induced neurotoxicity and cognitive impairment and that the mtROS-ferritinophagy axis modulates Cd-induced neuronal ferroptosis.


Sujet(s)
Cadmium , Dysfonctionnement cognitif , Ferroptose , Hippocampe , Neurones , Coactivateurs de récepteurs nucléaires , Espèces réactives de l'oxygène , Ferroptose/effets des médicaments et des substances chimiques , Animaux , Souris , Cadmium/toxicité , Neurones/effets des médicaments et des substances chimiques , Dysfonctionnement cognitif/induit chimiquement , Dysfonctionnement cognitif/métabolisme , Hippocampe/effets des médicaments et des substances chimiques , Hippocampe/métabolisme , Espèces réactives de l'oxygène/métabolisme , Coactivateurs de récepteurs nucléaires/métabolisme , Coactivateurs de récepteurs nucléaires/génétique , Ferritines/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Mitochondries/métabolisme , Mâle , Autophagie/effets des médicaments et des substances chimiques , Fer/métabolisme , Peroxydation lipidique/effets des médicaments et des substances chimiques , Lignée cellulaire , Souris de lignée C57BL
15.
J Hazard Mater ; 471: 134319, 2024 Jun 05.
Article de Anglais | MEDLINE | ID: mdl-38657511

RÉSUMÉ

Deoxynivalenol (DON), a widespread mycotoxin, represents a substantial public health hazard due to its propensity to contaminate agricultural produce, leading to both acute and chronic health issues in humans and animals upon consumption. The role of ferroptosis in DON-induced hepatic damage remains largely unexplored. This study investigates the impact of 18ß-glycyrrhetinic acid (GA), a prominent constituent of glycyrrhiza, on DON hepatotoxicity and elucidates the underlying mechanisms. Our results indicate that GA effectively attenuates liver injury inflicted by DON. This was achieved by inhibiting nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy and ferroptosis, as well as by adjusting mitochondrial quality control (MQC). Specifically, GA curtails ferritinophagy by diminishing NCOA4 expression without affecting the autophagic flux. At a molecular level, GA binds to and stabilizes programmed cell death protein 4 (PDCD4), thereby inhibiting its ubiquitination and subsequent degradation. This stabilization of PDCD4 leads to the downregulation of NCOA4 via the JNK-Jun-NCOA4 axis. Knockdown of PDCD4 weakened GA's protective action against DON exposure. Furthermore, GA improved mitochondrial function and limited excessive mitophagy and mitochondrial division induced by DON. Disrupting GA's modulation of MQC nullified its anti-ferroptosis effects. Overall, GA offers protection against DON-induced ferroptosis by blocking ferritinophagy and managing MQC. ENVIRONMENTAL IMPLICATION: Food contamination from mycotoxins, is a problem for agricultural and food industries worldwide. Deoxynivalenol (DON), the most common mycotoxins in cereal commodities. A survey in 2023 showed that the positivity rate for DON contamination in food reached more than 70% globally. DON can damage the health of humans whether exposed to high doses for short periods of time or low doses for long periods of time. We have discovered 18ß-Glycyrrhetinic acid (GA), a prominent constituent of glycyrrhiza. Liver damage caused by low-dose DON can be successfully treated with GA. This study will support the means of DON control, including antidotes.


Sujet(s)
Lésions hépatiques dues aux substances , Ferritines , Énoxolone , Trichothécènes , Animaux , Humains , Mâle , Souris , Protéines régulatrices de l'apoptose/métabolisme , Autophagie/effets des médicaments et des substances chimiques , Lésions hépatiques dues aux substances/prévention et contrôle , Lésions hépatiques dues aux substances/métabolisme , Ferritines/métabolisme , Énoxolone/pharmacologie , Énoxolone/analogues et dérivés , Cellules HepG2 , Souris de lignée C57BL , Mitochondries/effets des médicaments et des substances chimiques , Mitochondries/métabolisme , Coactivateurs de récepteurs nucléaires/métabolisme , Agents protecteurs/pharmacologie , Protéines de liaison à l'ARN/métabolisme , Protéines de liaison à l'ARN/génétique
16.
Int Immunopharmacol ; 133: 112155, 2024 May 30.
Article de Anglais | MEDLINE | ID: mdl-38688134

