Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 1.250
Filtrer
1.
Mol Med Rep ; 30(6)2024 Dec.
Article de Anglais | MEDLINE | ID: mdl-39370816

RÉSUMÉ

Solute carrier family 12 member 5 (SLC12A5) is an oncogene in numerous types of cancer, however its function in breast cancer (BC) remains elusive. ETS translocation variant 4 (ETV4) promotes BC. Therefore, the present study aimed to elucidate the role of SLC12A5 in ferroptosis and glucose metabolism in BC cells as well as to understand the underlying mechanism. Analysis of data from the UALCAN database demonstrated expression levels of SLC12A5 in BC and its association with prognosis. Reverse transcription­quantitative PCR and western blotting were conducted to evaluate the expression levels of SLC12A5 and ETV4 in BC cells. The abilities of BC cells to proliferate, migrate and invade were assessed using Cell Counting Kit­8, colony formation, wound healing and Transwell assays. Thiobarbituric acid reactive substances assay and a C11 BODIPY 581/591 probe were used to evaluate lipid peroxidation. Ferroptosis resistance was evaluated by the measurement of Fe2+ and ferroptosis­related solute carrier family 7a member 11 (SLC7A11), glutathione peroxidase 4 (GPX4), acyl­CoA synthetase long­chain family member 4 (ACSL4) and transferrin receptor 1 (TFR1) protein levels. Glycolysis was assessed via evaluation of extracellular acidification rate, oxygen consumption rate, lactate production and glucose consumption. Finally, luciferase reporter and chromatin immunoprecipitation assay were used to verify the interaction between ETV4 and the SLC12A5 promoter. UALCAN database analysis indicated that SLC12A5 was upregulated in BC tissues and cells and that SLC12A5 elevation indicated a poor prognosis of patients with BC. SLC12A5 knockdown suppressed the BC cell proliferative, migratory and invasive capabilities. Moreover, SLC12A5 knockdown decreased BC cell ferroptosis resistance and glucose metabolism reprogramming. The transcription factor ETV4 was demonstrated to bind to the SLC12A5 promoter and upregulate its transcription. Furthermore, ETV4 overexpression counteracted the suppressive effect of SLC12A5 knockdown on the BC cell proliferative, migratory and invasive abilities, as well as on ferroptosis resistance and glucose metabolism reprogramming. Transcriptional activation of SLC12A5 by ETV4 modulated the migration, invasion, ferroptosis resistance and glucose metabolism reprogramming of BC cells.


Sujet(s)
Tumeurs du sein , Ferroptose , Régulation de l'expression des gènes tumoraux , Glucose , Activation de la transcription , Humains , Ferroptose/génétique , Tumeurs du sein/métabolisme , Tumeurs du sein/génétique , Tumeurs du sein/anatomopathologie , Glucose/métabolisme , Femelle , Lignée cellulaire tumorale , Coenzyme A ligases/métabolisme , Coenzyme A ligases/génétique , Protéines E1A d'adénovirus/métabolisme , Protéines E1A d'adénovirus/génétique , Prolifération cellulaire , Protéines proto-oncogènes c-ets/métabolisme , Protéines proto-oncogènes c-ets/génétique , Pronostic , Cellules MCF-7 , Mouvement cellulaire/génétique , Phospholipid hydroperoxide glutathione peroxidase/métabolisme , Phospholipid hydroperoxide glutathione peroxidase/génétique , Système y+ de transport d'acides aminés/métabolisme , Système y+ de transport d'acides aminés/génétique , Metabolic Reprogramming
2.
Arch Dermatol Res ; 316(9): 634, 2024 Sep 21.
Article de Anglais | MEDLINE | ID: mdl-39305302

RÉSUMÉ

Ferroptosis, a key factor in tumor progression, is poorly understood at the molecular level. This study investigates how ELK4 and CHMP6 regulate skin cutaneous melanoma (SKCM) cell proliferation and ferroptosis. Analysis of TCGA data reveals high expression of ELK4 and CHMP6 in SKCM. Overexpression of ELK4 or CHMP6 enhances cell proliferation, invasion, and migration while reducing ROS and Fe2 + levels. It also increases GPX4 and xCT expression and decreases ACSL4 levels in SKCM cells. The opposite effects are observed with ELK4 or CHMP6 knockdown. ELK4 binds to the CHMP6 promoter, promoting CHMP6 transcription. Knockdown of CHMP6 reverses the oncogenic effects of ELK4 overexpression. In conclusion, ELK4 enhances proliferation, invasion, and migration while inhibiting ferroptosis in SKCM cells by upregulating CHMP6 transcription. This study sheds light on the intricate mechanisms involved in SKCM progression and identifies potential therapeutic targets in melanoma treatment.


Sujet(s)
Mouvement cellulaire , Prolifération cellulaire , Ferroptose , Régulation de l'expression des gènes tumoraux , Mélanome , Tumeurs cutanées , Humains , Système y+ de transport d'acides aminés/métabolisme , Système y+ de transport d'acides aminés/génétique , Lignée cellulaire tumorale , Mouvement cellulaire/génétique , Prolifération cellulaire/génétique , Coenzyme A ligases/métabolisme , Coenzyme A ligases/génétique , Ferroptose/génétique , Mélanome/anatomopathologie , Mélanome/génétique , Mélanome/métabolisme , Melanoma, Cutaneous Malignant , Invasion tumorale/génétique , Phospholipid hydroperoxide glutathione peroxidase/métabolisme , Phospholipid hydroperoxide glutathione peroxidase/génétique , Tumeurs cutanées/anatomopathologie , Tumeurs cutanées/génétique , Tumeurs cutanées/métabolisme
3.
Sci Adv ; 10(38): eadp0719, 2024 Sep 20.
Article de Anglais | MEDLINE | ID: mdl-39292786

RÉSUMÉ

Aberrant activation of IL-18 signaling regulates tumor immune evasion and progression. However, the underlying mechanism remains unclear. Here, we report that long-chain acyl-CoA synthase 6 (ACSL6) is highly expressed in liver cancer and correlated with poor prognosis. ACSL6 promotes tumor growth, metastasis, and immune evasion mediated by IL-18, independent of its metabolic enzyme activity. Mechanistically, upon IL-18 stimulation, ACSL6 is phosphorylated by ERK2 at S674 and recruits IL-18RAP to interact with IL-18R1, thereby reinforcing the IL-18R1-IL-18RAP heterodimer and triggering NF-κB-dependent gene expression to facilitate tumor development. Furthermore, the up-regulation of CXCL1 and CXCL5 by ACSL6 promotes tumor-associated neutrophil and tumor-associated macrophage recruitment, thereby inhibiting cytotoxic CD8+ T cell infiltration. Ablation or S674A mutation of ACSL6 potentiated anti-PD-1 therapeutic efficacy by increasing the effector activity of intertumoral CD8+ T cells. We revealed that ACSL6 is a potential adaptor that activates IL-18-NF-κB axis-mediated tumor immune evasion and provides valuable insights for developing effective immunotherapy strategies for cancer.


