Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 12.166
Filtrer
1.
IUCrJ ; 11(Pt 4): 494-501, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38958015

RÉSUMÉ

In the folded state, biomolecules exchange between multiple conformational states crucial for their function. However, most structural models derived from experiments and computational predictions only encode a single state. To represent biomolecules accurately, we must move towards modeling and predicting structural ensembles. Information about structural ensembles exists within experimental data from X-ray crystallography and cryo-electron microscopy. Although new tools are available to detect conformational and compositional heterogeneity within these ensembles, the legacy PDB data structure does not robustly encapsulate this complexity. We propose modifications to the macromolecular crystallographic information file (mmCIF) to improve the representation and interrelation of conformational and compositional heterogeneity. These modifications will enable the capture of macromolecular ensembles in a human and machine-interpretable way, potentially catalyzing breakthroughs for ensemble-function predictions, analogous to the achievements of AlphaFold with single-structure prediction.


Sujet(s)
Cryomicroscopie électronique , Bases de données de protéines , Modèles moléculaires , Conformation des protéines , Protéines , Cristallographie aux rayons X , Protéines/composition chimique , Cryomicroscopie électronique/méthodes , Humains
2.
Methods Enzymol ; 700: 329-348, 2024.
Article de Anglais | MEDLINE | ID: mdl-38971605

RÉSUMÉ

As the primary products of lipid oxidation, lipid hydroperoxides constitute an important class of lipids generated by aerobic metabolism. However, despite several years of effort, the structure of the hydroperoxidized bilayer has not yet been observed under electron microscopy. Here we use a 200 kV Cryo-TEM to image small unilamellar vesicles (SUVs) made (i) of pure POPC or SOPC, (ii) of their pure hydroperoxidized form, and (iii) of their equimolar mixtures. We show that the challenges posed by the determination of the thickness of the hydroperoxidized bilayers under these observation conditions can be addressed by an image analysis method that we developed and describe here.


Sujet(s)
Cryomicroscopie électronique , Double couche lipidique , Phosphatidylcholines , Liposomes unilamellaires , Double couche lipidique/composition chimique , Double couche lipidique/métabolisme , Cryomicroscopie électronique/méthodes , Liposomes unilamellaires/composition chimique , Liposomes unilamellaires/métabolisme , Phosphatidylcholines/composition chimique , Oxydoréduction , Traitement d'image par ordinateur/méthodes , Peroxydes lipidiques/composition chimique , Peroxydes lipidiques/analyse
3.
Nat Commun ; 15(1): 5503, 2024 Jun 29.
Article de Anglais | MEDLINE | ID: mdl-38951531

RÉSUMÉ

Proline is widely known as the only proteogenic amino acid with a secondary amine. In addition to its crucial role in protein structure, the secondary amino acid modulates neurotransmission and regulates the kinetics of signaling proteins. To understand the structural basis of proline import, we solved the structure of the proline transporter SIT1 in complex with the COVID-19 viral receptor ACE2 by cryo-electron microscopy. The structure of pipecolate-bound SIT1 reveals the specific sequence requirements for proline transport in the SLC6 family and how this protein excludes amino acids with extended side chains. By comparing apo and substrate-bound SIT1 states, we also identify the structural changes that link substrate release and opening of the cytoplasmic gate and provide an explanation for how a missense mutation in the transporter causes iminoglycinuria.


Sujet(s)
Angiotensin-converting enzyme 2 , Cryomicroscopie électronique , Proline , SARS-CoV-2 , Angiotensin-converting enzyme 2/métabolisme , Angiotensin-converting enzyme 2/composition chimique , Angiotensin-converting enzyme 2/génétique , Proline/métabolisme , Humains , SARS-CoV-2/métabolisme , SARS-CoV-2/génétique , COVID-19/virologie , COVID-19/métabolisme , Systèmes de transport d'acides aminés neutres/métabolisme , Systèmes de transport d'acides aminés neutres/génétique , Systèmes de transport d'acides aminés neutres/composition chimique , Modèles moléculaires
4.
Subcell Biochem ; 104: 1-16, 2024.
Article de Anglais | MEDLINE | ID: mdl-38963480