RÉSUMÉ

BACKGROUND: Ferroptosis is an iron-dependent and cystathione-non-dependent non-apoptotic cell death characterized by elevated intracellular free iron levels and reduced antioxidant capacity, leading to the accumulation of lipid peroxides. Nuclear receptor coactivator 4 (NCOA4) mediates ferritinophagy, increasing labile iron levels, which can result in oxidative damage. However, the specific mechanism of NCOA4-mediated ferritinophagy in intestinal ischemia-reperfusion and the underlying mechanisms have not been reported in detail. OBJECT: 1. To investigate the role of NCOA4 in ferroptosis of intestinal epithelial cells induced by II/R injury in mouse. 2. To investigate the mechanism of action of NCOA4-induced ferroptosis. METHODS: 1. Construct a mouse II/R injury model and detect ferroptosis related markers such as HE staining, immunohistochemistry, ELISA, and WB methods. 2. Detect expression of NCOA4 in the intestine of mouse with II/R injury model and analyze its correlation with intestinal ferroptosis in mouse with II/R injury model. 3. Construct an ischemia-reperfusion model at the cellular level through hypoxia and reoxygenation, and overexpress/knockdown NCOA4 to detect markers related to ferroptosis. Based on animal experimental results, analyze the correlation and mechanism of action between NCOA4 and intestinal epithelial ferroptosis induced by II/R injury in mouse. RESULTS: 1. Ferroptosis occurred in the intestinal epithelial cells of II/R-injured mouse, and the expression of critical factors of ferroptosis, ACSL4, MDA and 15-LOX, was significantly increased, while the levels of GPX4 and GSH were significantly decreased. 2. The expression of NCOA4 in the intestinal epithelium of mouse with II/R injure was significantly increased, the expression of ferritin was significantly decreased, and the level of free ferrous ions was significantly increased; the expression of autophagy-related proteins LC3 and Beclin-1 protein was increased, and the expression of P62 was decreased, and these changes were reversed by autophagy inhibitors. 3. Knockdown of NCOA4 at the cellular level resulted in increased ferritin expression and decreased ferroptosis, and CO-IP experiments suggested that NCOA4 can bind to ferritin, which suggests that NCOA4 most likely mediates ferritinophagy to induce ferroptosis. CONCLUSION: This thesis explored the role of NCOA4 in II/R injury in mice and the mechanism of action. The research results suggest that NCOA4 can mediate ferritinophagy to induce ferroptosis during II/R injury. This experiment reveals the pathological mechanism of II/R injury and provides some scientific basis for the development of drugs for the treatment of II/R injury based on the purpose of alleviating ferroptosis.


Sujet(s)
Ferroptose , Muqueuse intestinale , Coactivateurs de récepteurs nucléaires , Lésion d'ischémie-reperfusion , Animaux , Humains , Mâle , Souris , Modèles animaux de maladie humaine , Ferritines/métabolisme , Ferroptose/génétique , Muqueuse intestinale/métabolisme , Muqueuse intestinale/anatomopathologie , Fer/métabolisme , Souris de lignée C57BL , Coactivateurs de récepteurs nucléaires/métabolisme , Coactivateurs de récepteurs nucléaires/génétique , Lésion d'ischémie-reperfusion/métabolisme , Lésion d'ischémie-reperfusion/anatomopathologie
17.
Neurochem Int ; 177: 105744, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38663454

