Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 4.293
Filtrer
1.
Sci Rep ; 14(1): 15313, 2024 07 03.
Article de Anglais | MEDLINE | ID: mdl-38961125

RÉSUMÉ

Epileptogenesis is the process by which a normal brain becomes hyperexcitable and capable of generating spontaneous recurrent seizures. The extensive dysregulation of gene expression associated with epileptogenesis is shaped, in part, by microRNAs (miRNAs) - short, non-coding RNAs that negatively regulate protein levels. Functional miRNA-mediated regulation can, however, be difficult to elucidate due to the complexity of miRNA-mRNA interactions. Here, we integrated miRNA and mRNA expression profiles sampled over multiple time-points during and after epileptogenesis in rats, and applied bi-clustering and Bayesian modelling to construct temporal miRNA-mRNA-mRNA interaction networks. Network analysis and enrichment of network inference with sequence- and human disease-specific information identified key regulatory miRNAs with the strongest influence on the mRNA landscape, and miRNA-mRNA interactions closely associated with epileptogenesis and subsequent epilepsy. Our findings underscore the complexity of miRNA-mRNA regulation, can be used to prioritise miRNA targets in specific systems, and offer insights into key regulatory processes in epileptogenesis with therapeutic potential for further investigation.


Sujet(s)
Épilepsie , Analyse de profil d'expression de gènes , Réseaux de régulation génique , microARN , ARN messager , Crises épileptiques , Animaux , microARN/génétique , microARN/métabolisme , ARN messager/génétique , ARN messager/métabolisme , Rats , Crises épileptiques/génétique , Crises épileptiques/métabolisme , Épilepsie/génétique , Épilepsie/métabolisme , Mâle , Régulation de l'expression des gènes , Théorème de Bayes , Modèles animaux de maladie humaine , Transcriptome
2.
Nat Commun ; 15(1): 5609, 2024 Jul 04.
Article de Anglais | MEDLINE | ID: mdl-38965228

RÉSUMÉ

Epilepsy affects 1% of the general population and 30% of patients are resistant to antiepileptic drugs. Although optogenetics is an efficient antiepileptic strategy, the difficulty of illuminating deep brain areas poses translational challenges. Thus, the search of alternative light sources is strongly needed. Here, we develop pH-sensitive inhibitory luminopsin (pHIL), a closed-loop chemo-optogenetic nanomachine composed of a luciferase-based light generator, a fluorescent sensor of intracellular pH (E2GFP), and an optogenetic actuator (halorhodopsin) for silencing neuronal activity. Stimulated by coelenterazine, pHIL experiences bioluminescence resonance energy transfer between luciferase and E2GFP which, under conditions of acidic pH, activates halorhodopsin. In primary neurons, pHIL senses the intracellular pH drop associated with hyperactivity and optogenetically aborts paroxysmal activity elicited by the administration of convulsants. The expression of pHIL in hippocampal pyramidal neurons is effective in decreasing duration and increasing latency of pilocarpine-induced tonic-clonic seizures upon in vivo coelenterazine administration, without affecting higher brain functions. The same treatment is effective in markedly decreasing seizure manifestations in a murine model of genetic epilepsy. The results indicate that pHIL represents a potentially promising closed-loop chemo-optogenetic strategy to treat drug-refractory epilepsy.


Sujet(s)
Épilepsie , Neurones , Optogénétique , Animaux , Concentration en ions d'hydrogène , Souris , Neurones/métabolisme , Neurones/effets des médicaments et des substances chimiques , Épilepsie/physiopathologie , Épilepsie/métabolisme , Épilepsie/traitement médicamenteux , Humains , Crises épileptiques/traitement médicamenteux , Crises épileptiques/physiopathologie , Crises épileptiques/métabolisme , Halorhodopsines/métabolisme , Halorhodopsines/génétique , Hippocampe/métabolisme , Hippocampe/effets des médicaments et des substances chimiques , Mâle , Luciferases/métabolisme , Luciferases/génétique , Cellules pyramidales/métabolisme , Cellules pyramidales/effets des médicaments et des substances chimiques , Imidazoles/pharmacologie , Pilocarpine/pharmacologie , Modèles animaux de maladie humaine , Souris de lignée C57BL , Cellules HEK293 , Pyrazines
3.
Sci Rep ; 14(1): 14543, 2024 06 24.
Article de Anglais | MEDLINE | ID: mdl-38914629

RÉSUMÉ

Epidural spinal cord stimulation (SCS) is indicated for the treatment of intractable pain and is widely used in clinical practice. In previous basic research, the therapeutic effects of SCS have been demonstrated for epileptic seizure. However, the mechanism has not yet been elucidated. In this study, we investigated the therapeutic effect of SCS and the influence of epileptic seizure. First, SCS in the cervical spine was performed. The rats were divided into four groups: control group and treatment groups with SCS conducted at 2, 50, and 300 Hz frequency. Two days later, convulsions were induced by the intraperitoneal administration of kainic acid, followed by video monitoring to assess seizures. We also evaluated glial cells in the hippocampus by fluorescent immunostaining, electroencephalogram measurements, and inflammatory cytokines such as C-C motif chemokine ligand 2 (CCL2) by quantitative real-time polymerase chain reaction. Seizure frequency and the number of glial cells were significantly lower in the 300 Hz group than in the control group. SCS at 300 Hz decreased gene expression level of CCL2, which induces monocyte migration. SCS has anti-seizure effects by inhibiting CCL2-mediated cascades. The suppression of CCL2 and glial cells may be associated with the suppression of epileptic seizure.