RÉSUMÉ

The global emergence of multidrug resistance (MDR) in gram-negative bacteria has become a matter of worldwide concern. MDR in these pathogens is closely linked to the overexpression of certain efflux pumps, particularly the resistance-nodulation-cell division (RND) efflux pumps. Inhibition of these pumps presents an attractive and promising strategy to combat antibiotic resistance, as the efflux pump inhibitors can effectively restore the potency of existing antibiotics. AcrAB-TolC is one well-studied RND efflux pump, which transports a variety of substrates, therefore providing resistance to a broad spectrum of antibiotics. To develop effective pump inhibitors, a comprehensive understanding of the structural aspect of the AcrAB-TolC efflux pump is imperative. Previous studies on this pump's structure have been limited to individual components or in vitro determination of fully assembled pumps. Recent advancements in cellular cryo-electron tomography (cryo-ET) have provided novel insights into this pump's assembly and functional mechanism within its native cell membrane environment. Here, we present a summary of the structural data regarding the AcrAB-TolC efflux pump, shedding light on its assembly pathway and operational mechanism.


Sujet(s)
Antibactériens , Antibactériens/pharmacologie , Antibactériens/métabolisme , Multirésistance bactérienne aux médicaments , Protéines Escherichia coli/métabolisme , Protéines Escherichia coli/composition chimique , Protéines de transport/métabolisme , Protéines de transport/composition chimique , Protéines de la membrane externe bactérienne/métabolisme , Protéines de la membrane externe bactérienne/composition chimique , Protéines de transport membranaire/métabolisme , Protéines de transport membranaire/composition chimique , Cryomicroscopie électronique , Protéines bactériennes/métabolisme , Protéines bactériennes/composition chimique
5.
Subcell Biochem ; 104: 101-117, 2024.
Article de Anglais | MEDLINE | ID: mdl-38963485

RÉSUMÉ

Yeast COMPASS (complex of proteins associated with Set1) and human MLL (mixed-lineage leukemia) complexes are histone H3 lysine 4 methyltransferases with critical roles in gene regulation and embryonic development. Both complexes share a conserved C-terminal SET domain, responsible for catalyzing histone H3 K4 methylation on nucleosomes. Notably, their catalytic activity toward nucleosomes is enhanced and optimized with assembly of auxiliary subunits. In this review, we aim to illustrate the recent X-ray and cryo-EM structures of yeast COMPASS and human MLL1 core complexes bound to either unmodified nucleosome core particle (NCP) or H2B mono-ubiquitinated NCP (H2Bub.NCP). We further delineate how each auxiliary component of the complex contributes to the NCP and ubiquitin recognition to maximize the methyltransferase activity.


Sujet(s)
Histone-lysine N-methyltransferase , Protéine de la leucémie myéloïde-lymphoïde , Nucléosomes , Protéines de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humains , Nucléosomes/métabolisme , Histone-lysine N-methyltransferase/composition chimique , Histone-lysine N-methyltransferase/métabolisme , Histone-lysine N-methyltransferase/génétique , Protéine de la leucémie myéloïde-lymphoïde/métabolisme , Protéine de la leucémie myéloïde-lymphoïde/composition chimique , Protéine de la leucémie myéloïde-lymphoïde/génétique , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/composition chimique , Protéines de Saccharomyces cerevisiae/génétique , Histone/métabolisme , Histone/composition chimique , Histone/génétique , Cryomicroscopie électronique/méthodes
6.
Subcell Biochem ; 104: 207-244, 2024.
Article de Anglais | MEDLINE | ID: mdl-38963489