RÉSUMÉ

Traumatic brain injury (TBI) often results in persistent neurological dysfunction, which is closely associated with white matter injury. The mechanisms underlying white matter injury after TBI remain unclear. Ferritinophagy is a selective autophagic process that degrades ferritin and releases free iron, which may cause ferroptosis. Although ferroptosis has been demonstrated to be involved in TBI, it is unclear whether ferritinophagy triggers ferroptosis in TBI. Integrated stress response inhibitor (ISRIB) has neuroprotective properties. However, the effect of ISRIB on white matter after TBI remains uncertain. We aimed to investigate whether ferritinophagy was involved in white matter injury following TBI and whether ISRIB can mitigate white matter injury after TBI by inhibiting ferritinophagy. In this study, controlled cortical impact (CCI) was performed on rats to establish the TBI model. Ferritinophagy was measured by assessing the levels of nuclear receptor coactivator 4 (NCOA4), which regulates ferritinophagy, ferritin heavy chain 1(FTH1), LC3, ATG5, and FTH1 colocalization with LC3 in the white matter. Increased NCOA4 and decreased FTH1 were detected in our study. FTH1 colocalization with LC3 enhanced in the white matter after TBI, indicating that ferritinophagy was activated. Immunofluorescence co-localization results also suggested that ferritinophagy occurred in neurons and oligodendrocytes after TBI. Furthermore, ferroptosis was assessed by determining free iron content, MDA content, GSH content, and Perl's staining. The results showed that ferroptosis was suppressed by NCOA4 knockdown via shNCOA4 lentivirus infection, indicating that ferroptosis in TBI is triggered by ferritinophagy. Besides, NCOA4 deletion notably improved white matter injury following TBI, implying that ferritinophagy contributed to white matter injury. ISRIB treatment reduced the occurrence of ferritinophagy in neurons and oligodendrocytes, attenuated ferritinophagy-induced ferroptosis, and alleviated white matter injury. These findings suggest that NCOA4-mediated ferritinophagy is a critical mechanism underlying white matter injury after TBI. ISRIB holds promise as a therapeutic agent for this condition.


Sujet(s)
Lésions traumatiques de l'encéphale , Ferritines , Coactivateurs de récepteurs nucléaires , Rat Sprague-Dawley , Substance blanche , Animaux , Lésions traumatiques de l'encéphale/métabolisme , Lésions traumatiques de l'encéphale/anatomopathologie , Substance blanche/métabolisme , Substance blanche/anatomopathologie , Substance blanche/effets des médicaments et des substances chimiques , Coactivateurs de récepteurs nucléaires/métabolisme , Coactivateurs de récepteurs nucléaires/génétique , Ferritines/métabolisme , Mâle , Rats , Ferroptose/effets des médicaments et des substances chimiques , Ferroptose/physiologie , Autophagie/effets des médicaments et des substances chimiques , Autophagie/physiologie , Neuroprotecteurs/pharmacologie , Neuroprotecteurs/usage thérapeutique
18.
Phytomedicine ; 129: 155593, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38621329

RÉSUMÉ

BACKGROUND: Preventing joint edema is crucial in halting osteoarthritis (OA) progression. Growing clinical evidence indicate that Jianpi-Tongluo Formula (JTF) may have a promising anti-edema effect. However, the therapeutic properties of JTF and the underlying mechanisms remains unclear. MATERIALS AND METHODS: An OA rat model was established and employed to evaluate pharmacological effects of JTF in vivo based on dynamic histopathologic assessments and micro-CT observations. Then, OA-related genes and potential targets of JTF were identified through clinical transcriptomic data analysis and "disease gene-drug target" network analysis, which were verified by a series of in vivo experiments. RESULTS: JTF administration effectively reduced pain and joint edema, inhibited matrix degradation, chondrocyte apoptosis, and aquaporin expression in OA rats. Notably, JTF dose-dependently reversed damage-associated molecular patterns and inflammatory factor upregulation. Mechanically, our "disease gene-drug target" network analysis indicated that the NCOA4-HMGB1-GSK3B-AQPs axis, implicated in ferroptosis and aquaporin dysregulation, may be potentially served as a target of JTF against OA. Accordingly, JTF mitigated NCOA4, HMGB1, and GSK3B expression, oxidative stress, and iron metabolism aberrations in OA rats. Furthermore, JTF treatment significantly attenuated the aberrant upregulation of AQP1, AQP3, and AQP4 proteins observed in cartilage tissues of OA rats. CONCLUSION: Our data reveal for the first time that JTF may exert cartilage protective and anti-edema effects in osteoarthritis therapy by inhibiting NCOA4-HMGB1-driven ferroptosis and aquaporin dysregulation.