Sujet(s)
Coenzyme A ligases , Interleukine-18 , Facteur de transcription NF-kappa B , Animaux , Femelle , Humains , Souris , Lymphocytes T CD8+/immunologie , Lymphocytes T CD8+/métabolisme , Lignée cellulaire tumorale , Coenzyme A ligases/métabolisme , Coenzyme A ligases/génétique , Évolution de la maladie , Régulation de l'expression des gènes tumoraux , Interleukine-18/métabolisme , Interleukine-18/génétique , Tumeurs du foie/anatomopathologie , Tumeurs du foie/métabolisme , Tumeurs du foie/immunologie , Tumeurs du foie/génétique , Tumeurs/métabolisme , Tumeurs/anatomopathologie , Tumeurs/génétique , Tumeurs/immunologie , Facteur de transcription NF-kappa B/métabolisme , Phosphorylation , Récepteurs à l'interleukine-18/métabolisme , Récepteurs à l'interleukine-18/génétique , Transduction du signal , Échappement de la tumeur à la surveillance immunitaire/génétique
4.
Nat Commun ; 15(1): 8226, 2024 Sep 19.
Article de Anglais | MEDLINE | ID: mdl-39300060

RÉSUMÉ

Hemolysis drives susceptibility to lung injury and predicts poor outcomes in diseases, such as malaria and sickle cell disease (SCD). However, the underlying pathological mechanism remains elusive. Here, we report that major facilitator superfamily domain containing 7 C (MFSD7C) protects the lung from hemolytic-induced damage by preventing ferroptosis. Mechanistically, MFSD7C deficiency in HuLEC-5A cells leads to mitochondrial dysfunction, lipid remodeling and dysregulation of ACSL4 and GPX4, thereby enhancing lipid peroxidation and promoting ferroptosis. Furthermore, systemic administration of MFSD7C mRNA-loaded nanoparticles effectively prevents lung injury in hemolytic mice, such as HbSS-Townes mice and PHZ-challenged 7 C-/- mice. These findings present the detailed link between hemolytic complications and ferroptosis, providing potential therapeutic targets for patients with hemolytic disorders.


Sujet(s)
Ferroptose , Hémolyse , Souris knockout , Phospholipid hydroperoxide glutathione peroxidase , Animaux , Femelle , Humains , Mâle , Souris , Drépanocytose/complications , Drépanocytose/génétique , Coenzyme A ligases/métabolisme , Coenzyme A ligases/génétique , Modèles animaux de maladie humaine , Ferroptose/effets des médicaments et des substances chimiques , Ferroptose/génétique , Hémolyse/effets des médicaments et des substances chimiques , Peroxydation lipidique/effets des médicaments et des substances chimiques , Poumon/anatomopathologie , Poumon/métabolisme , Lésion pulmonaire/métabolisme , Lésion pulmonaire/anatomopathologie , Lésion pulmonaire/prévention et contrôle , Lésion pulmonaire/génétique , Souris de lignée C57BL , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Nanoparticules/composition chimique , Phospholipid hydroperoxide glutathione peroxidase/métabolisme , Phospholipid hydroperoxide glutathione peroxidase/génétique
5.
Clin Transl Med ; 14(9): e70024, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39285846

RÉSUMÉ

BACKGROUND: Renal ischaemia‒reperfusion injury (IRI) is the primary cause of acute kidney injury (AKI). To date, effective therapies for delaying renal IRI and postponing patient survival remain absent. Ankyrin repeat domain 1 (ANKRD1) has been implicated in some pathophysiologic processes, but its role in renal IRI has not been explored. METHODS: The mouse model of IRI-AKI and in vitro model were utilised to investigate the role of ANKRD1. Immunoprecipitation-mass spectrometry was performed to identify potential ANKRD1-interacting proteins. Protein‒protein interactions and protein ubiquitination were examined using immunoprecipitation and proximity ligation assay and immunoblotting, respectively. Cell viability, damage and lipid peroxidation were evaluated using biochemical and cellular techniques. RESULTS: First, we unveiled that ANKRD1 were significantly elevated in renal IRI models. Global knockdown of ANKRD1 in all cell types of mouse kidney by recombinant adeno-associated virus (rAAV9)-mitigated ischaemia/reperfusion-induced renal damage and failure. Silencing ANKRD1 enhanced cell viability and alleviated cell damage in human renal proximal tubule cells exposed to hypoxia reoxygenation or hydrogen peroxide, while ANKRD1 overexpression had the opposite effect. Second, we discovered that ANKRD1's detrimental function during renal IRI involves promoting lipid peroxidation and ferroptosis by directly binding to and decreasing levels of acyl-coenzyme A synthetase long-chain family member 3 (ACSL3), a key protein in lipid metabolism. Furthermore, attenuating ACSL3 in vivo through pharmaceutical approach and in vitro via RNA interference mitigated the anti-ferroptotic effect of ANKRD1 knockdown. Finally, we showed ANKRD1 facilitated post-translational degradation of ACSL3 by modulating E3 ligase tripartite motif containing 25 (TRIM25) to catalyse K63-linked ubiquitination of ACSL3, thereby amplifying lipid peroxidation and ferroptosis, exacerbating renal injury. CONCLUSIONS: Our study revealed a previously unknown function of ANKRD1 in renal IRI. By driving ACSL3 ubiquitination and degradation, ANKRD1 aggravates ferroptosis and ultimately exacerbates IRI-AKI, underlining ANKRD1's potential as a therapeutic target for kidney IRI. KEY POINTS/HIGHLIGHTS: Ankyrin repeat domain 1 (ANKRD1) is rapidly activated in renal ischaemia‒reperfusion injury (IRI) models in vivo and in vitro. ANKRD1 knockdown mitigates kidney damage and preserves renal function. Ferroptosis contributes to the deteriorating function of ANKRD1 in renal IRI. ANKRD1 promotes acyl-coenzyme A synthetase long-chain family member 3 (ACSL3) degradation via the ubiquitin‒proteasome pathway. The E3 ligase tripartite motif containing 25 (TRIM25) is responsible for ANKRD1-mediated ubiquitination of ACSL3.