RÉSUMÉ

The transient receptor potential ion channel TRPA1 is a Ca2+-permeable nonselective cation channel widely expressed in sensory neurons, but also in many nonneuronal tissues typically possessing barrier functions, such as the skin, joint synoviocytes, cornea, and the respiratory and intestinal tracts. Here, the primary role of TRPA1 is to detect potential danger stimuli that may threaten the tissue homeostasis and the health of the organism. The ability to directly recognize signals of different modalities, including chemical irritants, extreme temperatures, or osmotic changes resides in the characteristic properties of the ion channel protein complex. Recent advances in cryo-electron microscopy have provided an important framework for understanding the molecular basis of TRPA1 function and have suggested novel directions in the search for its pharmacological regulation. This chapter summarizes the current knowledge of human TRPA1 from a structural and functional perspective and discusses the complex allosteric mechanisms of activation and modulation that play important roles under physiological or pathophysiological conditions. In this context, major challenges for future research on TRPA1 are outlined.


Sujet(s)
Membre-1 de la sous-famille A de canaux cationiques à potentiel de récepteur transitoire , Humains , Membre-1 de la sous-famille A de canaux cationiques à potentiel de récepteur transitoire/métabolisme , Membre-1 de la sous-famille A de canaux cationiques à potentiel de récepteur transitoire/composition chimique , Membre-1 de la sous-famille A de canaux cationiques à potentiel de récepteur transitoire/physiologie , Cryomicroscopie électronique/méthodes , Animaux , Canaux cationiques TRP/métabolisme , Canaux cationiques TRP/composition chimique , Canaux cationiques TRP/physiologie , Relation structure-activité , Régulation allostérique
7.
Subcell Biochem ; 104: 549-563, 2024.
Article de Anglais | MEDLINE | ID: mdl-38963500

RÉSUMÉ

Within the highly diverse type four filament (TFF or T4F) superfamily, the machineries of type IVa pili (T4aP) and the type 2 secretion system (T2SS) in diderm bacteria exhibit a substantial sequence similarity despite divergent functions and distinct appearances: T4aP can extend micrometers beyond the outer membrane, whereas the endopili in the T2SS are restricted to the periplasm. The determination of the structure of individual components and entire filaments is crucial to understand how their structure enables them to serve different functions. However, the dynamics of these filaments poses a challenge for their high-resolution structure determination. This review presents different approaches that have been used to study the structure and dynamics of T4aP and T2SS endopili by means of integrative structural biology, cryo-electron microscopy (cryo-EM), and molecular dynamics simulations. Their conserved features and differences are presented. The non-helical stretch in the long-conserved N-terminal helix which is characteristic of all members of the TFF and the impact of calcium on structure, function, and dynamics of these filaments are discussed in detail.


Sujet(s)
Cryomicroscopie électronique , Fimbriae bactériens , Systèmes de sécrétion de type II , Fimbriae bactériens/composition chimique , Fimbriae bactériens/métabolisme , Fimbriae bactériens/ultrastructure , Fimbriae bactériens/physiologie , Cryomicroscopie électronique/méthodes , Systèmes de sécrétion de type II/composition chimique , Systèmes de sécrétion de type II/métabolisme , Simulation de dynamique moléculaire , Conformation des protéines , Protéines de fimbriae/composition chimique , Protéines de fimbriae/métabolisme , Protéines de fimbriae/génétique
8.
Nat Commun ; 15(1): 5499, 2024 Jun 29.
Article de Anglais | MEDLINE | ID: mdl-38951509

RÉSUMÉ

Argonaute proteins are the central effectors of RNA-guided RNA silencing pathways in eukaryotes, playing crucial roles in gene repression and defense against viruses and transposons. Eukaryotic Argonautes are subdivided into two clades: AGOs generally facilitate miRNA- or siRNA-mediated silencing, while PIWIs generally facilitate piRNA-mediated silencing. It is currently unclear when and how Argonaute-based RNA silencing mechanisms arose and diverged during the emergence and early evolution of eukaryotes. Here, we show that in Asgard archaea, the closest prokaryotic relatives of eukaryotes, an evolutionary expansion of Argonaute proteins took place. In particular, a deep-branching PIWI protein (HrAgo1) encoded by the genome of the Lokiarchaeon 'Candidatus Harpocratesius repetitus' shares a common origin with eukaryotic PIWI proteins. Contrasting known prokaryotic Argonautes that use single-stranded DNA as guides and/or targets, HrAgo1 mediates RNA-guided RNA cleavage, and facilitates gene silencing when expressed in human cells and supplied with miRNA precursors. A cryo-EM structure of HrAgo1, combined with quantitative single-molecule experiments, reveals that the protein displays structural features and target-binding modes that are a mix of those of eukaryotic AGO and PIWI proteins. Thus, this deep-branching archaeal PIWI may have retained an ancestral molecular architecture that preceded the functional and mechanistic divergence of eukaryotic AGOs and PIWIs.