Sujet(s)
Ferroptose , Protéine HMGB1 , Arthrose , Rat Sprague-Dawley , Animaux , Arthrose/traitement médicamenteux , Arthrose/métabolisme , Ferroptose/effets des médicaments et des substances chimiques , Rats , Mâle , Protéine HMGB1/métabolisme , Médicaments issus de plantes chinoises/pharmacologie , Oedème/traitement médicamenteux , Aquaporines/métabolisme , Coactivateurs de récepteurs nucléaires/métabolisme , Modèles animaux de maladie humaine , Aquaporine-3/métabolisme , Aquaporine-1/métabolisme
19.
Phytomedicine ; 129: 155631, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38640858

RÉSUMÉ

BACKGROUND: The utilization of Chinese medicine as an adjunctive therapy for cancer has recently gained significant attention. Ferroptosis, a newly regulated cell death process depending on the ferrous ions, has been proved to be participated in glioma stem cells inactivation. PURPOSE: We aim to study whether ginsenoside Rg5 exerted inhibitory effects on crucial aspects of glioma stem cells, including cell viability, tumor initiation, invasion, self-renewal ability, neurosphere formation, and stemness. METHODS: Through comprehensive sequencing analysis, we identified a compelling association between ginsenoside Rg5 and the ferroptosis pathway, which was further validated through subsequent experiments demonstrating its ability to activate this pathway. RESULTS: To elucidate the precise molecular targets affected by ginsenoside Rg5 in gliomas, we conducted an intersection analysis between differentially expressed genes obtained from sequencing and a database-predicted list of transcription factors and potential targets of ginsenoside Rg5. This rigorous approach led us to unequivocally confirm NR3C1 (Nuclear Receptor Subfamily 3 Group C Member 1) as a direct target of ginsenoside Rg5, a finding consistently supported by subsequent experimental investigations. Moreover, we uncovered NR3C1's capacity to transcriptionally regulate ferroptosis -related genes HSPB1 and NCOA4. Strikingly, ginsenoside Rg5 induced notable alterations in the expression levels of both HSPB1 (Heat Shock Protein Family B Member 1) and NCOA4 (Nuclear Receptor Coactivator 4). Finally, our intracranial xenograft assays served to reaffirm the inhibitory effect of ginsenoside Rg5 on the malignant progression of glioblastoma. CONCLUSION: These collective findings strongly suggest that ginsenoside Rg5 hampers glioblastoma progression by activating ferroptosis through NR3C1, which subsequently modulates HSPB1 and NCOA4. Importantly, this novel therapeutic direction holds promise for advancing the treatment of glioblastoma.


Sujet(s)
Ferroptose , Ginsénosides , Glioblastome , Ginsénosides/pharmacologie , Ferroptose/effets des médicaments et des substances chimiques , Glioblastome/traitement médicamenteux , Glioblastome/métabolisme , Humains , Animaux , Lignée cellulaire tumorale , Coactivateurs de récepteurs nucléaires/métabolisme , Souris , Souris nude , Chaperons moléculaires/métabolisme , Protéines du choc thermique/métabolisme , Survie cellulaire/effets des médicaments et des substances chimiques , Cellules souches tumorales/effets des médicaments et des substances chimiques , Antinéoplasiques d'origine végétale/pharmacologie , Tumeurs du cerveau/traitement médicamenteux
20.
Arch Toxicol ; 98(7): 2007-2018, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38602537

RÉSUMÉ

Gastrointestinal cancer is a significant global health burden, necessitating the development of novel therapeutic strategies. Emerging evidence has highlighted the potential of targeting ferritinophagy as a promising approach for the treatment of gastrointestinal cancer. Ferritinophagy is a form of selective autophagy that is mediated by the nuclear receptor coactivator 4 (NCOA4). This process plays a crucial role in regulating cellular iron homeostasis and has been implicated in various pathological conditions, including cancer. This review discusses the molecular mechanisms underlying ferritinophagy and its relevance to gastrointestinal cancer. Furthermore, we highlight the potential therapeutic implications of targeting ferritinophagy in gastrointestinal cancer. Several approaches have been proposed to modulate ferritinophagy, including small molecule inhibitors and immunotherapeutic strategies. We discuss the advantages and challenges associated with these therapeutic interventions and provide insights into their potential clinical applications.


Sujet(s)
Autophagie , Ferritines , Tumeurs gastro-intestinales , Coactivateurs de récepteurs nucléaires , Humains , Tumeurs gastro-intestinales/traitement médicamenteux , Tumeurs gastro-intestinales/métabolisme , Ferritines/métabolisme , Autophagie/effets des médicaments et des substances chimiques , Animaux , Coactivateurs de récepteurs nucléaires/métabolisme , Fer/métabolisme , Homéostasie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...