Sujet(s)
Chimiokine CCL2 , Modèles animaux de maladie humaine , Épilepsie , Crises épileptiques , Stimulation de la moelle épinière , Animaux , Chimiokine CCL2/métabolisme , Chimiokine CCL2/génétique , Rats , Stimulation de la moelle épinière/méthodes , Mâle , Crises épileptiques/thérapie , Crises épileptiques/métabolisme , Épilepsie/thérapie , Épilepsie/métabolisme , Acide kaïnique , Hippocampe/métabolisme , Névroglie/métabolisme , Rat Sprague-Dawley , Électroencéphalographie
4.
Redox Biol ; 74: 103236, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38875958

RÉSUMÉ

The pathogenesis of epilepsy remains unclear; however, a prevailing hypothesis suggests that the primary underlying cause is an imbalance between neuronal excitability and inhibition. Glucose-6-phosphate dehydrogenase (G6PD) is a key enzyme in the pentose phosphate pathway, which is primarily involved in deoxynucleic acid synthesis and antioxidant defense mechanisms and exhibits increased expression during the chronic phase of epilepsy, predominantly colocalizing with neurons. G6PD overexpression significantly reduces the frequency and duration of spontaneous recurrent seizures. Furthermore, G6PD overexpression enhances signal transducer and activator of transcription 1 (STAT1) expression, thus influencing N-methyl-d-aspartic acid receptors expression, and subsequently affecting seizure activity. Importantly, the regulation of STAT1 by G6PD appears to be mediated primarily through reactive oxygen species signaling pathways. Collectively, our findings highlight the pivotal role of G6PD in modulating epileptogenesis, and suggest its potential as a therapeutic target for epilepsy.


Sujet(s)
Glucose 6-phosphate dehydrogenase , Espèces réactives de l'oxygène , Récepteurs du N-méthyl-D-aspartate , Facteur de transcription STAT-1 , Crises épileptiques , Glucose 6-phosphate dehydrogenase/métabolisme , Glucose 6-phosphate dehydrogenase/antagonistes et inhibiteurs , Glucose 6-phosphate dehydrogenase/génétique , Espèces réactives de l'oxygène/métabolisme , Animaux , Récepteurs du N-méthyl-D-aspartate/métabolisme , Récepteurs du N-méthyl-D-aspartate/génétique , Crises épileptiques/métabolisme , Crises épileptiques/traitement médicamenteux , Facteur de transcription STAT-1/métabolisme , Épilepsie/métabolisme , Épilepsie/traitement médicamenteux , Épilepsie/génétique , Transduction du signal/effets des médicaments et des substances chimiques , Souris , Humains , Neurones/métabolisme , Mâle , Rats , Modèles animaux de maladie humaine
5.
Sci Rep ; 14(1): 14239, 2024 06 20.
Article de Anglais | MEDLINE | ID: mdl-38902338

RÉSUMÉ

Glutamatergic neurotransmission and oxidative stress are involved in the pathophysiology of seizures. Some anticonvulsants exert their effects through modulation of these pathways. Trigonelline (TRG) has been shown to possess various pharmacological effects like neuroprotection. Therefore, this study was performed to determine TRG's anticonvulsant effects, focusing on its potential effects on N-methyl-D-aspartate (NMDA) receptors, a type of glutamate receptor, and oxidative stress state in the prefrontal cortex (PFC) in PTZ-induced seizure in mice. Seventy-two male mice were randomly divided into nine groups. The groups included mice that received normal saline, TRG at doses of 10, 50, and 100 mg/kg, diazepam, NMDA (an agonist), ketamine (an antagonist), the effective dose of TRG with NMDA, as well as sub-effective dose of TRG with ketamine, respectively. All agents were administrated intraperitoneally 60 min before induction of seizures by PTZ. Latency to seizure, total antioxidant capacity (TAC), and malondialdehyde (MDA) levels in serum and PFC were measured. Furthermore, the gene expression of NR2A and NR2B, subunits of NMDA receptors, was measured in the PFC. TRG administration increased the latency to seizure onset and enhanced TAC while reducing MDA levels in both the PFC and serum. TRG also decreased the gene expression of NR2B in the PFC. Unexpectedly, the findings revealed that the concurrent administration of ketamine amplified, whereas NMDA mitigated, the impact of TRG on latency to seizure. Furthermore, NMDA diminished the positive effects of TRG on antioxidant capacity and oxidative stress, while ketamine amplified these beneficial effects, indicating a complex interaction between TRG and NMDA receptor modulation. In the gene expression of NMDA receptors, results showed that ketamine significantly decreased the gene expression of NR2B when co-administrated with a sub-effective dose of TRG. It was found that, at least partially, the anticonvulsant effect of TRG in PTZ-induced seizures in male mice was mediated by the attenuation of glutamatergic neurotransmission as well as the reduction of oxidative stress.