Sujet(s)
Protéines Argonaute , Protéines Argonaute/métabolisme , Protéines Argonaute/génétique , Humains , Interférence par ARN , Archéobactéries/génétique , Archéobactéries/métabolisme , Petit ARN interférent/métabolisme , Petit ARN interférent/génétique , Protéines d'archée/métabolisme , Protéines d'archée/génétique , Cryomicroscopie électronique , microARN/génétique , microARN/métabolisme , Évolution moléculaire , Phylogenèse
9.
Nat Commun ; 15(1): 5538, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38956032

RÉSUMÉ

The dynamics of proteins are crucial for understanding their mechanisms. However, computationally predicting protein dynamic information has proven challenging. Here, we propose a neural network model, RMSF-net, which outperforms previous methods and produces the best results in a large-scale protein dynamics dataset; this model can accurately infer the dynamic information of a protein in only a few seconds. By learning effectively from experimental protein structure data and cryo-electron microscopy (cryo-EM) data integration, our approach is able to accurately identify the interactive bidirectional constraints and supervision between cryo-EM maps and PDB models in maximizing the dynamic prediction efficacy. Rigorous 5-fold cross-validation on the dataset demonstrates that RMSF-net achieves test correlation coefficients of 0.746 ± 0.127 at the voxel level and 0.765 ± 0.109 at the residue level, showcasing its ability to deliver dynamic predictions closely approximating molecular dynamics simulations. Additionally, it offers real-time dynamic inference with minimal storage overhead on the order of megabytes. RMSF-net is a freely accessible tool and is anticipated to play an essential role in the study of protein dynamics.


Sujet(s)
Cryomicroscopie électronique , Apprentissage profond , Conformation des protéines , Protéines , Cryomicroscopie électronique/méthodes , Protéines/composition chimique , Simulation de dynamique moléculaire , , Bases de données de protéines , Biologie informatique/méthodes
10.
Nat Commun ; 15(1): 5569, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38956111

RÉSUMÉ

Vitamin C plays important roles as a cofactor in many enzymatic reactions and as an antioxidant against oxidative stress. As some mammals including humans cannot synthesize vitamin C de novo from glucose, its uptake from dietary sources is essential, and is mediated by the sodium-dependent vitamin C transporter 1 (SVCT1). Despite its physiological significance in maintaining vitamin C homeostasis, the structural basis of the substrate transport mechanism remained unclear. Here, we report the cryo-EM structures of human SVCT1 in different states at 2.5-3.5 Å resolutions. The binding manner of vitamin C together with two sodium ions reveals the counter ion-dependent substrate recognition mechanism. Furthermore, comparisons of the inward-open and occluded structures support a transport mechanism combining elevator and distinct rotational motions. Our results demonstrate the molecular mechanism of vitamin C transport with its underlying conformational cycle, potentially leading to future industrial and medical applications.


Sujet(s)
Acide ascorbique , Cryomicroscopie électronique , Transporteurs de vitamine C couplés au sodium , Humains , Transporteurs de vitamine C couplés au sodium/métabolisme , Transporteurs de vitamine C couplés au sodium/composition chimique , Transporteurs de vitamine C couplés au sodium/génétique , Acide ascorbique/métabolisme , Acide ascorbique/composition chimique , Transport biologique , Sodium/métabolisme , Modèles moléculaires , Multimérisation de protéines , Liaison aux protéines , Cellules HEK293 , Conformation des protéines
11.
Nat Commun ; 15(1): 5187, 2024 Jul 11.
Article de Anglais | MEDLINE | ID: mdl-38992002