Sujet(s)
Lésion d'ischémie-reperfusion , Protéines de répression , Ubiquitination , Animaux , Lésion d'ischémie-reperfusion/métabolisme , Lésion d'ischémie-reperfusion/génétique , Souris , Protéines de répression/génétique , Protéines de répression/métabolisme , Humains , Atteinte rénale aigüe/métabolisme , Atteinte rénale aigüe/génétique , Protéines à motif tripartite/génétique , Protéines à motif tripartite/métabolisme , Mâle , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme , Modèles animaux de maladie humaine , Protéines du muscle/génétique , Protéines du muscle/métabolisme , Coenzyme A ligases/métabolisme , Coenzyme A ligases/génétique , Souris de lignée C57BL , Rein/métabolisme , Rein/vascularisation , Protéines nucléaires
6.
FASEB J ; 38(17): e70033, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39258853

RÉSUMÉ

Glutathione S-transferase-Pi 1 (GSTP1) is an isozyme that plays a key role in detoxification and antioxidative damage. It also confers resistance to tumor therapy. However, the specific role of GSTP1 in radiotherapy resistance in pancreatic cancer (PC) is not known. In this study, we investigated how GSTP1 imparts radioresistance in PC. The findings of previous studies and this study revealed that ionizing radiation (IR) induces ferroptosis in pancreatic cancer cells, primarily by upregulating the expression of ACSL4. Our results showed that after IR, GSTP1 prolonged the survival of pancreatic cancer cells by inhibiting ferroptosis but did not affect apoptosis. The expression of GSTP1 reduced cellular ferroptosis by decreasing the levels of ACSL4 and increasing the GSH content. These changes increase the resistance of pancreatic cancer cells and xenograft tumors to IR. Our findings indicate that ferroptosis participates in irradiation-induced cell death and that GSTP1 prevents IR-induced death of pancreatic cancer cells by inhibiting ferroptosis.


Sujet(s)
Ferroptose , Glutathione S-transferase pi , Tumeurs du pancréas , Tumeurs du pancréas/métabolisme , Tumeurs du pancréas/anatomopathologie , Tumeurs du pancréas/radiothérapie , Glutathione S-transferase pi/métabolisme , Glutathione S-transferase pi/génétique , Humains , Animaux , Lignée cellulaire tumorale , Souris , Souris nude , Coenzyme A ligases/métabolisme , Coenzyme A ligases/génétique , Apoptose/effets des radiations , Tests d'activité antitumorale sur modèle de xénogreffe , Rayonnement ionisant , Radiotolérance , Souris de lignée BALB C , Glutathion/métabolisme
7.
Nat Commun ; 15(1): 7746, 2024 Sep 05.
Article de Anglais | MEDLINE | ID: mdl-39232011

RÉSUMÉ

Beige fat activation involves a fuel switch to fatty acid oxidation following chronic cold adaptation. Mitochondrial acyl-CoA synthetase long-chain family member 1 (ACSL1) localizes in the mitochondria and plays a key role in fatty acid oxidation; however, the regulatory mechanism of the subcellular localization remains poorly understood. Here, we identify an endosomal trafficking component sortilin (encoded by Sort1) in adipose tissues that shows dynamic expression during beige fat activation and facilitates the translocation of ACSL1 from the mitochondria to the endolysosomal pathway for degradation. Depletion of sortilin in adipocytes results in an increase of mitochondrial ACSL1 and the activation of AMPK/PGC1α signaling, thereby activating beige fat and preventing high-fat diet (HFD)-induced obesity and insulin resistance. Collectively, our findings indicate that sortilin controls adipose tissue fatty acid oxidation by substrate fuel selection during beige fat activation and provides a potential targeted approach for the treatment of metabolic diseases.


Sujet(s)
Protéines adaptatrices du transport vésiculaire , Adipocytes , Coenzyme A ligases , Alimentation riche en graisse , Métabolisme énergétique , Mitochondries , Animaux , Mâle , Souris , Cellules 3T3-L1 , Protéines adaptatrices du transport vésiculaire/métabolisme , Protéines adaptatrices du transport vésiculaire/génétique , Adipocytes/métabolisme , Tissu adipeux beige/métabolisme , Coenzyme A ligases/métabolisme , Coenzyme A ligases/génétique , Acides gras/métabolisme , Insulinorésistance , Souris de lignée C57BL , Souris knockout , Mitochondries/métabolisme , Obésité/métabolisme , Obésité/génétique , Oxydoréduction , Coactivateur 1-alpha du récepteur gamma activé par les proliférateurs de peroxysomes/métabolisme , Coactivateur 1-alpha du récepteur gamma activé par les proliférateurs de peroxysomes/génétique , Transport des protéines , Transduction du signal , Thermogenèse
8.
Signal Transduct Target Ther ; 9(1): 257, 2024 Sep 25.
Article de Anglais | MEDLINE | ID: mdl-39327446

RÉSUMÉ

Pressure overload-induced cardiac hypertrophy is a common cause of heart failure (HF), and emerging evidence suggests that excessive oxidized lipids have a detrimental effect on cardiomyocytes. However, the key regulator of lipid toxicity in cardiomyocytes during this pathological process remains unknown. Here, we used lipidomics profiling and RNA-seq analysis and found that phosphatidylethanolamines (PEs) and Acsl4 expression are significantly increased in mice with transverse aortic constriction (TAC)-induced HF compared to sham-operated mice. In addition, we found that overexpressing Acsl4 in cardiomyocytes exacerbates pressure overload‒induced cardiac dysfunction via ferroptosis. Notably, both pharmacological inhibition and genetic deletion of Acsl4 significantly reduced left ventricular chamber size and improved cardiac function in mice with TAC-induced HF. Moreover, silencing Acsl4 expression in cultured neonatal rat ventricular myocytes was sufficient to inhibit hypertrophic stimulus‒induced cell growth. Mechanistically, we found that Acsl4-dependent ferroptosis activates the pyroptotic signaling pathway, which leads to increased production of the proinflammatory cytokine IL-1ß, and neutralizing IL-1ß improved cardiac function in Acsl4 transgenic mice following TAC. These results indicate that ACSL4 plays an essential role in the heart during pressure overload‒induced cardiac remodeling via ferroptosis-induced pyroptotic signaling. Together, these findings provide compelling evidence that targeting the ACSL4-ferroptosis-pyroptotic signaling cascade may provide a promising therapeutic strategy for preventing heart failure.