Sujet(s)
Alcaloïdes , Anticonvulsivants , Stress oxydatif , Récepteurs du N-méthyl-D-aspartate , Crises épileptiques , Animaux , Récepteurs du N-méthyl-D-aspartate/métabolisme , Stress oxydatif/effets des médicaments et des substances chimiques , Anticonvulsivants/pharmacologie , Souris , Mâle , Alcaloïdes/pharmacologie , Crises épileptiques/traitement médicamenteux , Crises épileptiques/métabolisme , Crises épileptiques/induit chimiquement , Cortex préfrontal/métabolisme , Cortex préfrontal/effets des médicaments et des substances chimiques , Malonaldéhyde/métabolisme , Kétamine/pharmacologie , Pentétrazol/toxicité , Antioxydants/pharmacologie
6.
J Biochem Mol Toxicol ; 38(7): e23755, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38923727

RÉSUMÉ

Inflammatory bowel disease (IBD) is a chronic gastrointestinal disorder. Oxidative stress and inflammatory responses have a vital role in the pathophysiology of IBD as well as seizure. IBD is associated with extraintestinal manifestations. This study aimed to explore the relationship between colitis and susceptibility to seizures, with a focus on the roles of neuroinflammation and oxidative stress in acetic acid-induced colitis in mice. Forty male Naval Medical Research Institute mice were divided into four groups: control, colitis, pentylenetetrazole (PTZ), and colitis + PTZ. Colitis was induced by intrarectal administration of acetic acid, and seizures were induced by intravenous injection of PTZ 7 days postcolitis induction. Following the measurement of latency to seizure, the mice were killed, and their colons and prefrontal cortex (PFC) were dissected. Gene expression of inflammatory markers including interleukin-1ß, tumor necrosis factor-alpha, NOD-like receptor protein 3, and toll-like receptor 4, as well as total antioxidant capacity (TAC), malondialdehyde (MDA), and nitrite levels were measured in the colon and PFC. Histopathological evaluations were performed on the colon samples. Data were analyzed by t-test or one-way variance analysis. Colitis decreased latency to seizure, increased gene expression of inflammatory markers, and altered levels of MDA, nitrite, and TAC in both the colon and PFC. Simultaneous induction of colitis and seizure exacerbated the neuroimmune response and oxidative stress in the PFC and colon. Results concluded that neuroinflammation and oxidative stress in the PFC at least partially mediate the comorbid decrease in seizure latency in mice with colitis.


Sujet(s)
Colite , Stress oxydatif , Cortex préfrontal , Crises épileptiques , Animaux , Mâle , Souris , Cortex préfrontal/métabolisme , Cortex préfrontal/anatomopathologie , Crises épileptiques/métabolisme , Crises épileptiques/induit chimiquement , Colite/induit chimiquement , Colite/métabolisme , Colite/anatomopathologie , Neuro-immunomodulation , Modèles animaux de maladie humaine
7.
Int J Mol Sci ; 25(11)2024 Jun 06.
Article de Anglais | MEDLINE | ID: mdl-38892448

RÉSUMÉ

Canonical transient receptor potential channel 3 (TRPC3) is the most abundant TRPC channel in the brain and is highly expressed in all subfields of the hippocampus. Previous studies have suggested that TRPC3 channels may be involved in the hyperexcitability of hippocampal pyramidal neurons and seizures. Genetic ablation of TRPC3 channel expression reduced the intensity of pilocarpine-induced status epilepticus (SE). However, the underlying cellular mechanisms remain unexplored and the contribution of TRPC3 channels to SE-induced neurodegeneration is not determined. In this study, we investigated the contribution of TRPC3 channels to the electrophysiological properties of hippocampal pyramidal neurons and hippocampal synaptic plasticity, and the contribution of TRPC3 channels to seizure-induced neuronal cell death. We found that genetic ablation of TRPC3 expression did not alter basic electrophysiological properties of hippocampal pyramidal neurons and had a complex impact on epileptiform bursting in CA3. However, TRPC3 channels contribute significantly to long-term potentiation in CA1 and SE-induced neurodegeneration. Our results provided further support for therapeutic potential of TRPC3 inhibitors and raised new questions that need to be answered by future studies.


Sujet(s)
Mort cellulaire , Hippocampe , Cellules pyramidales , Crises épileptiques , Canaux cationiques TRPC , Animaux , Canaux cationiques TRPC/métabolisme , Canaux cationiques TRPC/génétique , Souris , Cellules pyramidales/métabolisme , Cellules pyramidales/anatomopathologie , Hippocampe/métabolisme , Hippocampe/anatomopathologie , Crises épileptiques/métabolisme , Crises épileptiques/anatomopathologie , État de mal épileptique/métabolisme , État de mal épileptique/anatomopathologie , État de mal épileptique/induit chimiquement , Mâle , Neurones/métabolisme , Pilocarpine , Potentialisation à long terme , Souris knockout , Souris de lignée C57BL , Plasticité neuronale
8.
Neuroreport ; 35(10): 612-620, 2024 07 01.
Article de Anglais | MEDLINE | ID: mdl-38813900

RÉSUMÉ

Epilepsy is a common neurologic disorder. While a good clinical solution is still missing, studies have confirmed that exosomes (Exos) derived from adipose-derived stem cells (ADSCs) had a therapeutic effect on various diseases, including neurological diseases. Therefore, this study aimed to reveal whether ADSC-Exo treatment could improve kainic acid (KA)-induced seizures in epileptic mice. ADSCs and Exos were isolated. Mice were generated with KA-induced epileptic seizures. ELISA was used to detect inflammatory factor expression. Luciferase reporter analysis detection showed a relationship among miR-23b-3p, STAT1, and glyoxylate reductase 1 (GlyR1). ADSC-Exos had a protective effect on KA-induced seizures by inhibiting inflammatory factor expression and the M1 microglia phenotype. The result showed that miR-23b-3p played an important role in the Exo-mediated protective effect in KA-induced seizures in epileptic mice by regulating STAT1 and GlyR1. Luciferase reporter analysis confirmed that miR-23b-3p interacted with the 3'-UTR of STAT1 and GlyR1. The miR-23b-3p inhibited M1 microglia-mediated inflammatory factor expression in microglial cells by regulating STAT1 and GlyR1. The downregulation of miR-23b-3p decreased the protective effect of ADSC-Exos on KA-induced seizures in epileptic mice. The miR-23b-3p from ADSC-Exos alleviated inflammation in mice with KA-induced epileptic seizures.