RÉSUMÉ

The histone H2A variant H2A.W occupies transposons and thus prevents access to them in Arabidopsis thaliana. H2A.W is deposited by the chromatin remodeler DDM1, which also promotes the accessibility of chromatin writers to heterochromatin by an unknown mechanism. To shed light on this question, we solve the cryo-EM structures of nucleosomes containing H2A and H2A.W, and the DDM1-H2A.W nucleosome complex. These structures show that the DNA end flexibility of the H2A nucleosome is higher than that of the H2A.W nucleosome. In the DDM1-H2A.W nucleosome complex, DDM1 binds to the N-terminal tail of H4 and the nucleosomal DNA and increases the DNA end flexibility of H2A.W nucleosomes. Based on these biochemical and structural results, we propose that DDM1 counters the low accessibility caused by nucleosomes containing H2A.W to enable the maintenance of repressive epigenetic marks on transposons and prevent their activity.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Assemblage et désassemblage de la chromatine , Cryomicroscopie électronique , Histone , Nucléosomes , Arabidopsis/métabolisme , Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , Protéines d'Arabidopsis/composition chimique , Nucléosomes/métabolisme , Nucléosomes/ultrastructure , Nucléosomes/composition chimique , Histone/métabolisme , Histone/génétique , Histone/composition chimique , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique , Facteurs de transcription/composition chimique , Protéines de liaison à l'ADN/métabolisme , Protéines de liaison à l'ADN/composition chimique , Protéines de liaison à l'ADN/génétique , Liaison aux protéines , Modèles moléculaires , ADN des plantes/métabolisme , ADN des plantes/génétique
12.
Nat Commun ; 15(1): 5841, 2024 Jul 11.
Article de Anglais | MEDLINE | ID: mdl-38992036

RÉSUMÉ

The swimming device of archaea-the archaellum-presents asparagine (N)-linked glycans. While N-glycosylation serves numerous roles in archaea, including enabling their survival in extreme environments, how this post-translational modification contributes to cell motility remains under-explored. Here, we report the cryo-EM structure of archaellum filaments from the haloarchaeon Halobacterium salinarum, where archaellins, the building blocks of the archaellum, are N-glycosylated, and the N-glycosylation pathway is well-resolved. We further determined structures of archaellum filaments from two N-glycosylation mutant strains that generate truncated glycans and analyzed their motility. While cells from the parent strain exhibited unidirectional motility, the N-glycosylation mutant strain cells swam in ever-changing directions within a limited area. Although these mutant strain cells presented archaellum filaments that were highly similar in architecture to those of the parent strain, N-linked glycan truncation greatly affected interactions between archaellum filaments, leading to dramatic clustering of both isolated and cell-attached filaments. We propose that the N-linked tetrasaccharides decorating archaellins act as physical spacers that minimize the archaellum filament aggregation that limits cell motility.


Sujet(s)
Protéines d'archée , Halobacterium salinarum , Glycosylation , Halobacterium salinarum/métabolisme , Halobacterium salinarum/génétique , Protéines d'archée/métabolisme , Protéines d'archée/génétique , Protéines d'archée/composition chimique , Polyosides/métabolisme , Cryomicroscopie électronique , Mutation , Cytosquelette/métabolisme , Maturation post-traductionnelle des protéines , Mouvement cellulaire
13.
Nat Commun ; 15(1): 5830, 2024 Jul 11.
Article de Anglais | MEDLINE | ID: mdl-38992057

RÉSUMÉ

Impaired ion channels regulating Golgi pH lead to structural alterations in the Golgi apparatus, such as fragmentation, which is found, along with cognitive impairment, in Alzheimer's disease. However, the causal relationship between altered Golgi structure and cognitive impairment remains elusive due to the lack of understanding of ion channels in the Golgi apparatus of brain cells. Here, we identify that a transmembrane protein TMEM87A, renamed Golgi-pH-regulating cation channel (GolpHCat), expressed in astrocytes and neurons that contributes to hippocampus-dependent memory. We find that GolpHCat displays unique voltage-dependent currents, which is potently inhibited by gluconate. Additionally, we gain structural insights into the ion conduction through GolpHCat at the molecular level by determining three high-resolution cryogenic-electron microscopy structures of human GolpHCat. GolpHCat-knockout mice show fragmented Golgi morphology and altered protein glycosylation and functions in the hippocampus, leading to impaired spatial memory. These findings suggest a molecular target for Golgi-related diseases and cognitive impairment.