Sujet(s)
Coenzyme A ligases , Ferroptose , Défaillance cardiaque , Myocytes cardiaques , Transduction du signal , Animaux , Défaillance cardiaque/génétique , Défaillance cardiaque/anatomopathologie , Défaillance cardiaque/métabolisme , Ferroptose/génétique , Souris , Coenzyme A ligases/génétique , Coenzyme A ligases/métabolisme , Rats , Myocytes cardiaques/métabolisme , Myocytes cardiaques/anatomopathologie , Transduction du signal/génétique , Interleukine-1 bêta/génétique , Interleukine-1 bêta/métabolisme , Souris transgéniques , Mâle , Cardiomégalie/génétique , Cardiomégalie/anatomopathologie , Cardiomégalie/métabolisme
9.
Int Immunopharmacol ; 142(Pt A): 113025, 2024 Dec 05.
Article de Anglais | MEDLINE | ID: mdl-39243559

RÉSUMÉ

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a metabolic syndrome associated with obesity and type 2 diabetes mellitus. Currently, there are no effective drugs to treat NAFLD. Palmitoleic acid (PA) has demonstrated therapeutic potential in managing various metabolic diseases and inflammation. Although ferroptosis is known to play a critical role in the NAFLD development, it remains unclear whether PA can alleviate NAFLD by inhibiting ferroptosis. METHODS: Thirty C57BL/6 mice were divided into three groups: standard diet, high-fat diet (HFD), and HFD with PA. The experiment lasted 16 weeks. RESULTS: PA alleviated liver injury, hepatitis, and dyslipidemia in HFD-induced NAFLD mice. It improved insulin resistance, downregulated genes and proteins related to fat synthesis, and upregulated genes and proteins linked to lipolysis and fat oxidation. Mechanistically, bioinformatics enrichment revealed the involvement of ferroptosis in NAFLD. PA mitigated oxidative stress and reduced liver iron content in NAFLD. It downregulated acyl-CoA synthetase long-chain family member 4 (ACSL4) expression while upregulating glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11) expression, thereby inhibiting ferroptosis. CONCLUSION: PA exerts a protective effect against liver lipotoxicity by inhibiting lipid metabolism-mediated ferroptosis. These findings provide new insights into preventive and therapeutic strategies for the pathological processes of NAFLD.


Sujet(s)
Alimentation riche en graisse , Acides gras monoinsaturés , Ferroptose , Foie , Souris de lignée C57BL , Stéatose hépatique non alcoolique , Animaux , Stéatose hépatique non alcoolique/traitement médicamenteux , Stéatose hépatique non alcoolique/métabolisme , Stéatose hépatique non alcoolique/anatomopathologie , Ferroptose/effets des médicaments et des substances chimiques , Mâle , Souris , Alimentation riche en graisse/effets indésirables , Acides gras monoinsaturés/usage thérapeutique , Acides gras monoinsaturés/pharmacologie , Foie/anatomopathologie , Foie/effets des médicaments et des substances chimiques , Foie/métabolisme , Coenzyme A ligases/métabolisme , Coenzyme A ligases/génétique , Phospholipid hydroperoxide glutathione peroxidase/métabolisme , Métabolisme lipidique/effets des médicaments et des substances chimiques , Modèles animaux de maladie humaine , Troubles du métabolisme lipidique/traitement médicamenteux , Troubles du métabolisme lipidique/métabolisme , Humains , Stress oxydatif/effets des médicaments et des substances chimiques , Insulinorésistance
10.
Proc Natl Acad Sci U S A ; 121(40): e2410628121, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39316049

RÉSUMÉ

One of the most critical axes for cell fate determination is how cells respond to excessive reactive oxygen species (ROS)-oxidative stress. Extensive lipid peroxidation commits cells to death via a distinct cell death paradigm termed ferroptosis. However, the molecular mechanism regulating cellular fates to distinct ROS remains incompletely understood. Through siRNA against human receptor-interacting protein kinase (RIPK) family members, we found that RIPK4 is crucial for oxidative stress and ferroptotic death. Upon ROS induction, RIPK4 is rapidly activated, and the kinase activity of RIPK4 is indispensable to induce cell death. Specific ablation of RIPK4 in kidney proximal tubules protects mice from acute kidney injury induced by cisplatin and renal ischemia/reperfusion. RNA sequencing revealed the dramatically decreased expression of acyl-CoA synthetase medium-chain (ACSM) family members induced by cisplatin treatment which is compromised in RIPK4-deficient mice. Among these ACSM family members, suppression of ACSM1 strongly augments oxidative stress and ferroptotic cell death with induced expression of ACS long-chain family member 4, an important component for ferroptosis execution. Our lipidome analysis revealed that overexpression of ACSM1 leads to the accumulation of monounsaturated fatty acids, attenuation of polyunsaturated fatty acid (PUFAs) production, and thereby cellular resistance to ferroptosis. Hence, knockdown of ACSM1 resensitizes RIPK4 KO cells to oxidative stress and ferroptotic death. In conclusion, RIPK4 is a key player involved in oxidative stress and ferroptotic death, which is potentially important for a broad spectrum of human pathologies. The link between the RIPK4-ASCM1 axis to PUFAs and ferroptosis reveals a unique mechanism to oxidative stress-induced necrosis and ferroptosis.


Sujet(s)
Coenzyme A ligases , Ferroptose , Stress oxydatif , Espèces réactives de l'oxygène , Animaux , Ferroptose/génétique , Souris , Coenzyme A ligases/métabolisme , Coenzyme A ligases/génétique , Humains , Espèces réactives de l'oxygène/métabolisme , Cisplatine/pharmacologie , Régulation négative , Souris knockout , Atteinte rénale aigüe/métabolisme , Atteinte rénale aigüe/génétique , Atteinte rénale aigüe/anatomopathologie , Protein-Serine-Threonine Kinases/métabolisme , Protein-Serine-Threonine Kinases/génétique , Lésion d'ischémie-reperfusion/métabolisme , Lésion d'ischémie-reperfusion/génétique , Mort cellulaire , Receptor-Interacting Protein Serine-Threonine Kinases/métabolisme , Receptor-Interacting Protein Serine-Threonine Kinases/génétique
11.
Clin Respir J ; 18(10): e70013, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39323079

RÉSUMÉ

BACKGROUND: Lung cancer, on a global scale, leads to the most common cases of cancer mortalities. Novel therapeutic approaches are urgently needed to disrupt this lethal disease. The rapid development of tumor immunology combining breakthroughs involving fatty acid metabolism brings possibilities. Directing fatty acid metabolism is supposed to help discover potential prognostic biomarkers and treatment targets for lung cancer. METHODS: Through searching the GSE140797 dataset, we identified genes related to fatty acid metabolism as well as fatty acid metabolism-related differentially expressed genes (DEGs). We applied various methods to ascertain the independent prognostic value of the DEGs. The methods we utilized entail prognostic analysis, differential expression analysis, as well as univariate and multivariate Cox regression analyses. The lasso Cox regression model was utilized in examining how DEGs correlate with the immune score, immune checkpoint, ferroptosis, methylation, and OCLR score. The expression levels of ACAT1 and ACSL3 in tissues derived from normal lung and lung adenocarcinoma (LUAD) tissues were compared by qRT-PCR. RESULTS: In this study, ACSL3 and ACAT1 were identified as fatty acid metabolism-related genes utilizing independent prognostic value and as a result, the risk prognostic model was built using these factors. qRT-PCR results implied that ACSL3 and ACAT1 expressions were upregulated and downregulated, correspondingly in tumor tissues. Additional evaluations suggested that ACSL3 and ACAT1 were affirmed to be remarkably correlated with the immune score, methylation, immune checkpoint, OCLR score, and ferroptosis. CONCLUSIONS: ACSL3 and ACAT1 were effective prognostic biomarkers and potential immunotherapeutic targets in LUAD.


Sujet(s)
Adénocarcinome pulmonaire , Marqueurs biologiques tumoraux , Acides gras , Tumeurs du poumon , Humains , Tumeurs du poumon/génétique , Tumeurs du poumon/anatomopathologie , Tumeurs du poumon/métabolisme , Marqueurs biologiques tumoraux/génétique , Marqueurs biologiques tumoraux/métabolisme , Pronostic , Acides gras/métabolisme , Adénocarcinome pulmonaire/génétique , Adénocarcinome pulmonaire/immunologie , Adénocarcinome pulmonaire/métabolisme , Adénocarcinome pulmonaire/anatomopathologie , Adénocarcinome pulmonaire/mortalité , Régulation de l'expression des gènes tumoraux , Mâle , Femelle , Coenzyme A ligases/génétique , Coenzyme A ligases/métabolisme , Immunothérapie/méthodes , Adulte d'âge moyen , Analyse de profil d'expression de gènes/méthodes
12.
Sci Rep ; 14(1): 19591, 2024 08 23.
Article de Anglais | MEDLINE | ID: mdl-39179766

RÉSUMÉ

Liver cancer is the 4th most lethal form of cancer with a poor prognosis for patients worldwide. Dysregulation of lipid metabolism is related to FA oxidation alternation which can be modified by peroxisome proliferator-activated receptor-α (PPARα). Therefore, it is important to identify the lipid metabolism-related genes regulated by PPARα in liver cancer. Hub genes related to the lipid metabolism pathway of HCC samples treated with PPARα agonist (WY-14,643) were identified through a weighted gene co-expression network analysis (WGCNA). Gene expression and clinical information were obtained from the Gene Expression Omnibus (GEO) database. The network of top main hub genes was visualized by the Cytoscape software using MCODE and CytoHubba plugins. Finally, the expression and clinical association of each hub gene were evaluated using enrichment analysis, TCGA data, GEPIA, GSCA, and q-PCR. Based on our results, the top 5 co-expressed genes including (CPT2, ACSL1, ACSL3, ACOX1, and SLC27A2) were selected as the main hub genes participating in fatty acid metabolism, fatty acid beta-oxidation, and PPAR signaling pathway. All association of higher ACSL3 expression with lower outcomes and survival rates was detected in HCC patients. Therefore, lipid metabolism-related Hub genes regulated by PPARα are potential biomarkers, and they may offer a therapeutical foundation for targeted therapy directed against the HCC antitumor strategy.


Sujet(s)
Carcinome hépatocellulaire , Régulation de l'expression des gènes tumoraux , Réseaux de régulation génique , Métabolisme lipidique , Tumeurs du foie , Récepteur PPAR alpha , Humains , Récepteur PPAR alpha/agonistes , Récepteur PPAR alpha/génétique , Récepteur PPAR alpha/métabolisme , Métabolisme lipidique/génétique , Métabolisme lipidique/effets des médicaments et des substances chimiques , Tumeurs du foie/génétique , Tumeurs du foie/métabolisme , Tumeurs du foie/traitement médicamenteux , Carcinome hépatocellulaire/génétique , Carcinome hépatocellulaire/traitement médicamenteux , Carcinome hépatocellulaire/métabolisme , Régulation de l'expression des gènes tumoraux/effets des médicaments et des substances chimiques , Coenzyme A ligases/génétique , Coenzyme A ligases/métabolisme , Analyse de profil d'expression de gènes/méthodes , Pronostic , Biologie informatique/méthodes
13.
Food Chem Toxicol ; 192: 114926, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39147356

RÉSUMÉ

Valproic acid (VPA), a common antiepileptic drug, can cause liver steatosis after long-term therapy. However, an impact of ferroptosis on VPA-induced liver steatosis has not been investigated. In the study, treatment with VPA promoted ferroptosis in the livers of mice by elevating ferrous iron (Fe2+) levels derived from the increased absorption by transferrin receptor 1 (TFR1) and the decreased storage by ferritin (FTH1 and FTL), disrupting the redox balance via reduced levels of solute carrier family 7 member 11 (SLC7A11), glutathione (GSH), and glutathione peroxidase 4 (GPX4), and augmenting acyl-CoA synthetase long-chain family member 4 (ACSL4) -mediated lipid peroxide generation, accompanied by enhanced liver steatosis. All the changes were significantly reversed by co-treatment with an iron-chelating agent, deferoxamine mesylate (DFO) and a ferroptosis inhibitor, ferrostatin-1 (Fer-1). Similarly, the increases in Fe2+, TFR1, and ACSL4 levels, as well as the decreases in GSH, GPX4, and ferroportin (FPN) levels, were detected in VPA-treated HepG2 cells. These changes were also attenuated after co-treatment with Fer-1. It demonstrates that ferroptosis promotes VPA-induced liver steatosis through iron overload, inhibition of the GSH-GPX4 axis, and upregulation of ACSL4. It offers a potential therapy targeting ferroptosis for patients with liver steatosis following VPA treatment.


Sujet(s)
Coenzyme A ligases , Stéatose hépatique , Ferroptose , Phospholipid hydroperoxide glutathione peroxidase , Récepteurs à la transferrine , Acide valproïque , Ferroptose/effets des médicaments et des substances chimiques , Animaux , Acide valproïque/toxicité , Souris , Phospholipid hydroperoxide glutathione peroxidase/métabolisme , Coenzyme A ligases/métabolisme , Coenzyme A ligases/génétique , Humains , Stéatose hépatique/induit chimiquement , Stéatose hépatique/métabolisme , Mâle , Récepteurs à la transferrine/métabolisme , Récepteurs à la transferrine/génétique , Fer/métabolisme , Souris de lignée C57BL , Ferritines/métabolisme , Glutathion/métabolisme , Cellules HepG2 , Système y+ de transport d'acides aminés/métabolisme , Système y+ de transport d'acides aminés/génétique , Foie/effets des médicaments et des substances chimiques , Foie/métabolisme
14.
Biochemistry ; 63(17): 2153-2165, 2024 Sep 03.
Article de Anglais | MEDLINE | ID: mdl-39152907

RÉSUMÉ

Per and polyfluoroalkyl substances (PFAS) are a large family of anthropogenic fluorinated chemicals of increasing environmental concern. Over recent years, numerous microbial communities have been found to be capable of metabolizing some polyfluoroalkyl substances, generating a range of low-molecular-weight PFAS metabolites. One proposed pathway for the microbial breakdown of fluorinated carboxylates includes ß-oxidation, this pathway is initiated by the formation of a CoA adduct. However, until recently no PFAS-CoA adducts had been reported. In a previous study, we were able to use a bacterial medium-chain acyl-CoA synthetase (mACS) to form CoA adducts of fluorinated adducts of propanoic acid and pentanoic acid but were not able to detect any products of fluorinated hexanoic acid analogues. Herein, we expressed and purified a long-chain acyl-CoA synthetase (lACS) and a A461K variant of mACS from the soil bacterium Gordonia sp. strain NB4-1Y and performed an analysis of substrate scope and enzyme kinetics using fluorinated and nonfluorinated carboxylates. We determined that lACS can catalyze the formation of CoA adducts of 1:5 fluorotelomer carboxylic acid (FTCA), 2:4 FTCA and 3:3 FTCA, albeit with generally low turnover rates (<0.02 s-1) compared with the nonfluorinated hexanoic acid (5.39 s-1). In addition, the A461K variant was found to have an 8-fold increase in selectivity toward hexanoic acid compared with wild-type mACS, suggesting that Ala-461 has a mechanistic role in selectivity toward substrate chain length. This provides further evidence to validate the proposed activation step involving the formation of CoA adducts in the enzymatic breakdown of PFAS.


Sujet(s)
Caproates , Coenzyme A ligases , Coenzyme A ligases/métabolisme , Coenzyme A ligases/génétique , Coenzyme A ligases/composition chimique , Caproates/métabolisme , Caproates/composition chimique , Gordonia bacterium/métabolisme , Gordonia bacterium/enzymologie , Gordonia bacterium/génétique , Halogénation , Coenzyme A/métabolisme , Coenzyme A/composition chimique , Cinétique , Protéines bactériennes/métabolisme , Protéines bactériennes/génétique , Protéines bactériennes/composition chimique , Acyl coenzyme A/métabolisme , Acyl coenzyme A/composition chimique , Spécificité du substrat
15.
Genes (Basel) ; 15(8)2024 Jul 25.
Article de Anglais | MEDLINE | ID: mdl-39202344

RÉSUMÉ

Long-chain acyl-CoA synthetases (LACSs) are essential enzymes that activate free fatty acids to fatty acyl-CoA thioesters, playing key roles in fatty acid (FA) catabolism, lipid synthesis and storage, epidermal wax synthesis, and stress tolerance. Despite their importance, comprehensive information about LACS genes in maize, a primary food crop, remains scarce. In the present work, eleven maize LACS genes were identified and mapped across five chromosomes. Three pairs of segmentally duplicated genes were detected in the maize LACS gene family, which underwent significant purifying selection (Ka/Ks < 1). Subsequently, phylogenetic analysis indicated that ZmLACS genes were divided into four subclasses, as supported by highly conserved motifs and gene structures. On the basis of the PlantCARE database, analysis of the ZmLACS promoter regions revealed various cis-regulatory elements related to tissue-specific expression, hormonal regulation, and abiotic stress response. RT-qPCR analysis showed that ZmLACS genes exhibit tissue-specific expression patterns and respond to diverse abiotic stresses including drought and salt, as well as phytohormone abscisic acid. Furthermore, using the STRING database, several proteins involved in fatty acid and complex lipid synthesis were identified to be the potential interaction partners of ZmLACS proteins, which was also confirmed by the yeast two-hybrid (Y2H) assay, enhancing our understanding of wax biosynthesis and regulatory mechanisms in response to abiotic stresses in maize. These findings provide a comprehensive understanding of ZmLACS genes and offer a theoretical foundation for future research on the biological functions of LACS genes in maize environmental adaptability.