Sujet(s)
Exosomes , Inflammation , Acide kaïnique , microARN , Crises épileptiques , Animaux , Acide kaïnique/toxicité , microARN/métabolisme , microARN/génétique , Exosomes/métabolisme , Souris , Inflammation/métabolisme , Crises épileptiques/induit chimiquement , Crises épileptiques/métabolisme , Mâle , Microglie/métabolisme , Épilepsie/induit chimiquement , Épilepsie/métabolisme , Épilepsie/thérapie , Facteur de transcription STAT-1/métabolisme , Tissu adipeux/métabolisme , Souris de lignée C57BL
9.
Brain Res ; 1838: 148994, 2024 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-38729331

RÉSUMÉ

PTZ kindling induces oxidative stress, neuronal cell degeneration, and neurobehavioral alterations in rodents that mimic neuropsychiatric comorbidities of epilepsy, which could be initiated or aggravated by some antiepileptic drugs. Here, we investigated the effects of the methanol extract of Ficus platyphylla (FP) on severity scores for seizures, neuronal cell degeneration, and neurobehavioral alterations in rats kindled with pentylenetetrazole (PTZ) and probed the involvement of oxidative stress in these ameliorative effects of FP. FP (50 and 100 mg/kg, p.o.) ameliorated seizure severity, neuronal cell degeneration, depressive behaviors, cognitive dysfunctions, and oxidative stress in rats kindled with PTZ (42.5 mg/kg, i.p.). The findings from this study give additional insights into the potential values of FP in the treatment of persistent epilepsy and major neuropsychiatric comorbidities via modulation of oxidative stress.


Sujet(s)
Anticonvulsivants , Ficus , Embrasement , Stress oxydatif , Pentétrazol , Extraits de plantes , Crises épileptiques , Animaux , Stress oxydatif/effets des médicaments et des substances chimiques , Extraits de plantes/pharmacologie , Extraits de plantes/usage thérapeutique , Embrasement/effets des médicaments et des substances chimiques , Mâle , Crises épileptiques/traitement médicamenteux , Crises épileptiques/métabolisme , Crises épileptiques/induit chimiquement , Rats , Anticonvulsivants/pharmacologie , Rat Wistar , Modèles animaux de maladie humaine , Comportement animal/effets des médicaments et des substances chimiques , Épilepsie/traitement médicamenteux , Épilepsie/induit chimiquement
10.
Biomolecules ; 14(5)2024 May 16.
Article de Anglais | MEDLINE | ID: mdl-38785996

RÉSUMÉ

Excitotoxicity is a common pathological process in neurological diseases caused by excess glutamate. The purpose of this study was to evaluate the effect of gypenoside XVII (GP-17), a gypenoside monomer, on the glutamatergic system. In vitro, in rat cortical nerve terminals (synaptosomes), GP-17 dose-dependently decreased glutamate release with an IC50 value of 16 µM. The removal of extracellular Ca2+ or blockade of N-and P/Q-type Ca2+ channels and protein kinase A (PKA) abolished the inhibitory effect of GP-17 on glutamate release from cortical synaptosomes. GP-17 also significantly reduced the phosphorylation of PKA, SNAP-25, and synapsin I in cortical synaptosomes. In an in vivo rat model of glutamate excitotoxicity induced by kainic acid (KA), GP-17 pretreatment significantly prevented seizures and rescued neuronal cell injury and glutamate elevation in the cortex. GP-17 pretreatment decreased the expression levels of sodium-coupled neutral amino acid transporter 1, glutamate synthesis enzyme glutaminase and vesicular glutamate transporter 1 but increased the expression level of glutamate metabolism enzyme glutamate dehydrogenase in the cortex of KA-treated rats. In addition, the KA-induced alterations in the N-methyl-D-aspartate receptor subunits GluN2A and GluN2B in the cortex were prevented by GP-17 pretreatment. GP-17 also prevented the KA-induced decrease in cerebral blood flow and arginase II expression. These results suggest that (i) GP-17, through the suppression of N- and P/Q-type Ca2+ channels and consequent PKA-mediated SNAP-25 and synapsin I phosphorylation, reduces glutamate exocytosis from cortical synaptosomes; and (ii) GP-17 has a neuroprotective effect on KA-induced glutamate excitotoxicity in rats through regulating synaptic glutamate release and cerebral blood flow.


Sujet(s)
Cyclic AMP-Dependent Protein Kinases , Acide glutamique , Gynostemma , Animaux , Acide glutamique/métabolisme , Rats , Mâle , Gynostemma/composition chimique , Cyclic AMP-Dependent Protein Kinases/métabolisme , Rat Sprague-Dawley , Synaptosomes/métabolisme , Synaptosomes/effets des médicaments et des substances chimiques , Neuroprotecteurs/pharmacologie , Acide kaïnique/toxicité , Crises épileptiques/induit chimiquement , Crises épileptiques/métabolisme , Crises épileptiques/traitement médicamenteux , Crises épileptiques/prévention et contrôle , Synapses/effets des médicaments et des substances chimiques , Synapses/métabolisme , Protéine SNAP-25/métabolisme , Synapsine/métabolisme , Phosphorylation/effets des médicaments et des substances chimiques , Calcium/métabolisme , Extraits de plantes
11.
eNeuro ; 11(5)2024 May.
Article de Anglais | MEDLINE | ID: mdl-38749701

RÉSUMÉ

The voltage-gated calcium channel subunit α2δ-2 controls calcium-dependent signaling in neurons, and loss of this subunit causes epilepsy in both mice and humans. To determine whether mice without α2δ-2 demonstrate hippocampal activation or histopathological changes associated with seizure activity, we measured expression of the activity-dependent gene c-fos and various histopathological correlates of temporal lobe epilepsy (TLE) in hippocampal tissue from wild-type (WT) and α2δ-2 knock-out (CACNA2D2 KO) mice using immunohistochemical staining and confocal microscopy. Both genotypes demonstrated similarly sparse c-fos and ΔFosB expressions within the hippocampal dentate granule cell layer (GCL) at baseline, consistent with no difference in basal activity of granule cells between genotypes. Surprisingly, when mice were assayed 1 h after handling-associated convulsions, KO mice had fewer c-fos-positive cells but dramatically increased ΔFosB expression in the dentate gyrus compared with WT mice. After administration of a subthreshold pentylenetetrazol dose, however, KO mice dentate had significantly more c-fos expression compared with WT mice. Other histopathological markers of TLE in these mice, including markers of neurogenesis, glial activation, and mossy fiber sprouting, were similar between WT and KO mice, apart from a small but statistically significant increase in hilar mossy cell density, opposite to what is typically found in mice with TLE. This suggests that the differences in seizure-associated dentate gyrus function in the absence of α2δ-2 protein are likely due to altered functional properties of the network without associated structural changes in the hippocampus at the typical age of seizure onset.


Sujet(s)
Hippocampe , Souris knockout , Protéines proto-oncogènes c-fos , Crises épileptiques , Animaux , Crises épileptiques/métabolisme , Crises épileptiques/génétique , Crises épileptiques/anatomopathologie , Hippocampe/métabolisme , Hippocampe/anatomopathologie , Protéines proto-oncogènes c-fos/métabolisme , Mâle , Canaux calciques/métabolisme , Canaux calciques/génétique , Souris de lignée C57BL , Pentétrazol , Souris , Modèles animaux de maladie humaine , Neurones/métabolisme , Neurones/anatomopathologie , Convulsivants/toxicité
12.
PLoS One ; 19(5): e0304601, 2024.
Article de Anglais | MEDLINE | ID: mdl-38820310

RÉSUMÉ

Both clinical and animal studies demonstrated that seizure-induced respiratory arrest (S-IRA) contributes importantly to sudden unexpected death in epilepsy (SUDEP). It has been shown that enhancing serotonin (5-HT) function relieves S-IRA in animal models of SUDEP, including DBA/1 mice. Direct activation of 5-HT3 and 5-HT4 receptors suppresses S-IRA in DBA/1 mice, indicating that these receptors are involved in S-IRA. However, it remains unknown if other subtypes of 5-HT receptors are implicated in S-IRA in DBA/1 mice. In this study, we investigated the action of an agonist of the 5-HT1A (8-OH-DPAT), 5-HT2A (TCB-2), 5-HT2B (BW723C86), 5-HT2C (MK-212), 5-HT6 (WAY-208466) and 5-HT7 (LP-211) receptor on S-IRA in DBA/1 mice. An agonist of the 5-HT receptor or a vehicle was intraperitoneally administered 30 min prior to acoustic simulation, and the effect of each drug/vehicle on the incidence of S-IRA was videotaped for offline analysis. We found that the incidence of S-IRA was significantly reduced by TCB-2 at 10 mg/kg (30%, n = 10; p < 0.01, Fisher's exact test) but was not altered by other agonists compared with the corresponding vehicle controls in DBA/1 mice. Our data demonstrate that 5-HT2A receptors are implicated in S-IRA, and 5-HT1A, 5-HT2B, 5-HT2C, 5-HT6 and 5-HT7 receptors are not involved in S-IRA in DBA/1 mice.


Sujet(s)
Souris de lignée DBA , Récepteurs sérotoninergiques , Crises épileptiques , Animaux , Récepteurs sérotoninergiques/métabolisme , Crises épileptiques/métabolisme , Souris , Mâle , Agonistes des récepteurs de la sérotonine/pharmacologie , Mort subite et inexpliquée en épilepsie/étiologie , Modèles animaux de maladie humaine
13.
J Mol Neurosci ; 74(2): 50, 2024 May 02.
Article de Anglais | MEDLINE | ID: mdl-38693434

RÉSUMÉ

Aneuploidy, having an aberrant genome, is gaining increasing attention in neurodegenerative diseases. It gives rise to proteotoxic stress as well as a stereotypical oxidative shift which makes these cells sensitive to internal and environmental stresses. A growing body of research from numerous laboratories suggests that many neurodegenerative disorders, especially Alzheimer's disease and frontotemporal dementia, are characterised by neuronal aneuploidy and the ensuing apoptosis, which may contribute to neuronal loss. Using Drosophila as a model, we investigated the effect of induced aneuploidy in GABAergic neurons. We found an increased proportion of aneuploidy due to Mad2 depletion in the third-instar larval brain and increased cell death. Depletion of Mad2 in GABAergic neurons also gave a defective climbing and seizure phenotype. Feeding animals an antioxidant rescued the climbing and seizure phenotype. These findings suggest that increased aneuploidy leads to higher oxidative stress in GABAergic neurons which causes cell death, climbing defects, and seizure phenotype. Antioxidant feeding represents a potential therapy to reduce the aneuploidy-driven neurological phenotype.


Sujet(s)
Aneuploïdie , Neurones GABAergiques , Stress oxydatif , Phénotype , Animaux , Neurones GABAergiques/métabolisme , Protéines de Drosophila/génétique , Protéines de Drosophila/métabolisme , Antioxydants/pharmacologie , Antioxydants/métabolisme , Crises épileptiques/génétique , Crises épileptiques/métabolisme , Drosophila melanogaster/génétique , Encéphale/métabolisme , Drosophila/génétique
14.
Adv Mater ; 36(27): e2314310, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38655719

RÉSUMÉ

The precise delivery of anti-seizure medications (ASM) to epileptic loci remains the major challenge to treat epilepsy without causing adverse drug reactions. The unprovoked nature of epileptic seizures raises the additional need to release ASMs in a spatiotemporal controlled manner. Targeting the oxidative stress in epileptic lesions, here the reactive oxygen species (ROS) induced in situ supramolecular assemblies that synergized bioorthogonal reactions to deliver inhibitory neurotransmitter (GABA) on-demand, are developed. Tetrazine-bearing assembly precursors undergo oxidation and selectively self-assemble under pathological conditions inside primary neurons and mice brains. Assemblies induce local accumulation of tetrazine in the hippocampus CA3 region, which allows the subsequent bioorthogonal release of inhibitory neurotransmitters. For induced acute seizures, the sustained release of GABA extends the suppression than the direct supply of GABA. In the model of permanent damage of CA3, bioorthogonal ligation on assemblies provides a reservoir of GABA that behaves prompt release upon 365 nm irradiation. Incorporated with the state-of-the-art microelectrode arrays, it is elucidated that the bioorthogonal release of GABA shifts the neuron spike waveforms to suppress seizures at the single-neuron precision. The strategy of in situ supramolecular assemblies-directed bioorthogonal prodrug activation shall be promising for the effective delivery of ASMs to treat epilepsy.


Sujet(s)
Hippocampe , Agents neuromédiateurs , Espèces réactives de l'oxygène , Crises épileptiques , Acide gamma-amino-butyrique , Animaux , Crises épileptiques/traitement médicamenteux , Crises épileptiques/métabolisme , Souris , Agents neuromédiateurs/métabolisme , Agents neuromédiateurs/composition chimique , Acide gamma-amino-butyrique/composition chimique , Acide gamma-amino-butyrique/métabolisme , Hippocampe/métabolisme , Espèces réactives de l'oxygène/métabolisme , Neurones/métabolisme , Libération de médicament , Région CA3 de l'hippocampe/métabolisme
15.
Sci Rep ; 14(1): 8104, 2024 04 06.
Article de Anglais | MEDLINE | ID: mdl-38582752

RÉSUMÉ

GCaMP is a genetically encoded calcium indicator (GECI) widely used in neuroscience research. It measures intracellular Ca2+ level by fluorescence changes as it directly binds to Ca2+. In this process, the effect of this calcium buffer on the intracellular calcium signaling and cell physiology is often not taken into consideration. However, growing evidence from calcium imaging studies shows GCaMP expression under certain conditions can generate aberrant activity, such as seizures. In this study, we examined the effect of GCaMP6 expression in the dentate gyrus (DG) on epileptogenesis. We found that viral expression of GCaMP6s but not GCaMP6f in the DG induces tonic-clonic seizures several weeks after viral injection. Cell-type specific expression of GCaMP6s revealed the granule cells (GCs) as the key player in GCaMP6s-induced epilepsy. Finally, by using slice electrophysiology, we demonstrated that GCaMP6s expression increases neuronal excitability in the GCs. Together, this study highlights the ability of GCaMP6s in DG-associated epileptogenesis.


Sujet(s)
Calcium , Neurones , Humains , Calcium/métabolisme , Neurones/métabolisme , Crises épileptiques/génétique , Crises épileptiques/métabolisme , Signalisation calcique , Calcium alimentaire/métabolisme , Gyrus denté/métabolisme
16.
Acta Physiol (Oxf) ; 240(6): e14146, 2024 06.
Article de Anglais | MEDLINE | ID: mdl-38606882

RÉSUMÉ

AIM: The Repressor Element-1 Silencing Transcription Factor (REST) is an epigenetic master regulator playing a crucial role in the nervous system. In early developmental stages, REST downregulation promotes neuronal differentiation and the acquisition of the neuronal phenotype. In addition, postnatal fluctuations in REST expression contribute to shaping neuronal networks and maintaining network homeostasis. Here we investigate the role of the early postnatal deletion of neuronal REST in the assembly and strength of excitatory and inhibitory synaptic connections. METHODS: We investigated excitatory and inhibitory synaptic transmission by patch-clamp recordings in acute neocortical slices in a conditional knockout mouse model (RestGTi) in which Rest was deleted by delivering PHP.eB adeno-associated viruses encoding CRE recombinase under the control of the human synapsin I promoter in the lateral ventricles of P0-P1 pups. RESULTS: We show that, under physiological conditions, Rest deletion increased the intrinsic excitability of principal cortical neurons in the primary visual cortex and the density and strength of excitatory synaptic connections impinging on them, without affecting inhibitory transmission. Conversely, in the presence of a pathological excitation/inhibition imbalance induced by pentylenetetrazol, Rest deletion prevented the increase in synaptic excitation and decreased seizure severity. CONCLUSION: The data indicate that REST exerts distinct effects on the excitability of cortical circuits depending on whether it acts under physiological conditions or in the presence of pathologic network hyperexcitability. In the former case, REST preserves a correct excitatory/inhibitory balance in cortical circuits, while in the latter REST loses its homeostatic activity and may become pro-epileptogenic.


Sujet(s)
Cortex cérébral , Homéostasie , Protéines de répression , Animaux , Souris , Cortex cérébral/métabolisme , Cortex cérébral/physiologie , Homéostasie/physiologie , Souris knockout , Réseau nerveux/physiologie , Réseau nerveux/métabolisme , Neurones/métabolisme , Neurones/physiologie , Protéines de répression/génétique , Protéines de répression/métabolisme , Crises épileptiques/génétique , Crises épileptiques/métabolisme , Crises épileptiques/physiopathologie , Transmission synaptique/physiologie
17.
Eur J Neurosci ; 59(12): 3337-3352, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38654472

RÉSUMÉ

Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is caused by a loss-of-function mutation in CDKL5 gene, encoding a serine-threonine kinase highly expressed in the brain. CDD manifests with early-onset epilepsy, autism, motor impairment and severe intellectual disability. While there are no known treatments for CDD, the use of cannabidiol has recently been introduced into clinical practice for neurodevelopmental disorders. Given the increased clinical utilization of cannabidiol, we examined its efficacy in the CDKL5R59X knock-in (R59X) mice, a CDD model based on a human mutation that exhibits both lifelong seizure susceptibility and behavioural deficits. We found that cannabidiol pre-treatment rescued the increased seizure susceptibility in response to the chemoconvulsant pentylenetetrazol (PTZ), attenuated working memory and long-term memory impairments, and rescued social deficits in adult R59X mice. To elucidate a potential mechanism, we compared the developmental hippocampal and cortical expression of common endocannabinoid (eCB) targets in R59X mice and their wild-type littermates, including cannabinoid type 1 receptor (CB1R), transient receptor potential vanilloid type 1 (TRPV1) and 2 (TRPV2), G-coupled protein receptor 55 (GPR55) and adenosine receptor 1 (A1R). Many of these eCB targets were developmentally regulated in both R59X and wild-type mice. In addition, adult R59X mice demonstrated significantly decreased expression of CB1R and TRPV1 in the hippocampus, and TRPV2 in the cortex, while TRPV1 was increased in the cortex. These findings support the potential for dysregulation of eCB signalling as a plausible mechanism and therapeutic target in CDD, given the efficacy of cannabidiol to attenuate hyperexcitability and behavioural deficits in this disorder.


Sujet(s)
Cannabidiol , Protein-Serine-Threonine Kinases , Crises épileptiques , Animaux , Cannabidiol/pharmacologie , Crises épileptiques/traitement médicamenteux , Crises épileptiques/génétique , Crises épileptiques/métabolisme , Souris , Protein-Serine-Threonine Kinases/génétique , Protein-Serine-Threonine Kinases/métabolisme , Récepteur cannabinoïde de type CB1/génétique , Récepteur cannabinoïde de type CB1/métabolisme , Syndromes épileptiques/génétique , Syndromes épileptiques/traitement médicamenteux , Pentétrazol , Hippocampe/métabolisme , Hippocampe/effets des médicaments et des substances chimiques , Modèles animaux de maladie humaine , Techniques de knock-in de gènes/méthodes , Mâle , Canaux cationiques TRPV/génétique , Canaux cationiques TRPV/métabolisme , Endocannabinoïdes/métabolisme , Comportement animal/effets des médicaments et des substances chimiques , Souris de lignée C57BL , Cortex cérébral/effets des médicaments et des substances chimiques , Cortex cérébral/métabolisme , Spasmes infantiles , Récepteurs de cannabinoïdes
18.
Brain ; 147(6): 2169-2184, 2024 Jun 03.
Article de Anglais | MEDLINE | ID: mdl-38662500

RÉSUMÉ

Approximately 22% of Alzheimer's disease (AD) patients suffer from seizures, and the co-occurrence of seizures and epileptiform activity exacerbates AD pathology and related cognitive deficits, suggesting that seizures may be a targetable component of AD progression. Given that alterations in neuronal excitatory:inhibitory (E:I) balance occur in epilepsy, we hypothesized that decreased markers of inhibition relative to those of excitation would be present in AD patients. We similarly hypothesized that in 5XFAD mice, the E:I imbalance would progress from an early stage (prodromal) to later symptomatic stages and be further exacerbated by pentylenetetrazol (PTZ) kindling. Post-mortem AD temporal cortical tissues from patients with or without seizure history were examined for changes in several markers of E:I balance, including levels of the inhibitory GABAA receptor, the sodium potassium chloride cotransporter 1 (NKCC1) and potassium chloride cotransporter 2 (KCC2) and the excitatory NMDA and AMPA type glutamate receptors. We performed patch-clamp electrophysiological recordings from CA1 neurons in hippocampal slices and examined the same markers of E:I balance in prodromal 5XFAD mice. We next examined 5XFAD mice at chronic stages, after PTZ or control protocols, and in response to chronic mTORC1 inhibitor rapamycin, administered following kindled seizures, for markers of E:I balance. We found that AD patients with comorbid seizures had worsened cognitive and functional scores and decreased GABAA receptor subunit expression, as well as increased NKCC1/KCC2 ratios, indicative of depolarizing GABA responses. Patch clamp recordings of prodromal 5XFAD CA1 neurons showed increased intrinsic excitability, along with decreased GABAergic inhibitory transmission and altered glutamatergic neurotransmission, indicating that E:I imbalance may occur in early disease stages. Furthermore, seizure induction in prodromal 5XFAD mice led to later dysregulation of NKCC1/KCC2 and a reduction in GluA2 AMPA glutamate receptor subunit expression, indicative of depolarizing GABA receptors and calcium permeable AMPA receptors. Finally, we found that chronic treatment with the mTORC1 inhibitor, rapamycin, at doses we have previously shown to attenuate seizure-induced amyloid-ß pathology and cognitive deficits, could also reverse elevations of the NKCC1/KCC2 ratio in these mice. Our data demonstrate novel mechanisms of interaction between AD and epilepsy and indicate that targeting E:I balance, potentially with US Food and Drug Administration-approved mTOR inhibitors, hold therapeutic promise for AD patients with a seizure history.


Sujet(s)
Maladie d'Alzheimer , Souris transgéniques , Crises épileptiques , Animaux , Maladie d'Alzheimer/métabolisme , Maladie d'Alzheimer/physiopathologie , Crises épileptiques/métabolisme , Crises épileptiques/physiopathologie , Souris , Mâle , Humains , Femelle , Pentétrazol/toxicité , Sujet âgé , Modèles animaux de maladie humaine , Embrasement/effets des médicaments et des substances chimiques , Sujet âgé de 80 ans ou plus
19.
Epilepsy Res ; 203: 107365, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38677001

RÉSUMÉ

Epilepsy is a chronic neurological disorder characterized by episodic dysfunction of central nervous system. The most basic mechanism of epilepsy falls to the imbalance between excitation and inhibition. In adults, GABAA receptor (GABAAR) is the main inhibitory receptor to prevent neurons from developing hyperexcitability, while its inhibition relies on the low intracellular chloride anion concentration ([Cl-]i). Neuronal-specific electroneutral K+-Cl- cotransporter (KCC2) can mediate chloride efflux to lower [Cl-]i for GABAAR mediated inhibition. Our previous study has revealed that the coordinated downregulation of KCC2 and GABAAR participates in epilepsy. According to a high-throughout screen for compounds that reduce [Cl-]i, CLP290 turns out to be a specific KCC2 functional modulator. In current study, we first confirmed that CLP290 could dose-dependently suppress convulsant-induced seizures in mice in vivo as well as the epileptiform burst activities in cultured hippocampal neurons in vitro. Then, we discovered that CLP290 functioned through preventing the downregulation of the KCC2 phosphorylation at Ser940 and hence the KCC2 membrane expression during convulsant stimulation, and consequently restored the GABA inhibition. In addition, while CLP290 was given in early epileptogenesis period, it also effectively decreased the spontaneous recurrent seizures. Generally, our current results demonstrated that CLP290, as a specific KCC2 modulator by enhancing KCC2 function, not only inhibits the occurrence of the ictal seizures, but also suppresses the epileptogenic process. Therefore, we believe KCC2 may be a suitable target for future anti-epileptic drug development.


Sujet(s)
Anticonvulsivants , Hippocampe , , Neurones , Crises épileptiques , Symporteurs , Animaux , Symporteurs/métabolisme , Crises épileptiques/traitement médicamenteux , Crises épileptiques/métabolisme , Souris , Hippocampe/effets des médicaments et des substances chimiques , Hippocampe/métabolisme , Mâle , Anticonvulsivants/pharmacologie , Neurones/effets des médicaments et des substances chimiques , Neurones/métabolisme , Modèles animaux de maladie humaine , Souris de lignée C57BL , Récepteurs GABA-A/métabolisme , Relation dose-effet des médicaments , Cellules cultivées , Thiazolidines
20.
Prostaglandins Other Lipid Mediat ; 172: 106836, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38599513

RÉSUMÉ

Dravet syndrome is an intractable epilepsy with a high seizure burden that is resistant to current anti-seizure medications. There is evidence that neuroinflammation plays a role in epilepsy and seizures, however few studies have specifically examined neuroinflammation in Dravet syndrome under conditions of a higher seizure burden. Here we used an established genetic mouse model of Dravet syndrome (Scn1a+/- mice), to examine whether a higher seizure burden impacts the number and morphology of microglia in the hippocampus. Moreover, we examined whether a high seizure burden influences classical inflammatory mediators in this brain region. Scn1a+/- mice with a high seizure burden induced by thermal priming displayed a localised reduction in microglial cell density in the granule cell layer and subgranular zone of the dentate gyrus, regions important to postnatal neurogenesis. However, microglial cell number and morphology remained unchanged in other hippocampal subfields. The high seizure burden in Scn1a+/- mice did not affect hippocampal mRNA expression of classical inflammatory mediators such as interleukin 1ß and tumour necrosis factor α, but increased cyclooxygenase 2 (COX-2) expression. We then quantified hippocampal levels of prostanoids that arise from COX-2 mediated metabolism of fatty acids and found that Scn1a+/- mice with a high seizure burden displayed increased hippocampal concentrations of numerous prostaglandins, notably PGF2α, PGE2, PGD2, and 6-K-PGF1A, compared to Scn1a+/- mice with a low seizure burden. In conclusion, a high seizure burden increased hippocampal concentrations of various prostaglandin mediators in a mouse model of Dravet syndrome. Future studies could interrogate the prostaglandin pathways to further better understand their role in the pathophysiology of Dravet syndrome.


Sujet(s)
Modèles animaux de maladie humaine , Épilepsies myocloniques , Hippocampe , Canal sodique voltage-dépendant NAV1.1 , Prostaglandines , Crises épileptiques , Animaux , Épilepsies myocloniques/génétique , Épilepsies myocloniques/métabolisme , Épilepsies myocloniques/anatomopathologie , Souris , Hippocampe/métabolisme , Hippocampe/anatomopathologie , Canal sodique voltage-dépendant NAV1.1/génétique , Canal sodique voltage-dépendant NAV1.1/métabolisme , Crises épileptiques/métabolisme , Crises épileptiques/génétique , Crises épileptiques/anatomopathologie , Prostaglandines/métabolisme , Mâle , Microglie/métabolisme , Microglie/anatomopathologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...