Sujet(s)
Appareil de Golgi , Hippocampe , Souris knockout , Neurones , Appareil de Golgi/métabolisme , Animaux , Hippocampe/métabolisme , Humains , Souris , Neurones/métabolisme , Concentration en ions d'hydrogène , Astrocytes/métabolisme , Protéines membranaires/métabolisme , Protéines membranaires/génétique , Mâle , Souris de lignée C57BL , Cellules HEK293 , Mémoire spatiale/physiologie , Canaux ioniques/métabolisme , Canaux ioniques/génétique , Mémoire/physiologie , Glycosylation , Cryomicroscopie électronique , Dysfonctionnement cognitif/métabolisme , Dysfonctionnement cognitif/physiopathologie , Dysfonctionnement cognitif/anatomopathologie
14.
Protein Sci ; 33(8): e5104, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38995055

RÉSUMÉ

Despite ferritin's critical role in regulating cellular and systemic iron levels, our understanding of the structure and assembly mechanism of isoferritins, discovered over eight decades ago, remains limited. Unveiling how the composition and molecular architecture of hetero-oligomeric ferritins confer distinct functionality to isoferritins is essential to understanding how the structural intricacies of H and L subunits influence their interactions with cellular machinery. In this study, ferritin heteropolymers with specific H to L subunit ratios were synthesized using a uniquely engineered plasmid design, followed by high-resolution cryo-electron microscopy analysis and deep learning-based amino acid modeling. Our structural examination revealed unique architectural features during the self-assembly mechanism of heteropolymer ferritins and demonstrated a significant preference for H-L heterodimer formation over H-H or L-L homodimers. Unexpectedly, while dimers seem essential building blocks in the protein self-assembly process, the overall mechanism of ferritin self-assembly is observed to proceed randomly through diverse pathways. The physiological significance of these findings is discussed including how ferritin microheterogeneity could represent a tissue-specific adaptation process that imparts distinctive tissue-specific functions to isoferritins.


Sujet(s)
Ferritines , Multimérisation de protéines , Humains , Ferritines/composition chimique , Ferritines/métabolisme , Ferritines/génétique , Modèles moléculaires , Cryomicroscopie électronique
15.
Mol Cell ; 84(13): 2511-2524.e8, 2024 Jul 11.
Article de Anglais | MEDLINE | ID: mdl-38996460

RÉSUMÉ

BCL6, an oncogenic transcription factor (TF), forms polymers in the presence of a small-molecule molecular glue that stabilizes a complementary interface between homodimers of BCL6's broad-complex, tramtrack, and bric-à-brac (BTB) domain. The BTB domains of other proteins, including a large class of TFs, have similar architectures and symmetries, raising the possibility that additional BTB proteins self-assemble into higher-order structures. Here, we surveyed 189 human BTB proteins with a cellular fluorescent reporter assay and identified 18 ZBTB TFs that show evidence of polymerization. Through biochemical and cryoelectron microscopy (cryo-EM) studies, we demonstrate that these ZBTB TFs polymerize into filaments. We found that BTB-domain-mediated polymerization of ZBTB TFs enhances chromatin occupancy within regions containing homotypic clusters of TF binding sites, leading to repression of target genes. Our results reveal a role of higher-order structures in regulating ZBTB TFs and suggest an underappreciated role for TF polymerization in modulating gene expression.


Sujet(s)
Chromatine , Cryomicroscopie électronique , Humains , Chromatine/métabolisme , Chromatine/génétique , Multimérisation de protéines , Sites de fixation , Liaison aux protéines , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique , Polymérisation , Cellules HEK293 , Régulation de l'expression des gènes
16.
Structure ; 32(7): 849-850, 2024 Jul 11.
Article de Anglais | MEDLINE | ID: mdl-38996509

RÉSUMÉ

In this issue of Structure, Schneider et al.1 report multiple structures of the low-affinity inorganic-phosphate transporter Pho90 from Saccharomyces cerevisiae. With remarkable resolution of the Divalent Anion Sodium Symporter family member, their cryo-EM studies of this fungal protein reveal new modes of sodium, substrate, and lipid binding.


Sujet(s)
Phosphates , Protéines de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/composition chimique , Phosphates/métabolisme , Phosphates/composition chimique , Cryomicroscopie électronique , Sodium/métabolisme
17.
Nat Commun ; 15(1): 5732, 2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-38977690

RÉSUMÉ

Site-one protease (S1P) conducts the first of two cleavage events in the Golgi to activate Sterol regulatory element binding proteins (SREBPs) and upregulate lipogenic transcription. S1P is also required for a wide array of additional signaling pathways. A zymogen serine protease, S1P matures through autoproteolysis of two pro-domains, with one cleavage event in the endoplasmic reticulum (ER) and the other in the Golgi. We recently identified the SREBP regulating gene, (SPRING), which enhances S1P maturation and is necessary for SREBP signaling. Here, we report the cryo-EM structures of S1P and S1P-SPRING at sub-2.5 Å resolution. SPRING activates S1P by dislodging its inhibitory pro-domain and stabilizing intra-domain contacts. Functionally, SPRING licenses S1P to cleave its cognate substrate, SREBP2. Our findings reveal an activation mechanism for S1P and provide insights into how spatial control of S1P activity underpins cholesterol homeostasis.


Sujet(s)
Domaines protéiques , Protéine-2 de liaison à l'élément de régulation des stérols , Protéine-2 de liaison à l'élément de régulation des stérols/métabolisme , Protéine-2 de liaison à l'élément de régulation des stérols/génétique , Humains , Serine endopeptidases/métabolisme , Serine endopeptidases/composition chimique , Serine endopeptidases/génétique , Réticulum endoplasmique/métabolisme , Cryomicroscopie électronique , Appareil de Golgi/métabolisme , Proprotein convertases/métabolisme , Proprotein convertases/génétique , Cholestérol/métabolisme , Animaux , Cellules HEK293 , Transduction du signal
18.
Proc Natl Acad Sci U S A ; 121(30): e2401091121, 2024 Jul 23.
Article de Anglais | MEDLINE | ID: mdl-39024109

RÉSUMÉ

Achieving ligand subtype selectivity within highly homologous subtypes of G-protein-coupled receptor (GPCR) is critical yet challenging for GPCR drug discovery, primarily due to the unclear mechanism underlying ligand subtype selectivity, which hampers the rational design of subtype-selective ligands. Herein, we disclose an unusual molecular mechanism of entropy-driven ligand recognition in cannabinoid (CB) receptor subtypes, revealed through atomic-level molecular dynamics simulations, cryoelectron microscopy structure, and mutagenesis experiments. This mechanism is attributed to the distinct conformational dynamics of the receptor's orthosteric pocket, leading to variations in ligand binding entropy and consequently, differential binding affinities, which culminate in specific ligand recognition. We experimentally validated this mechanism and leveraged it to design ligands with enhanced or ablated subtype selectivity. One such ligand demonstrated favorable pharmacokinetic properties and significant efficacy in rodent inflammatory analgesic models. More importantly, it is precisely due to the high subtype selectivity obtained based on this mechanism that this ligand does not show addictive properties in animal models. Our findings elucidate the unconventional role of entropy in CB receptor subtype selectivity and suggest a strategy for rational design of ligands to achieve entropy-driven subtype selectivity for many pharmaceutically important GPCRs.


Sujet(s)
Entropie , Simulation de dynamique moléculaire , Récepteurs couplés aux protéines G , Ligands , Animaux , Récepteurs couplés aux protéines G/métabolisme , Récepteurs couplés aux protéines G/composition chimique , Humains , Liaison aux protéines , Souris , Cryomicroscopie électronique , Récepteurs de cannabinoïdes/métabolisme , Récepteurs de cannabinoïdes/composition chimique , Sites de fixation
19.
Nature ; 631(8021): 670-677, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38987591

RÉSUMÉ

In all organisms, regulation of gene expression must be adjusted to meet cellular requirements and frequently involves helix-turn-helix (HTH) domain proteins1. For instance, in the arms race between bacteria and bacteriophages, rapid expression of phage anti-CRISPR (acr) genes upon infection enables evasion from CRISPR-Cas defence; transcription is then repressed by an HTH-domain-containing anti-CRISPR-associated (Aca) protein, probably to reduce fitness costs from excessive expression2-5. However, how a single HTH regulator adjusts anti-CRISPR production to cope with increasing phage genome copies and accumulating acr mRNA is unknown. Here we show that the HTH domain of the regulator Aca2, in addition to repressing Acr synthesis transcriptionally through DNA binding, inhibits translation of mRNAs by binding conserved RNA stem-loops and blocking ribosome access. The cryo-electron microscopy structure of the approximately 40 kDa Aca2-RNA complex demonstrates how the versatile HTH domain specifically discriminates RNA from DNA binding sites. These combined regulatory modes are widespread in the Aca2 family and facilitate CRISPR-Cas inhibition in the face of rapid phage DNA replication without toxic acr overexpression. Given the ubiquity of HTH-domain-containing proteins, it is anticipated that many more of them elicit regulatory control by dual DNA and RNA binding.


Sujet(s)
Bactériophages , Systèmes CRISPR-Cas , Cryomicroscopie électronique , Modèles moléculaires , Bactériophages/métabolisme , Bactériophages/génétique , Bactériophages/composition chimique , Systèmes CRISPR-Cas/génétique , ARN messager/génétique , ARN messager/métabolisme , ARN messager/composition chimique , Biosynthèse des protéines , Motifs à hélice-tour-hélice , Ribosomes/métabolisme , Ribosomes/composition chimique , Sites de fixation , Domaines protéiques , Protéines virales/métabolisme , Protéines virales/composition chimique , Protéines de liaison à l'ADN/métabolisme , Protéines de liaison à l'ADN/composition chimique , Clustered regularly interspaced short palindromic repeats/génétique , Protéines associées aux CRISPR/métabolisme , Protéines associées aux CRISPR/composition chimique , Conformation d'acide nucléique , Protéines de liaison à l'ARN/métabolisme , Protéines de liaison à l'ARN/composition chimique , ARN viral/métabolisme , ARN viral/génétique , ARN viral/composition chimique , Transcription génétique
20.
Nat Commun ; 15(1): 5967, 2024 Jul 16.
Article de Anglais | MEDLINE | ID: mdl-39013865

RÉSUMÉ

Crosstalk between the actin and microtubule cytoskeletons is important for many cellular processes. Recent studies have shown that microtubules and F-actin can assemble to form a composite structure where F-actin occupies the microtubule lumen. Whether these cytoskeletal hybrids exist in physiological settings and how they are formed is unclear. Here, we show that the short-crossover Class I actin filament previously identified inside microtubules in human HAP1 cells is cofilin-bound F-actin. Lumenal F-actin can be reconstituted in vitro, but cofilin is not essential. Moreover, actin filaments with both cofilin-bound and canonical morphologies reside within human platelet microtubules under physiological conditions. We propose that stress placed upon the microtubule network during motor-driven microtubule looping and sliding may facilitate the incorporation of actin into microtubules.


Sujet(s)
Cytosquelette d'actine , Actines , Plaquettes , Microtubules , Microtubules/métabolisme , Humains , Cytosquelette d'actine/métabolisme , Plaquettes/métabolisme , Actines/métabolisme , Facteurs de dépolymérisation de l'actine/métabolisme , Cryomicroscopie électronique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE