Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 8.513
Filtrer
1.
Biochemistry (Mosc) ; 89(4): 601-625, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38831499

RÉSUMÉ

The most prominent representatives of multisubunit SMC complexes, cohesin and condensin, are best known as structural components of mitotic chromosomes. It turned out that these complexes, as well as their bacterial homologues, are molecular motors, the ATP-dependent movement of these complexes along DNA threads leads to the formation of DNA loops. In recent years, we have witnessed an avalanche-like accumulation of data on the process of SMC dependent DNA looping, also known as loop extrusion. This review briefly summarizes the current understanding of the place and role of cohesin-dependent extrusion in cell physiology and presents a number of models describing the potential molecular mechanism of extrusion in a most compelling way. We conclude the review with a discussion of how the capacity of cohesin to extrude DNA loops may be mechanistically linked to its involvement in sister chromatid cohesion.


Sujet(s)
Protéines du cycle cellulaire , Protéines chromosomiques nonhistones , , Protéines chromosomiques nonhistones/métabolisme , Protéines chromosomiques nonhistones/composition chimique , Protéines du cycle cellulaire/métabolisme , Protéines du cycle cellulaire/composition chimique , Humains , Adenosine triphosphatases/métabolisme , Protéines de liaison à l'ADN/métabolisme , Complexes multiprotéiques/métabolisme , Complexes multiprotéiques/composition chimique , ADN/métabolisme , ADN/composition chimique , Animaux , Chromatides/métabolisme
3.
Open Biol ; 14(6): 230363, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38889796

RÉSUMÉ

We present a novel small molecule antiviral chemotype that was identified by an unconventional cell-free protein synthesis and assembly-based phenotypic screen for modulation of viral capsid assembly. Activity of PAV-431, a representative compound from the series, has been validated against infectious viruses in multiple cell culture models for all six families of viruses causing most respiratory diseases in humans. In animals, this chemotype has been demonstrated efficacious for porcine epidemic diarrhoea virus (a coronavirus) and respiratory syncytial virus (a paramyxovirus). PAV-431 is shown to bind to the protein 14-3-3, a known allosteric modulator. However, it only appears to target the small subset of 14-3-3 which is present in a dynamic multi-protein complex whose components include proteins implicated in viral life cycles and in innate immunity. The composition of this target multi-protein complex appears to be modified upon viral infection and largely restored by PAV-431 treatment. An advanced analog, PAV-104, is shown to be selective for the virally modified target, thereby avoiding host toxicity. Our findings suggest a new paradigm for understanding, and drugging, the host-virus interface, which leads to a new clinical therapeutic strategy for treatment of respiratory viral disease.


Sujet(s)
Antiviraux , Antiviraux/pharmacologie , Antiviraux/composition chimique , Humains , Animaux , Protéines 14-3-3/métabolisme , Complexes multiprotéiques/métabolisme , Interactions hôte-pathogène/effets des médicaments et des substances chimiques , Lignée cellulaire
4.
Mol Cell ; 84(11): 2011-2013, 2024 Jun 06.
Article de Anglais | MEDLINE | ID: mdl-38848689

RÉSUMÉ

In this issue of Molecular Cell, Yi et al.1 demonstrate that reduced mTORC1 activity induces the CTLH E3 ligase-dependent degradation of HMGCS1, an enzyme in the mevalonate pathway, thus revealing a unique connection between mTORC1 signaling and the degradation of a specific metabolic enzyme via the ubiquitin-proteasome system.


Sujet(s)
Complexe-1 cible mécanistique de la rapamycine , Proteasome endopeptidase complex , Transduction du signal , Complexe-1 cible mécanistique de la rapamycine/métabolisme , Complexe-1 cible mécanistique de la rapamycine/génétique , Humains , Proteasome endopeptidase complex/métabolisme , Ubiquitin-protein ligases/métabolisme , Ubiquitin-protein ligases/génétique , Protéolyse , Sérine-thréonine kinases TOR/métabolisme , Sérine-thréonine kinases TOR/génétique , Complexes multiprotéiques/métabolisme , Complexes multiprotéiques/génétique , Animaux , Acide mévalonique/métabolisme , Ubiquitine/métabolisme
5.
Anal Chem ; 96(21): 8243-8248, 2024 May 28.
Article de Anglais | MEDLINE | ID: mdl-38733603

RÉSUMÉ

Native mass spectrometry (MS) continues to enjoy growing popularity as a means of providing a wealth of information on noncovalent biopolymer assemblies ranging from composition and binding stoichiometry to characterization of the topology of these assemblies. The latter frequently relies on supplementing MS measurements with limited fragmentation of the noncovalent complexes in the gas phase to identify the pairs of neighboring subunits. While this approach has met with much success in the past two decades, its implementation remains difficult (and the success record relatively modest) within one class of noncovalent assemblies: protein complexes in which at least one binding partner has multiple subunits cross-linked by disulfide bonds. We approach this problem by inducing chemical reduction of disulfide bonds under nondenaturing conditions in solution followed by native MS analysis with online buffer exchange to remove unconsumed reagents that are incompatible with the electrospray ionization process. While this approach works well with systems comprised of thiol-linked subunits that remain stable upon reduction of the disulfide bridges (such as immunoglobulins), chemical reduction frequently gives rise to species that are unstable (prone to aggregation). This problem is circumvented by taking advantage of the recently introduced cross-path reactive chromatography platform (XPRC), which allows the disulfide reduction to be carried out in-line, thereby minimizing the loss of metastable protein subunits and their noncovalent complexes with the binding partners prior to MS analysis. The feasibility of this approach is demonstrated using hemoglobin complexes with haptoglobin 1-1, a glycoprotein consisting of four polypeptide chains cross-linked by disulfide bonds.


Sujet(s)
Disulfures , Oxydoréduction , Disulfures/composition chimique , Spectrométrie de masse , Sous-unités de protéines/composition chimique , Complexes multiprotéiques/composition chimique , Complexes multiprotéiques/métabolisme
6.
Int J Biol Macromol ; 269(Pt 1): 131923, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38697437

RÉSUMÉ

Recent advances in mass spectrometry (MS) yielding sensitive and accurate measurements along with developments in software tools have enabled the characterization of complex systems routinely. Thus, structural proteomics and cross-linking mass spectrometry (XL-MS) have become a useful method for structural modeling of protein complexes. Here, we utilized commonly used XL-MS software tools to elucidate the protein interactions within a membrane protein complex containing FtsH, HflK, and HflC, over-expressed in E. coli. The MS data were processed using MaxLynx, MeroX, MS Annika, xiSEARCH, and XlinkX software tools. The number of identified inter- and intra-protein cross-links varied among software. Each interaction was manually checked using the raw MS and MS/MS data and distance restraints to verify inter- and intra-protein cross-links. A total of 37 inter-protein and 148 intra-protein cross-links were determined in the FtsH-HflK-HflC complex. The 59 of them were new interactions on the lacking region of recently published structures. These newly identified interactions, when combined with molecular docking and structural modeling, present opportunities for further investigation. The results provide valuable information regarding the complex structure and function to decipher the intricate molecular mechanisms underlying the FtsH-HflK-HflC complex.


Sujet(s)
Protéines membranaires , Protéomique , Protéines membranaires/composition chimique , Protéines membranaires/métabolisme , Protéomique/méthodes , Simulation de docking moléculaire , Protéines bactériennes/composition chimique , Protéines bactériennes/métabolisme , Protéines Escherichia coli/composition chimique , Protéines Escherichia coli/métabolisme , Complexes multiprotéiques/composition chimique , Complexes multiprotéiques/métabolisme , Liaison aux protéines , Escherichia coli/métabolisme , Logiciel , Modèles moléculaires
7.
STAR Protoc ; 5(2): 103080, 2024 Jun 21.
Article de Anglais | MEDLINE | ID: mdl-38776227

RÉSUMÉ

Co-immunoprecipitation (coIP) is an experimental technique to study protein-protein interactions (PPIs). However, single-step coIP can only be used to identify the interaction between two proteins and does not solve the interaction testing of ternary complexes. Here, we present a protocol to test for the formation of ternary protein complexes in vivo or in vitro using a two-step coIP approach. We describe steps for cell culture and transfection, elution of target proteins, and two-step coIP including western blot analyses. For complete details on the use and execution of this protocol, please refer to Li et al.1.


Sujet(s)
Immunoprécipitation , Immunoprécipitation/méthodes , Humains , Cartographie d'interactions entre protéines/méthodes , Protéines/métabolisme , Technique de Western/méthodes , Transfection , Animaux , Liaison aux protéines , Complexes multiprotéiques/métabolisme , Complexes multiprotéiques/composition chimique , Cellules HEK293
8.
Nat Commun ; 15(1): 4358, 2024 May 22.
Article de Anglais | MEDLINE | ID: mdl-38778058

RÉSUMÉ

3C-based methods have significantly advanced our understanding of 3D genome organization. However, it remains a formidable task to precisely capture long-range chromosomal interactions between individual loci, such as those between promoters and distal enhancers. Here, we present Methyltransferase Targeting-based chromosome Architecture Capture (MTAC), a method that maps the contacts between a target site (viewpoint) and the rest of the genome in budding yeast with high resolution and sensitivity. MTAC detects hundreds of intra- and inter-chromosomal interactions within nucleosome-depleted regions (NDRs) that cannot be captured by 4C, Hi-C, or Micro-C. By applying MTAC to various viewpoints, we find that (1) most long-distance chromosomal interactions detected by MTAC reflect tethering by the nuclear pore complexes (NPCs), (2) genes co-regulated by methionine assemble into inter-chromosomal clusters near NPCs upon activation, (3) mediated by condensin, the mating locus forms a highly specific interaction with the recombination enhancer (RE) in a mating-type specific manner, and (4) correlation of MTAC signals among NDRs reveal spatial mixing and segregation of the genome. Overall, these results demonstrate MTAC as a powerful tool to resolve fine-scale long-distance chromosomal interactions and provide insights into the 3D genome organization.


Sujet(s)
Chromosomes de champignon , Méthylation de l'ADN , Nucléosomes , Protéines de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Nucléosomes/métabolisme , Nucléosomes/génétique , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , Chromosomes de champignon/génétique , Protéines de Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/métabolisme , Cartographie chromosomique/méthodes , Protéines de liaison à l'ADN/métabolisme , Protéines de liaison à l'ADN/génétique , Adenosine triphosphatases/métabolisme , Adenosine triphosphatases/génétique , Génome fongique , Régions promotrices (génétique)/génétique , Complexes multiprotéiques/métabolisme , Complexes multiprotéiques/génétique , Pore nucléaire/métabolisme , Pore nucléaire/génétique , Methyltransferases/métabolisme , Methyltransferases/génétique
9.
Nat Genet ; 56(6): 1213-1224, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38802567

RÉSUMÉ

During mitosis, condensin activity is thought to interfere with interphase chromatin structures. To investigate genome folding principles in the absence of chromatin loop extrusion, we codepleted condensin I and condensin II, which triggered mitotic chromosome compartmentalization in ways similar to that in interphase. However, two distinct euchromatic compartments, indistinguishable in interphase, emerged upon condensin loss with different interaction preferences and dependencies on H3K27ac. Constitutive heterochromatin gradually self-aggregated and cocompartmentalized with facultative heterochromatin, contrasting with their separation during interphase. Notably, some cis-regulatory element contacts became apparent even in the absence of CTCF/cohesin-mediated structures. Heterochromatin protein 1 (HP1) proteins, which are thought to partition constitutive heterochromatin, were absent from mitotic chromosomes, suggesting, surprisingly, that constitutive heterochromatin can self-aggregate without HP1. Indeed, in cells traversing from M to G1 phase in the combined absence of HP1α, HP1ß and HP1γ, constitutive heterochromatin compartments are normally re-established. In sum, condensin-deficient mitotic chromosomes illuminate forces of genome compartmentalization not identified in interphase cells.


Sujet(s)
Adenosine triphosphatases , Protéines chromosomiques nonhistones , Protéines de liaison à l'ADN , Hétérochromatine , Mitose , Complexes multiprotéiques , Adenosine triphosphatases/génétique , Adenosine triphosphatases/métabolisme , Complexes multiprotéiques/génétique , Complexes multiprotéiques/métabolisme , Protéines de liaison à l'ADN/métabolisme , Protéines de liaison à l'ADN/génétique , Mitose/génétique , Humains , Protéines chromosomiques nonhistones/métabolisme , Protéines chromosomiques nonhistones/génétique , Hétérochromatine/métabolisme , Hétérochromatine/génétique , Interphase/génétique , Chromosomes/génétique , Homologue-5 de la protéine chromobox , Chromatine/métabolisme , Chromatine/génétique
10.
Mol Cell ; 84(11): 2166-2184.e9, 2024 Jun 06.
Article de Anglais | MEDLINE | ID: mdl-38788716

RÉSUMÉ

Mammalian target of rapamycin (mTOR) senses changes in nutrient status and stimulates the autophagic process to recycle amino acids. However, the impact of nutrient stress on protein degradation beyond autophagic turnover is incompletely understood. We report that several metabolic enzymes are proteasomal targets regulated by mTOR activity based on comparative proteome degradation analysis. In particular, 3-hydroxy-3-methylglutaryl (HMG)-coenzyme A (CoA) synthase 1 (HMGCS1), the initial enzyme in the mevalonate pathway, exhibits the most significant half-life adaptation. Degradation of HMGCS1 is regulated by the C-terminal to LisH (CTLH) E3 ligase through the Pro/N-degron motif. HMGCS1 is ubiquitylated on two C-terminal lysines during mTORC1 inhibition, and efficient degradation of HMGCS1 in cells requires a muskelin adaptor. Importantly, modulating HMGCS1 abundance has a dose-dependent impact on cell proliferation, which is restored by adding a mevalonate intermediate. Overall, our unbiased degradomics study provides new insights into mTORC1 function in cellular metabolism: mTORC1 regulates the stability of limiting metabolic enzymes through the ubiquitin system.


Sujet(s)
Prolifération cellulaire , Hydroxymethylglutaryl-coA synthase , Complexe-1 cible mécanistique de la rapamycine , Protéolyse , Ubiquitin-protein ligases , Ubiquitination , Complexe-1 cible mécanistique de la rapamycine/métabolisme , Complexe-1 cible mécanistique de la rapamycine/génétique , Humains , Ubiquitin-protein ligases/métabolisme , Ubiquitin-protein ligases/génétique , Cellules HEK293 , Hydroxymethylglutaryl-coA synthase/métabolisme , Hydroxymethylglutaryl-coA synthase/génétique , Proteasome endopeptidase complex/métabolisme , Proteasome endopeptidase complex/génétique , Sérine-thréonine kinases TOR/métabolisme , Sérine-thréonine kinases TOR/génétique , Acide mévalonique/métabolisme , Complexes multiprotéiques/métabolisme , Complexes multiprotéiques/génétique , Transduction du signal , , Protéines adaptatrices de la transduction du signal
11.
J Chem Inf Model ; 64(8): 3465-3476, 2024 Apr 22.
Article de Anglais | MEDLINE | ID: mdl-38602938

RÉSUMÉ

Many biological functions are mediated by large complexes formed by multiple proteins and other cellular macromolecules. Recent progress in experimental structure determination, as well as in integrative modeling and protein structure prediction using deep learning approaches, has resulted in a rapid increase in the number of solved multiprotein assemblies. However, the assembly process of large complexes from their components is much less well-studied. We introduce a rapid computational structure-based (SB) model, GoCa, that allows to follow the assembly process of large multiprotein complexes based on a known native structure. Beyond existing SB Go̅-type models, it distinguishes between intra- and intersubunit interactions, allowing us to include coupled folding and binding. It accounts automatically for the permutation of identical subunits in a complex and allows the definition of multiple minima (native) structures in the case of proteins that undergo global transitions during assembly. The model is successfully tested on several multiprotein complexes. The source code of the GoCa program including a tutorial is publicly available on Github: https://github.com/ZachariasLab/GoCa. We also provide a web source that allows users to quickly generate the necessary input files for a GoCa simulation: https://goca.t38webservices.nat.tum.de.


Sujet(s)
Conformation des protéines , Protéines , Protéines/composition chimique , Protéines/métabolisme , Sites de fixation , Modèles moléculaires , Logiciel , Complexes multiprotéiques/composition chimique , Complexes multiprotéiques/métabolisme
12.
Bioessays ; 46(6): e2300243, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38593284

RÉSUMÉ

The autophagy initiation complex is brought about via a highly ordered and stepwise assembly process. Two crucial signaling molecules, mTORC1 and AMPK, orchestrate this assembly by phosphorylating/dephosphorylating autophagy-related proteins. Activation of Atg1 followed by recruitment of both Atg9 vesicles and the PI3K complex I to the PAS (phagophore assembly site) are particularly crucial steps in its formation. Ypt1, a small Rab GTPase in yeast cells, also plays an essential role in the formation of the autophagy initiation complex through multiple regulatory pathways. In this review, our primary focus is to discuss how signaling molecules initiate the assembly of the autophagy initiation complex, and highlight the significant roles of Ypt1 in this process. We end by addressing issues that need future clarification.


Sujet(s)
Protéines associées à l'autophagie , Autophagie , Complexe-1 cible mécanistique de la rapamycine , Protéines de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Transduction du signal , Protéines G rab , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/génétique , Protéines associées à l'autophagie/métabolisme , Protéines associées à l'autophagie/génétique , Protéines G rab/métabolisme , Complexe-1 cible mécanistique de la rapamycine/métabolisme , Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/génétique , Humains , Animaux , AMP-Activated Protein Kinases/métabolisme , Phosphatidylinositol 3-kinases/métabolisme , Complexes multiprotéiques/métabolisme
13.
mBio ; 15(5): e0285023, 2024 May 08.
Article de Anglais | MEDLINE | ID: mdl-38564676

RÉSUMÉ

Condensin I is a pentameric complex that regulates the mitotic chromosome assembly in eukaryotes. The kleisin subunit CAP-H of the condensin I complex acts as a linchpin to maintain the structural integrity and loading of this complex on mitotic chromosomes. This complex is present in all eukaryotes and has recently been identified in Plasmodium spp. However, how this complex is assembled and whether the kleisin subunit is critical for this complex in these parasites are yet to be explored. To examine the role of PfCAP-H during cell division within erythrocytes, we generated an inducible PfCAP-H knockout parasite. We find that PfCAP-H is dynamically expressed during mitosis with the peak expression at the metaphase plate. PfCAP-H interacts with PfCAP-G and is a non-SMC member of the condensin I complex. Notably, the absence of PfCAP-H does not alter the expression of PfCAP-G but affects its localization at the mitotic chromosomes. While mitotic spindle assembly is intact in PfCAP-H-deficient parasites, duplicated centrosomes remain clustered over the mass of unsegmented nuclei with failed karyokinesis. This failure leads to the formation of an abnormal nuclear mass, while cytokinesis occurs normally. Altogether, our data suggest that PfCAP-H plays a crucial role in maintaining the structural integrity of the condensin I complex on the mitotic chromosomes and is essential for the asexual development of malarial parasites. IMPORTANCE: Mitosis is a fundamental process for Plasmodium parasites, which plays a vital role in their survival within two distinct hosts-human and Anopheles mosquitoes. Despite its great significance, our comprehension of mitosis and its regulation remains limited. In eukaryotes, mitosis is regulated by one of the pivotal complexes known as condensin complexes. The condensin complexes are responsible for chromosome condensation, ensuring the faithful distribution of genetic material to daughter cells. While condensin complexes have recently been identified in Plasmodium spp., our understanding of how this complex is assembled and its precise functions during the blood stage development of Plasmodium falciparum remains largely unexplored. In this study, we investigate the role of a central protein, PfCAP-H, during the blood stage development of P. falciparum. Our findings reveal that PfCAP-H is essential and plays a pivotal role in upholding the structure of condensin I and facilitating karyokinesis.


Sujet(s)
Adenosine triphosphatases , Division du noyau cellulaire , Protéines de liaison à l'ADN , Mitose , Plasmodium falciparum , Humains , Adenosine triphosphatases/métabolisme , Adenosine triphosphatases/génétique , Protéines de liaison à l'ADN/métabolisme , Protéines de liaison à l'ADN/génétique , Érythrocytes/parasitologie , Techniques de knock-out de gènes , Complexes multiprotéiques/métabolisme , Complexes multiprotéiques/génétique , Plasmodium falciparum/génétique , Plasmodium falciparum/métabolisme , Plasmodium falciparum/physiologie , Plasmodium falciparum/croissance et développement , Protéines de protozoaire/métabolisme , Protéines de protozoaire/génétique , Division du noyau cellulaire/génétique
14.
Nature ; 629(8012): 697-703, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38658755

RÉSUMÉ

RAD52 is important for the repair of DNA double-stranded breaks1,2, mitotic DNA synthesis3-5 and alternative telomere length maintenance6,7. Central to these functions, RAD52 promotes the annealing of complementary single-stranded DNA (ssDNA)8,9 and provides an alternative to BRCA2/RAD51-dependent homologous recombination repair10. Inactivation of RAD52 in homologous-recombination-deficient BRCA1- or BRCA2-defective cells is synthetically lethal11,12, and aberrant expression of RAD52 is associated with poor cancer prognosis13,14. As a consequence, RAD52 is an attractive therapeutic target against homologous-recombination-deficient breast, ovarian and prostate cancers15-17. Here we describe the structure of RAD52 and define the mechanism of annealing. As reported previously18-20, RAD52 forms undecameric (11-subunit) ring structures, but these rings do not represent the active form of the enzyme. Instead, cryo-electron microscopy and biochemical analyses revealed that ssDNA annealing is driven by RAD52 open rings in association with replication protein-A (RPA). Atomic models of the RAD52-ssDNA complex show that ssDNA sits in a positively charged channel around the ring. Annealing is driven by the RAD52 N-terminal domains, whereas the C-terminal regions modulate the open-ring conformation and RPA interaction. RPA associates with RAD52 at the site of ring opening with critical interactions occurring between the RPA-interacting domain of RAD52 and the winged helix domain of RPA2. Our studies provide structural snapshots throughout the annealing process and define the molecular mechanism of ssDNA annealing by the RAD52-RPA complex.


Sujet(s)
Cryomicroscopie électronique , ADN simple brin , Complexes multiprotéiques , Protéine Rad52 de réparation-recombinaison de l'ADN , Protéine A de réplication , Humains , ADN simple brin/composition chimique , ADN simple brin/métabolisme , ADN simple brin/ultrastructure , Modèles moléculaires , Liaison aux protéines , Protéine Rad52 de réparation-recombinaison de l'ADN/composition chimique , Protéine Rad52 de réparation-recombinaison de l'ADN/métabolisme , Protéine Rad52 de réparation-recombinaison de l'ADN/ultrastructure , Protéine A de réplication/composition chimique , Protéine A de réplication/métabolisme , Protéine A de réplication/ultrastructure , Complexes multiprotéiques/composition chimique , Complexes multiprotéiques/métabolisme , Complexes multiprotéiques/ultrastructure , Domaines protéiques , Sites de fixation
16.
STAR Protoc ; 5(2): 102995, 2024 Jun 21.
Article de Anglais | MEDLINE | ID: mdl-38578833

RÉSUMÉ

To understand the transition from interphase chromatin into well-shaped chromosomes during cell divisions, we need to understand the biochemical activities of the contributing proteins. Here, we present a protocol to investigate how the ring-shaped condensin complex sequentially and topologically entraps two DNA substrates. We describe the steps to prepare purified Schizosaccharomyces pombe condensin, as well as bulk biochemical assays to monitor the first and second DNA capture reactions. This protocol may facilitate further investigations of these essential genome organizers. For complete details on the use and execution of this protocol, please refer to Tang et al.1.


Sujet(s)
Adenosine triphosphatases , Protéines de liaison à l'ADN , Complexes multiprotéiques , Schizosaccharomyces , Schizosaccharomyces/métabolisme , Complexes multiprotéiques/métabolisme , Complexes multiprotéiques/composition chimique , Protéines de liaison à l'ADN/métabolisme , Adenosine triphosphatases/métabolisme , ADN fongique/métabolisme , ADN fongique/génétique , Protéines de Schizosaccharomyces pombe/métabolisme
17.
Toxicology ; 504: 153795, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38574842

RÉSUMÉ

The mechanistic target of rapamycin (RAPA) complex 1 (mTORC1) - transcription factor EB (TFEB) pathway plays a crucial role in response to nutritional status, energy and environmental stress for maintaining cellular homeostasis. But there is few reports on its role in the toxic effects of arsenic exposure and the related mechanisms. Here, we show that the exposure of bronchial epithelial cells (BEAS-2B) to sodium arsenite promoted the activation of mTORC1 (p-mTORC1) and the inactivation of TFEB (p-TFEB), the number and activity of lysosomes decreased, the content of reduced glutathione (GSH) and superoxide dismutase (SOD) decreased, the content of malondialdehyde (MDA) increased, the DNA and chromosome damage elevated. Further, when mTORC1 was inhibited with RAPA, p-mTORC1 and p-TFEB down-regulated, GSH and SOD increased, MDA decreased, the DNA and chromosome damage reduced significantly, as compared with the control group. Our data revealed for the first time that mTORC1 - TFEB pathway was involved in sodium arsenite induced lysosomal alteration, oxidative stress and genetic damage in BEAS-2B cells, and it may be a potential intervention target for the toxic effects of arsenic.


Sujet(s)
Arsénites , Facteurs de transcription à motifs basiques hélice-boucle-hélice et à glissière à leucines , Altération de l'ADN , Lysosomes , Complexe-1 cible mécanistique de la rapamycine , Stress oxydatif , Composés du sodium , Arsénites/toxicité , Composés du sodium/toxicité , Stress oxydatif/effets des médicaments et des substances chimiques , Facteurs de transcription à motifs basiques hélice-boucle-hélice et à glissière à leucines/métabolisme , Facteurs de transcription à motifs basiques hélice-boucle-hélice et à glissière à leucines/génétique , Lysosomes/effets des médicaments et des substances chimiques , Lysosomes/métabolisme , Humains , Complexe-1 cible mécanistique de la rapamycine/métabolisme , Lignée cellulaire , Altération de l'ADN/effets des médicaments et des substances chimiques , Sérine-thréonine kinases TOR/métabolisme , Cellules épithéliales/effets des médicaments et des substances chimiques , Cellules épithéliales/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques , Bronches/effets des médicaments et des substances chimiques , Bronches/métabolisme , Bronches/cytologie , Bronches/anatomopathologie , Glutathion/métabolisme , Superoxide dismutase/métabolisme , Complexes multiprotéiques/métabolisme , Malonaldéhyde/métabolisme
18.
Sheng Li Xue Bao ; 76(2): 224-232, 2024 Apr 25.
Article de Chinois | MEDLINE | ID: mdl-38658372

RÉSUMÉ

The present study aims to investigate the production of ketone body in the liver of mice after 6 weeks of high-intensity interval training (HIIT) intervention and explore the possible mechanisms. Male C57BL/6J mice (7-week-old) were randomly divided into control and HIIT groups. The control group did not engage in exercise, while the HIIT group underwent a 6-week HIIT (10° slope treadmill exercise). Changes in weight and body composition were recorded, and blood ketone body levels were measured before, immediately after, and 1 h after each HIIT exercise. After 6-week HIIT, the levels of free fatty acids in the liver and serum were detected using reagent kits, and expression levels of regulatory factors and key enzymes of ketone body production in the mouse liver were detected by Western blot and qPCR. The results showed that, the blood ketone body levels in the HIIT group significantly increased immediately after a single HIIT and 1 h after HIIT, compared with that before HIIT. The body weight of the control group gradually increased within 6 weeks, while the HIIT group mice did not show significant weight gain. After 6-week HIIT, compared with the control group, the HIIT group showed decreased body fat ratio, increased lean body weight ratio, and increased free fatty acid levels in liver and serum. Liver carnitine palmitoyl transferase-I (CPT-I), peroxisome proliferator activated receptor α (PPARα), and fibroblast growth factor 21 (FGF21) protein expression levels were up-regulated, whereas mammalian target of rapamycin complex 1 (mTORC1) protein expression level was significantly down-regulated in the HIIT group, compared with those in the control group. These results suggest that HIIT induces hepatic ketone body production through altering mTORC1, PPARα and FGF21 expression in mice.


Sujet(s)
Facteurs de croissance fibroblastique , Entrainement fractionné de haute intensité , Corps cétoniques , Foie , Complexe-1 cible mécanistique de la rapamycine , Souris de lignée C57BL , Récepteur PPAR alpha , Conditionnement physique d'animal , Animaux , Facteurs de croissance fibroblastique/métabolisme , Facteurs de croissance fibroblastique/sang , Mâle , Souris , Récepteur PPAR alpha/métabolisme , Corps cétoniques/métabolisme , Entrainement fractionné de haute intensité/méthodes , Complexe-1 cible mécanistique de la rapamycine/métabolisme , Foie/métabolisme , Conditionnement physique d'animal/physiologie , Sérine-thréonine kinases TOR/métabolisme , Complexes multiprotéiques/métabolisme
19.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article de Anglais | MEDLINE | ID: mdl-38673778

RÉSUMÉ

Pre-mRNA splicing plays a key role in the regulation of gene expression. Recent discoveries suggest that defects in pre-mRNA splicing, resulting from the dysfunction of certain splicing factors, can impact the expression of genes crucial for genome surveillance mechanisms, including those involved in cellular response to DNA damage. In this study, we analyzed how cells with a non-functional spliceosome-associated Gpl1-Gih35-Wdr83 complex respond to DNA damage. Additionally, we investigated the role of this complex in regulating the splicing of factors involved in DNA damage repair. Our findings reveal that the deletion of any component within the Gpl1-Gih35-Wdr83 complex leads to a significant accumulation of unspliced pre-mRNAs of DNA repair factors. Consequently, mutant cells lacking this complex exhibit increased sensitivity to DNA-damaging agents. These results highlight the importance of the Gpl1-Gih35-Wdr83 complex in regulating the expression of DNA repair factors, thereby protecting the stability of the genome following DNA damage.


Sujet(s)
Altération de l'ADN , Réparation de l'ADN , Facteurs d'épissage des ARN , Épissage des ARN , Altération de l'ADN/génétique , Réparation de l'ADN/génétique , Régulation de l'expression des gènes fongiques , Précurseurs des ARN/génétique , Précurseurs des ARN/métabolisme , Facteurs d'épissage des ARN/métabolisme , Facteurs d'épissage des ARN/génétique , Schizosaccharomyces/génétique , Schizosaccharomyces/métabolisme , Protéines de Schizosaccharomyces pombe/génétique , Protéines de Schizosaccharomyces pombe/métabolisme , Splicéosomes/métabolisme , Splicéosomes/génétique , Complexes multiprotéiques/génétique , Complexes multiprotéiques/métabolisme
20.
Nat Commun ; 15(1): 2517, 2024 Mar 21.
Article de Anglais | MEDLINE | ID: mdl-38514639

RÉSUMÉ

Animals sense and respond to nutrient availability in their environments, a task coordinated in part by the mTOR complex 1 (mTORC1) pathway. mTORC1 regulates growth in response to nutrients and, in mammals, senses specific amino acids through specialized sensors that bind the GATOR1/2 signaling hub. Given that animals can occupy diverse niches, we hypothesized that the pathway might evolve distinct sensors in different metazoan phyla. Whether such customization occurs, and how the mTORC1 pathway might capture new inputs, is unknown. Here, we identify the Drosophila melanogaster protein Unmet expectations (CG11596) as a species-restricted methionine sensor that directly binds the fly GATOR2 complex in a fashion antagonized by S-adenosylmethionine (SAM). We find that in Dipterans GATOR2 rapidly evolved the capacity to bind Unmet and to thereby repurpose a previously independent methyltransferase as a SAM sensor. Thus, the modular architecture of the mTORC1 pathway allows it to co-opt preexisting enzymes to expand its nutrient sensing capabilities, revealing a mechanism for conferring evolvability on an otherwise conserved system.


Sujet(s)
Drosophila melanogaster , Sérine-thréonine kinases TOR , Animaux , Sérine-thréonine kinases TOR/métabolisme , Drosophila melanogaster/métabolisme , Complexes multiprotéiques/métabolisme , Complexe-1 cible mécanistique de la rapamycine/métabolisme , Adémétionine , Nutriments , Mammifères/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...