Sujet(s)
Coenzyme A ligases , Régulation de l'expression des gènes végétaux , Phylogenèse , Protéines végétales , Stress physiologique , Zea mays , Zea mays/génétique , Zea mays/métabolisme , Coenzyme A ligases/génétique , Coenzyme A ligases/métabolisme , Stress physiologique/génétique , Protéines végétales/génétique , Protéines végétales/métabolisme , Génome végétal , Chromosomes de plante/génétique , Sécheresses
16.
Int J Biol Macromol ; 277(Pt 3): 134438, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39098676

RÉSUMÉ

Long-chain acyl-CoA synthetases (LACSs), belonging to the acyl-activating enzyme superfamily, play crucial roles in lipid biosynthesis and fatty acid catabolism. Here, we identified 11 LACS genes in the tomato reference genome, and these genes were clustered into six subfamilies. Gene structure and conserved motif analyses indicated that LACSs from the same subfamily shared conserved gene and protein structures. Expression analysis revealed that SlLACS1 was highly expressed in the outer epidermis of tomato fruits and leaves. Subcellular localization assay results showed that SlLACS1 was located in the endoplasmic reticulum. Compared with wild-type plants, the wax content on leaves and fruits decreased by 22.5-34.2 % in SlLACS1 knockout lines, confirming that SlLACS1 was involved in wax biosynthesis in both leaves and fruits. Water loss, chlorophyll extraction, water-deficit, and toluidine blue assays suggested that cuticle permeability was elevated in SlLACS1 knockout lines, resulting in reduction in both drought stress resistance and fruit shelf-life. Overall, our analysis of the LACSs in tomato, coupled with investigations of SlLACS1 function, yielded a deeper understanding of the evolutionary patterns of LACS members and revealed the involvement of SlLACS1 in wax accumulation contribute to drought resistance and extended fruit shelf-life in tomato.


Sujet(s)
Coenzyme A ligases , Régulation de l'expression des gènes végétaux , Solanum lycopersicum , Cires , Coenzyme A ligases/génétique , Coenzyme A ligases/métabolisme , Fruit/génétique , Fruit/métabolisme , Famille multigénique , Phylogenèse , Épiderme végétal/métabolisme , Épiderme végétal/génétique , Feuilles de plante/génétique , Feuilles de plante/métabolisme , Protéines végétales/génétique , Protéines végétales/métabolisme , Protéines végétales/composition chimique , Solanum lycopersicum/génétique , Solanum lycopersicum/métabolisme , Solanum lycopersicum/enzymologie , Cires/métabolisme
17.
Commun Biol ; 7(1): 1027, 2024 Aug 21.
Article de Anglais | MEDLINE | ID: mdl-39169121

RÉSUMÉ

The retina is light-sensitive neuronal tissue in the back of the eye. The phospholipid composition of the retina is unique and highly enriched in polyunsaturated fatty acids, including docosahexaenoic fatty acid (DHA). While it is generally accepted that a high DHA content is important for vision, surprisingly little is known about the mechanisms of DHA enrichment in the retina. Furthermore, the biological processes controlled by DHA in the eye remain poorly defined as well. Here, we combined genetic manipulations with lipidomic analysis in mice to demonstrate that acyl-CoA synthetase 6 (Acsl6) serves as a regulator of the unique composition of retinal membranes. Inactivation of Acsl6 reduced the levels of DHA-containing phospholipids, led to progressive loss of light-sensitive rod photoreceptor neurons, attenuated the light responses of these cells, and evoked distinct transcriptional response in the retina involving the Srebf1/2 (sterol regulatory element binding transcription factors 1/2) pathway. This study identifies one of the major enzymes responsible for DHA enrichment in the retinal membranes and introduces a model allowing an evaluation of rod functioning and pathology caused by impaired DHA incorporation/retention in the retina.


Sujet(s)
Coenzyme A ligases , Phospholipides , Cellules photoréceptrices en bâtonnet de la rétine , Animaux , Souris , Coenzyme A ligases/métabolisme , Coenzyme A ligases/génétique , Acide docosahexaénoïque/métabolisme , Souris de lignée C57BL , Souris knockout , Phospholipides/métabolisme , Rétine/métabolisme , Cellules photoréceptrices en bâtonnet de la rétine/métabolisme
18.
Int Immunopharmacol ; 140: 112800, 2024 Oct 25.
Article de Anglais | MEDLINE | ID: mdl-39096875

RÉSUMÉ

Oltipraz (OPZ) is a synthetic dithiolethione and is considered a novel activator of nuclear factor E2-related factor 2 (Nrf2). Increasing evidence indicates that Nrf2 protects against cerebral ischemia/reperfusion (I/R) injury by antagonizing ferroptosis and lipid peroxidation. However, the protective effects of OPZ on cerebral I/R injury remain to be elucidated. We investigated the in vitro and in vivo neuroprotective effects of OPZ. Mice were subjected to middle cerebral artery occlusion/reperfusion (MCAO/R) to construct an in vivo model and PC12 cells were exposed to oxygen and glucose deprivation/reoxygenation (OGD/R) to establish an in vitro model. OPZ administration reduced the infarct volume and brain water content, and alleviated the neurological deficit of MCAO/R mice. Moreover, OPZ ameliorated MCAO/R-induced oxidative stress by decreasing the levels of 4-HNE and MDA and increasing the activities of SOD and GSH. We also found that OPZ ameliorated MCAO/R-induced ferroptosis by increasing SLC7A11 and GPX4 protein expression and downregulating ACSL4 protein expression. Similarly, the in vitro results revealed that OGD/R-induced oxidative stress and ferroptosis. Finally, mechanistic analysis revealed that OPZ significantly upregulated the Nrf2 expression and Nrf2 knockout (Nrf2 KO) abolished the OPZ-mediated protective effects. Taken together, these findings demonstrate that OPZ ameliorates cerebral I/R injury by suppressing the oxidative stress and ferroptosis.


Sujet(s)
Ferroptose , Infarctus du territoire de l'artère cérébrale moyenne , Souris de lignée C57BL , Facteur-2 apparenté à NF-E2 , Neuroprotecteurs , Stress oxydatif , Lésion d'ischémie-reperfusion , Thiones , Thiophènes , Animaux , Ferroptose/effets des médicaments et des substances chimiques , Stress oxydatif/effets des médicaments et des substances chimiques , Lésion d'ischémie-reperfusion/traitement médicamenteux , Lésion d'ischémie-reperfusion/métabolisme , Thiones/pharmacologie , Thiones/usage thérapeutique , Cellules PC12 , Facteur-2 apparenté à NF-E2/métabolisme , Souris , Mâle , Neuroprotecteurs/pharmacologie , Neuroprotecteurs/usage thérapeutique , Thiophènes/pharmacologie , Thiophènes/usage thérapeutique , Infarctus du territoire de l'artère cérébrale moyenne/traitement médicamenteux , Infarctus du territoire de l'artère cérébrale moyenne/anatomopathologie , Rats , Coenzyme A ligases/métabolisme , Coenzyme A ligases/génétique , Système y+ de transport d'acides aminés/métabolisme , Système y+ de transport d'acides aminés/génétique , Phospholipid hydroperoxide glutathione peroxidase/métabolisme , Phospholipid hydroperoxide glutathione peroxidase/génétique , Modèles animaux de maladie humaine , Encéphalopathie ischémique/traitement médicamenteux , Encéphalopathie ischémique/métabolisme , Encéphale/effets des médicaments et des substances chimiques , Encéphale/anatomopathologie , Encéphale/métabolisme , Pyrazines
19.
PLoS One ; 19(8): e0307802, 2024.
Article de Anglais | MEDLINE | ID: mdl-39178212

RÉSUMÉ

Prolonged consumption of diet rich in fats is regarded as the major factor leading to the insulin resistance (IR) and type 2 diabetes (T2D). Emerging evidence link excessive accumulation of bioactive lipids such as diacylglycerol (DAG) and ceramide (Cer), with impairment of insulin signaling in skeletal muscle. Until recently, little has been known about the involvement of long-chain acyl-CoAs synthetases in the above mechanism. To examine possible role of long-chain acyl-coenzyme A synthetase 1 (Acsl1) (a major muscular ACSL isoform) in mediating HFD-induced IR we locally silenced Acsl1 in gastrocnemius of high-fat diet (HFD)-fed C57BL/6J mice through electroporation-delivered shRNA and compared it to non-silenced tissue within the same animal. Acsl1 down-regulation decreased the content of muscular long-chain acyl-CoA (LCACoA) and both the Cer (C18:1-Cer and C24:1-Cer) and DAG (C16:0/18:0-DAG, C16:0/18:2-DAG, C18:0/18:0-DAG) and simultaneously improved insulin sensitivity and glucose uptake as compared with non-silenced tissue. Acsl1 down-regulation decreased expression of mitochondrial ß-oxidation enzymes, and the content of both the short-chain acylcarnitine (SCA-Car) and short-chain acyl-CoA (SCACoA) in muscle, pointing towards reduction of mitochondrial FA oxidation. The results indicate, that beneficial effects of Acsl1 partial ablation on muscular insulin sensitivity are connected with inhibition of Cer and DAG accumulation, and outweigh detrimental impact of decreased mitochondrial fatty acids metabolism in skeletal muscle of obese HFD-fed mice.


Sujet(s)
Coenzyme A ligases , Alimentation riche en graisse , Diglycéride , Régulation négative , Insulinorésistance , Souris de lignée C57BL , Muscles squelettiques , Obésité , Petit ARN interférent , Animaux , Muscles squelettiques/métabolisme , Coenzyme A ligases/métabolisme , Coenzyme A ligases/génétique , Souris , Alimentation riche en graisse/effets indésirables , Obésité/métabolisme , Obésité/génétique , Diglycéride/métabolisme , Petit ARN interférent/génétique , Petit ARN interférent/métabolisme , Mâle , Céramides/métabolisme , Carnitine/analogues et dérivés , Carnitine/métabolisme , Insuline/métabolisme , Souris obèse
20.
Appl Environ Microbiol ; 90(9): e0060224, 2024 09 18.
Article de Anglais | MEDLINE | ID: mdl-39177329

RÉSUMÉ

The acetogen Acetobacterium woodii couples caffeate reduction with ferredoxin reduction and NADH oxidation via electron bifurcation, providing additional reduced ferredoxin for energy conservation and cell synthesis. Caffeate is first activated by an acyl-CoA synthetase (CarB), which ligates CoA to caffeate at the expense of ATP. After caffeoyl-CoA is reduced to hydrocaffeoyl-CoA, the CoA moiety in hydrocaffeoyl-CoA could be recycled for caffeoyl-CoA synthesis by an ATP-independent CoA transferase (CarA) to save energy. However, given that CarA and CarB are co-expressed, it was not well understood how ATP could be saved when both two competitive pathways of caffeate activation are present. Here, we reported a dual feedback inhibition of the CarB-mediated caffeate activation by the intermediate hydrocaffeoyl-CoA and the end-product hydrocaffeate. As the product of CarA, hydrocaffeate inhibited CarB-mediated caffeate activation by serving as another substrate of CarB with hydrocaffeoyl-CoA produced. It effectively competed with caffeate even at a concentration much lower than caffeate. Hydrocaffeoyl-CoA formed in this process can also inhibit CarB-mediated caffeate activation. Thus, the dual feedback inhibition of CarB, together with the faster kinetics of CarA, makes the ATP-independent CarA-mediated CoA loop the major route for caffeoyl-CoA synthesis, further saving ATP in the caffeate-dependent electron-bifurcating pathway. A genetic architecture similar to carABC has been found in other anaerobic bacteria, suggesting that the feedback inhibition of acyl-CoA ligases could be a widely employed strategy for ATP conservation in those pathways requiring substrate activation by CoA. IMPORTANCE: This study reports a dual feedback inhibition of caffeoyl-CoA synthetase by two downstream products, hydrocaffeate and hydrocaffeoyl-CoA. It elucidates how such dual feedback inhibition suppresses ATP-dependent caffeoyl-CoA synthesis, hence making the ATP-independent route the main pathway of caffeate activation. This newly discovered mechanism contributes to our current understanding of ATP conservation during the caffeate-dependent electron-bifurcating pathway in the ecologically important acetogen Acetobacterium woodii. Bioinformatic mining of microbial genomes revealed contiguous genes homologous to carABC within the genomes of other anaerobes from various environments, suggesting this mechanism may be widely used in other CoA-dependent electron-bifurcating pathways.


Sujet(s)
Acetobacterium , Adénosine triphosphate , Acides caféiques , Acides caféiques/métabolisme , Adénosine triphosphate/métabolisme , Acetobacterium/génétique , Acetobacterium/métabolisme , Protéines bactériennes/métabolisme , Protéines bactériennes/génétique , Coenzyme A ligases/métabolisme , Coenzyme A ligases/génétique , Rétrocontrôle physiologique , Oxydoréduction , Transport d'électrons
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE