Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 957
Filtrer
1.
Int J Nanomedicine ; 19: 4411-4427, 2024.
Article de Anglais | MEDLINE | ID: mdl-38774028

RÉSUMÉ

Background: Rheumatoid arthritis (RA) is a chronic and systemic autoimmune disease characterized by synovial inflammation and joint destruction. Despite progress in RA therapy, it remains difficult to achieve long-term remission in RA patients. Phosphodiesterase 3B (Pde3b) is a member of the phosphohydrolyase family that are involved in many signal transduction pathways. However, its role in RA is yet to be fully addressed. Methods: Studies were conducted in arthritic DBA/1 mice, a suitable mouse strain for collagen-induced rheumatoid arthritis (CIA), to dissect the role of Pde3b in RA pathogenesis. Next, RNAi-based therapy with Pde3b siRNA-loaded liposomes was assessed in a CIA model. To study the mechanism involved, we investigated the effect of Pde3b knockdown on macrophage polarization and related signaling pathway. Results: We demonstrated that mice with CIA exhibited upregulated Pde3b expression in macrophages. Notably, intravenous administration of liposomes loaded with Pde3b siRNA promoted the macrophage anti-inflammatory program and alleviated CIA in mice, as indicated by the reduced inflammatory response, synoviocyte infiltration, and bone and cartilage erosion. Mechanistic study revealed that depletion of Pde3b increased cAMP levels, by which it enhanced PKA-CREB-C/EBPß pathway to transcribe the expression of anti-inflammatory program-related genes. Conclusion: Our results support that Pde3b is involved in the pathogenesis of RA, and Pde3b siRNA-loaded liposomes might serve as a promising therapeutic approach against RA.


Sujet(s)
Arthrite expérimentale , Polyarthrite rhumatoïde , Cyclic Nucleotide Phosphodiesterases, Type 3 , Thérapie génétique , Liposomes , Macrophages , Souris de lignée DBA , Petit ARN interférent , Animaux , Liposomes/composition chimique , Liposomes/administration et posologie , Cyclic Nucleotide Phosphodiesterases, Type 3/génétique , Cyclic Nucleotide Phosphodiesterases, Type 3/métabolisme , Polyarthrite rhumatoïde/génétique , Polyarthrite rhumatoïde/thérapie , Polyarthrite rhumatoïde/induit chimiquement , Souris , Arthrite expérimentale/génétique , Arthrite expérimentale/prévention et contrôle , Arthrite expérimentale/thérapie , Macrophages/effets des médicaments et des substances chimiques , Petit ARN interférent/génétique , Petit ARN interférent/administration et posologie , Thérapie génétique/méthodes , Mâle , Transduction du signal/effets des médicaments et des substances chimiques
2.
Biochem Biophys Res Commun ; 696: 149489, 2024 Feb 12.
Article de Anglais | MEDLINE | ID: mdl-38244313

RÉSUMÉ

Lung cancer has a high incidence rate and requires more effective treatment strategies and drug options for clinical patients. EGFR is a common genetic alteration event in lung cancer that affects patient survival and drug strategy. Our study discovered aberrant aldolase A (ALDOA) expression and dysfunction in lung cancer patients with EGFR mutations. In addition to investigating relevant metabolic processes like glucose uptake, lactate production, and ATPase activity, we examined multi-omics profiles (transcriptomics, proteomics, and pull-down assays). It was observed that phosphodiesterase 3A (PDE3A) enzyme and ALDOA exhibit correlation, and furthermore, they impact M2 macrophage polarization through ß-catenin and downstream ID3. In addition to demonstrating the aforementioned mechanism of action, our experiments discovered that the PDE3 inhibitor trequinsin has a substantial impact on lung cancer cell lines with EGFR mutants. The trequinsin medication was found to decrease the M2 macrophage polarization status and several cancer phenotypes, in addition to transduction. These findings have potential prognostic and therapeutic applications for clinical patients with EGFR mutation and lung cancer.


Sujet(s)
Tumeurs du poumon , Humains , Tumeurs du poumon/traitement médicamenteux , Tumeurs du poumon/génétique , Tumeurs du poumon/anatomopathologie , Fructose bisphosphate aldolase/génétique , bêta-Caténine/génétique , bêta-Caténine/métabolisme , Transduction du signal/génétique , Cyclic Nucleotide Phosphodiesterases, Type 3/génétique , Cyclic Nucleotide Phosphodiesterases, Type 3/métabolisme , Lignée cellulaire tumorale , Mutation , Récepteurs ErbB/génétique , Récepteurs ErbB/métabolisme , Protéines tumorales/métabolisme , Protéines d'inhibition de la différenciation/génétique
3.
J Med Chem ; 67(3): 2049-2065, 2024 Feb 08.
Article de Anglais | MEDLINE | ID: mdl-38284310

RÉSUMÉ

Human genetic evidence shows that PDE3B is associated with metabolic and dyslipidemia phenotypes. A number of PDE3 family selective inhibitors have been approved by the FDA for various indications; however, given the undesirable proarrhythmic effects in the heart, selectivity for PDE3B inhibition over closely related family members (such as PDE3A; 48% identity) is a critical consideration for development of PDE3B therapeutics. Selectivity for PDE3B over PDE3A may be achieved in a variety of ways, including properties intrinsic to the compound or tissue-selective targeting. The high (>95%) active site homology between PDE3A and B represents a massive obstacle for obtaining selectivity at the active site; however, utilization of libraries with high molecular diversity in high throughput screens may uncover selective chemical matter. Herein, we employed a DNA-encoded library screen to identify PDE3B-selective inhibitors and identified potent and selective boronic acid compounds bound at the active site.


Sujet(s)
ADN , Coeur , Humains , Domaine catalytique , Cyclic Nucleotide Phosphodiesterases, Type 3
4.
Naunyn Schmiedebergs Arch Pharmacol ; 397(7): 4911-4925, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38165426

RÉSUMÉ

Cuproptosis is a new Cu-dependent programmed cell death manner that has shown regulatory functions in many tumor types, however, its mechanism in bladder cancer remains unclear. Here, we reveal that Phosphodiesterase 3B (PDE3B), a cuproptosis-associated gene, could reduce the invasion and migration of bladder cancer. PDE3B is downregulated in bladder cancer tissues, which is correlated with better prognosis. Conversely, overexpression of PDE3B in bladder cancer cell could significantly resist invasion and migration, which is consistent with the TCGA database results. Future study demonstrate the anti-cancer effect of PDE3B is mediated by Keratin 6B (KRT6B) which leads to the keratinization. Therefore, PDE3B can reduce KRT6B expression and inhibit the invasion and migration of bladder cancer. Meanwhile, increased expression of PDE3B was able to enhance the sensitivity of Cuproptosis drug thiram. This study show that PDE3B/KRT6B is a potential cancer therapeutic target and PDE3B activation is able to increase the sensitivity of bladder cancer cells to copper ionophores.


Sujet(s)
Mouvement cellulaire , Cuivre , Cyclic Nucleotide Phosphodiesterases, Type 3 , Kératine-6 , Tumeurs de la vessie urinaire , Humains , Tumeurs de la vessie urinaire/anatomopathologie , Tumeurs de la vessie urinaire/génétique , Tumeurs de la vessie urinaire/métabolisme , Tumeurs de la vessie urinaire/traitement médicamenteux , Lignée cellulaire tumorale , Cuivre/métabolisme , Mouvement cellulaire/effets des médicaments et des substances chimiques , Cyclic Nucleotide Phosphodiesterases, Type 3/métabolisme , Cyclic Nucleotide Phosphodiesterases, Type 3/génétique , Kératine-6/métabolisme , Kératine-6/génétique , Invasion tumorale , Régulation de l'expression des gènes tumoraux
7.
Cells ; 12(11)2023 06 04.
Article de Anglais | MEDLINE | ID: mdl-37296663

RÉSUMÉ

Cyclic nucleotide phosphodiesterases 2A (PDE2A) and PDE3A play an important role in the regulation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP)-to-cAMP crosstalk. Each of these PDEs has up to three distinct isoforms. However, their specific contributions to cAMP dynamics are difficult to explore because it has been challenging to generate isoform-specific knock-out mice or cells using conventional methods. Here, we studied whether the CRISPR/Cas9 approach for precise genome editing can be used to knock out Pde2a and Pde3a genes and their distinct isoforms using adenoviral gene transfer in neonatal and adult rat cardiomyocytes. Cas9 and several specific gRNA constructs were cloned and introduced into adenoviral vectors. Primary adult and neonatal rat ventricular cardiomyocytes were transduced with different amounts of Cas9 adenovirus in combination with PDE2A or PDE3A gRNA constructs and cultured for up to 6 (adult) or 14 (neonatal) days to analyze PDE expression and live cell cAMP dynamics. A decline in mRNA expression for PDE2A (~80%) and PDE3A (~45%) was detected as soon as 3 days post transduction, with both PDEs being reduced at the protein level by >50-60% in neonatal cardiomyocytes (after 14 days) and >95% in adult cardiomyocytes (after 6 days). This correlated with the abrogated effects of selective PDE inhibitors in the live cell imaging experiments based on using cAMP biosensor measurements. Reverse transcription PCR analysis revealed that only the PDE2A2 isoform was expressed in neonatal myocytes, while adult cardiomyocytes expressed all three PDE2A isoforms (A1, A2, and A3) which contributed to the regulation of cAMP dynamics as detected by live cell imaging. In conclusion, CRISPR/Cas9 is an effective tool for the in vitro knock-out of PDEs and their specific isoforms in primary somatic cells. This novel approach suggests distinct regulation of live cell cAMP dynamics by various PDE2A and PDE3A isoforms in neonatal vs. adult cardiomyocytes.


Sujet(s)
Systèmes CRISPR-Cas , Cyclic Nucleotide Phosphodiesterases, Type 2 , Cyclic Nucleotide Phosphodiesterases, Type 3 , Myocytes cardiaques , Animaux , Souris , Rats , Systèmes CRISPR-Cas/génétique , AMP cyclique/métabolisme , Diéthylstilbestrol , Myocytes cardiaques/métabolisme , Cyclic Nucleotide Phosphodiesterases, Type 2/métabolisme , Cyclic Nucleotide Phosphodiesterases, Type 3/métabolisme , Isoformes de protéines/métabolisme
8.
Commun Biol ; 6(1): 504, 2023 05 10.
Article de Anglais | MEDLINE | ID: mdl-37165086

RÉSUMÉ

The occurrence of NO/cGMP signalling in cardiac cells is a matter of debate. Recent measurements with a FRET-based cGMP indicator in isolated cardiac cells revealed NO-induced cGMP signals in cardiac fibroblasts while cardiomyocytes were devoid of these signals. In a fibroblast/myocyte co-culture model though, cGMP formed in fibroblasts in response to NO entered cardiomyocytes via gap junctions. Here, we demonstrate gap junction-mediated cGMP transfer from cardiac fibroblasts to myocytes in intact tissue. In living cardiac slices of mice with cardiomyocyte-specific expression of a FRET-based cGMP indicator (αMHC/cGi-500), NO-dependent cGMP signals were shown to occur in myocytes, to depend on gap junctions and to be degraded mainly by PDE3. Stimulation of NO-sensitive guanylyl cyclase enhanced Forskolin- and Isoproterenol-induced cAMP and phospholamban phosphorylation. Genetic inactivation of NO-GC in Tcf21-expressing cardiac fibroblasts abrogated the synergistic action of NO-GC stimulation on Iso-induced phospholamban phosphorylation, identifying fibroblasts as cGMP source and substantiating the necessity of cGMP-transfer to myocytes. In sum, NO-stimulated cGMP formed in cardiac fibroblasts enters cardiomyocytes in native tissue where it exerts an inhibitory effect on cAMP degradation by PDE3, thereby increasing cAMP and downstream effects in cardiomyocytes. Hence, enhancing ß-receptor-induced contractile responses appears as one of NO/cGMP's functions in the non-failing heart.


Sujet(s)
Coeur , Cellules cultivées , Animaux , Souris , Fibroblastes/métabolisme , GMP cyclique/métabolisme , Monoxyde d'azote/métabolisme , Cellules musculaires/métabolisme , AMP cyclique/métabolisme , Cyclic Nucleotide Phosphodiesterases, Type 3/métabolisme , Transduction du signal , Survie cellulaire
10.
Hypertension ; 80(6): 1171-1179, 2023 06.
Article de Anglais | MEDLINE | ID: mdl-37035914

RÉSUMÉ

Hypertension with brachydactyly (HTNB) represents an autosomal dominant form of hypertension. It is a rare syndrome, in which the blood pressure can rise by more than 50 mmHg. If untreated, the patients die of stroke by the age of 50 years. In HTNB, vascular smooth muscle cell proliferation is increased, vasodilation compromised, and the kidney not affected. Surprisingly, after decades of hypertension, HTNB is not associated with hypertension-induced cardiac damage. HTNB is caused by gain-of-function mutations in the PDE3A (phosphodiesterase 3A) gene. The mutant enzymes are hyperactive. PDE3A (phosphodiesterase 3A) hydrolyzes and thereby terminates cyclic adenosine monophosphate signaling in defined cellular compartments. The cardioprotective effect involves local changes of cyclic adenosine monophosphate signaling and inhibition of Ca2+ reuptake into the sarcoplasmic reticulum of cardiac myocytes. This review introduces HTNB and discusses how insight into the molecular mechanisms underlying HTNB could contribute to a better understanding of blood pressure control and lead to PDE3A-directed strategies for the treatment of essential hypertension and the prevention of hypertension-induced cardiac damage. A focus will be on cAMP (cyclic adenosine monophosphate) signaling compartments.


Sujet(s)
Hypertension artérielle , Humains , Adulte d'âge moyen , Cyclic Nucleotide Phosphodiesterases, Type 3/génétique , Hypertension artérielle/génétique , Mutation , Myocytes cardiaques , AMP
11.
Int Immunopharmacol ; 119: 110157, 2023 Jun.
Article de Anglais | MEDLINE | ID: mdl-37086679

RÉSUMÉ

Synovial samples collected from 30 rheumatoid arthritis (RA) patients and 30 normal controls were used to isolate fibroblast-like synoviocytes (FLSs) and named FLS-RA and FLS-Normal, respectively. Real-time quantitative polymerase chain reaction (RT-qPCR) was utilized to detect circ_0007707 expression. Effects of circ_0007707 silencing on cell proliferation and apoptosis were evaluated using cell counting kit-8, 5-ethynyl-2'-deoxyuridine (Edu), and flow cytometry assays. Levels of pro-inflammatory factors were detected by enzyme-linked immunosorbent assay (ELISA). Increased circ_0007707 expression was observed in synovial samples from RA patients and FLS-RA cells. Functional analysis showed circ_0007707 silencing restrained cell proliferation, induced cell apoptosis, and decreased cell inflammatory response in FLS-RA cells. Mechanistic analysis revealed the sponge function of circ_0007707 on miR-27b-3p, and miR-27b-3p inhibition weakened circ_0007707 knockdown-mediated effects on FLS-RA cell proliferation, apoptosis, and inflammatory response. Circ_0007707 could mediate PDE3B expression via sponging miR-27b-3p, and PDE3B overturned miR-27b-3p mimic-mediated effects on FLS-RA cell proliferation, apoptosis, and inflammatory response. Circ_0007707 mediated cell apoptosis and inflammatory response in FLS-RA cells through the miR-27b-3p/PDE3B axis, indicating the potential function of circ_0007707 as a target for RA treatment.


Sujet(s)
Polyarthrite rhumatoïde , microARN , Cellules synoviales , Humains , Cellules synoviales/métabolisme , microARN/génétique , microARN/métabolisme , Inflammation/métabolisme , Polyarthrite rhumatoïde/génétique , Polyarthrite rhumatoïde/métabolisme , Fibroblastes/métabolisme , Prolifération cellulaire/physiologie , Apoptose/génétique , Cellules cultivées , Cyclic Nucleotide Phosphodiesterases, Type 3/métabolisme
12.
Circulation ; 147(16): 1221-1236, 2023 04 18.
Article de Anglais | MEDLINE | ID: mdl-36876489

RÉSUMÉ

BACKGROUND: Increasing SERCA2 (sarco[endo]-plasmic reticulum Ca2+ ATPase 2) activity is suggested to be beneficial in chronic heart failure, but no selective SERCA2-activating drugs are available. PDE3A (phosphodiesterase 3A) is proposed to be present in the SERCA2 interactome and limit SERCA2 activity. Disruption of PDE3A from SERCA2 might thus be a strategy to develop SERCA2 activators. METHODS: Confocal microscopy, 2-color direct stochastic optical reconstruction microscopy, proximity ligation assays, immunoprecipitations, peptide arrays, and surface plasmon resonance were used to investigate colocalization between SERCA2 and PDE3A in cardiomyocytes, map the SERCA2/PDE3A interaction sites, and optimize disruptor peptides that release PDE3A from SERCA2. Functional experiments assessing the effect of PDE3A-binding to SERCA2 were performed in cardiomyocytes and HEK293 vesicles. The effect of SERCA2/PDE3A disruption by the disruptor peptide OptF (optimized peptide F) on cardiac mortality and function was evaluated during 20 weeks in 2 consecutive randomized, blinded, and controlled preclinical trials in a total of 148 mice injected with recombinant adeno-associated virus 9 (rAAV9)-OptF, rAAV9-control (Ctrl), or PBS, before undergoing aortic banding (AB) or sham surgery and subsequent phenotyping with serial echocardiography, cardiac magnetic resonance imaging, histology, and functional and molecular assays. RESULTS: PDE3A colocalized with SERCA2 in human nonfailing, human failing, and rodent myocardium. Amino acids 277-402 of PDE3A bound directly to amino acids 169-216 within the actuator domain of SERCA2. Disruption of PDE3A from SERCA2 increased SERCA2 activity in normal and failing cardiomyocytes. SERCA2/PDE3A disruptor peptides increased SERCA2 activity also in the presence of protein kinase A inhibitors and in phospholamban-deficient mice, and had no effect in mice with cardiomyocyte-specific inactivation of SERCA2. Cotransfection of PDE3A reduced SERCA2 activity in HEK293 vesicles. Treatment with rAAV9-OptF reduced cardiac mortality compared with rAAV9-Ctrl (hazard ratio, 0.26 [95% CI, 0.11 to 0.63]) and PBS (hazard ratio, 0.28 [95% CI, 0.09 to 0.90]) 20 weeks after AB. Mice injected with rAAV9-OptF had improved contractility and no difference in cardiac remodeling compared with rAAV9-Ctrl after aortic banding. CONCLUSIONS: Our results suggest that PDE3A regulates SERCA2 activity through direct binding, independently of the catalytic activity of PDE3A. Targeting the SERCA2/PDE3A interaction prevented cardiac mortality after AB, most likely by improving cardiac contractility.


Sujet(s)
Cyclic Nucleotide Phosphodiesterases, Type 3 , Défaillance cardiaque , Sarcoplasmic Reticulum Calcium-Transporting ATPases , Animaux , Humains , Souris , Calcium/métabolisme , Cyclic Nucleotide Phosphodiesterases, Type 3/génétique , Cyclic Nucleotide Phosphodiesterases, Type 3/métabolisme , Défaillance cardiaque/métabolisme , Cellules HEK293 , Myocarde/métabolisme , Myocytes cardiaques/métabolisme , Réticulum sarcoplasmique/métabolisme , Sarcoplasmic Reticulum Calcium-Transporting ATPases/métabolisme
13.
Eur J Pharmacol ; 944: 175562, 2023 Apr 05.
Article de Anglais | MEDLINE | ID: mdl-36736940

RÉSUMÉ

Phosphodiesterases (PDE) type 3 and 4 promote vasoconstriction by hydrolysing cAMP. In experimental heart failure (HF), PDE3 makes PDE4 redundant in aorta, but it is not known if this occurs in resistance vessels, such as mesenteric artery. As PDE2 is increased in the failing myocardium, its possible role in the vasculature also needs to be addressed. Here, the function of PDE2, PDE3 and PDE4 in rat mesenteric arteries was characterized in experimental HF. Mesenteric arteries were isolated from rats sacrificed 22 weeks after surgical stenosis of the ascending aorta (HF), or Sham surgery. PDE inhibitors were used to probe isoenzyme contributions in enzymatic and isometric tension assays. PDE2 and PDE4 activities, but not PDE3 activity, facilitate contraction produced by the thromboxane analogue U46619 in Sham arteries, while in HF all three isoenzymes contribute to this response. NO synthase inhibition by L-NAME abolished the action of the PDE2 inhibitor. L-NAME eliminated the contribution of PDE4 in HF, but unmasked a contribution for PDE3 in Sham. PDE3 and PDE4 activities attenuated relaxant response to ß-adrenergic stimulation in Sham and HF. PDE2 did not participate in cAMP or cGMP-mediated relaxant responses. PDE3 and PDE4 cAMP-hydrolysing activities were smaller in HF mesenteric arteries, while PDE2 activity was scarce in both groups. Endothelial cells and arterial myocytes displayed PDE2 immunolabelling. We highlight that, by contrast with previous observations in aorta, PDE4 participates equally as PDE3 in contracting mesenteric artery in HF. PDE2 activity emerges as a promoter of contractile response that is preserved in HF.


Sujet(s)
Cyclic Nucleotide Phosphodiesterases, Type 4 , Défaillance cardiaque , Rats , Animaux , Rat Wistar , Cellules endothéliales , L-NAME , Cyclic Nucleotide Phosphodiesterases, Type 3 , Artères mésentériques , 3',5'-Cyclic-AMP Phosphodiesterases
14.
Naunyn Schmiedebergs Arch Pharmacol ; 396(4): 669-682, 2023 04.
Article de Anglais | MEDLINE | ID: mdl-36445386

RÉSUMÉ

Levosimendan (up to 10 µM) given alone failed to increase force of contraction in isolated electrically stimulated (1 Hz) left atrial (LA) preparations from wild-type mice. Only in the additional presence of 0.1 µM rolipram, an inhibitor of the activity of phosphodiesterase IV, levosimendan increased force of contraction in LA and increased the phosphorylation state of phospholamban at amino acid serine 16. Levosimendan alone increased the beating rate in isolated spontaneously beating right atrial preparations from mice and this effect was potentiated by rolipram. The positive inotropic and the positive chronotropic effects of levosimendan in mouse atrial preparations were attenuated by 10 µM propranolol. Finally, we studied the contractile effects of levosimendan in isolated electrically stimulated (1 Hz) right atrial preparations from the human atrium (HAP), obtained during cardiac surgery. We detected concentration-dependent positive inotropic effects of levosimendan alone that reached plateau at 1 µM levosimendan in HAP (n = 11). Levosimendan shortened time of tension relaxation in HAP. Cilostamide (1 µM), an inhibitor of phosphodiesterase III, or propranolol (10 µM) blocked the positive inotropic effect of levosimendan in HAP. Levosimendan (1 µM) alone increased in HAP the phosphorylation state of phospholamban. In conclusion, we present evidence that levosimendan acts via phosphodiesterase III inhibition in the human atrium leading to phospholamban phosphorylation and thus explaining the positive inotropic effects of levosimendan in HAP.


Sujet(s)
Fibrillation auriculaire , Propranolol , Humains , Souris , Animaux , Simendan/pharmacologie , Rolipram/pharmacologie , Phosphorylation , Cyclic Nucleotide Phosphodiesterases, Type 3/métabolisme , Propranolol/pharmacologie , Contraction myocardique , Cardiotoniques/pharmacologie
16.
Circulation ; 146(23): 1758-1778, 2022 12 06.
Article de Anglais | MEDLINE | ID: mdl-36259389

RÉSUMÉ

BACKGROUND: Phosphodiesterase 3A (PDE3A) gain-of-function mutations cause hypertension with brachydactyly (HTNB) and lead to stroke. Increased peripheral vascular resistance, rather than salt retention, is responsible. It is surprising that the few patients with HTNB examined so far did not develop cardiac hypertrophy or heart failure. We hypothesized that, in the heart, PDE3A mutations could be protective. METHODS: We studied new patients. CRISPR-Cas9-engineered rat HTNB models were phenotyped by telemetric blood pressure measurements, echocardiography, microcomputed tomography, RNA-sequencing, and single nuclei RNA-sequencing. Human induced pluripotent stem cells carrying PDE3A mutations were established, differentiated to cardiomyocytes, and analyzed by Ca2+ imaging. We used Förster resonance energy transfer and biochemical assays. RESULTS: We identified a new PDE3A mutation in a family with HTNB. It maps to exon 13 encoding the enzyme's catalytic domain. All hitherto identified HTNB PDE3A mutations cluster in exon 4 encoding a region N-terminally from the catalytic domain of the enzyme. The mutations were recapitulated in rat models. Both exon 4 and 13 mutations led to aberrant phosphorylation, hyperactivity, and increased PDE3A enzyme self-assembly. The left ventricles of our patients with HTNB and the rat models were normal despite preexisting hypertension. A catecholamine challenge elicited cardiac hypertrophy in HTNB rats only to the level of wild-type rats and improved the contractility of the mutant hearts, compared with wild-type rats. The ß-adrenergic system, phosphodiesterase activity, and cAMP levels in the mutant hearts resembled wild-type hearts, whereas phospholamban phosphorylation was decreased in the mutants. In our induced pluripotent stem cell cardiomyocyte models, the PDE3A mutations caused adaptive changes of Ca2+ cycling. RNA-sequencing and single nuclei RNA-sequencing identified differences in mRNA expression between wild-type and mutants, affecting, among others, metabolism and protein folding. CONCLUSIONS: Although in vascular smooth muscle, PDE3A mutations cause hypertension, they confer protection against hypertension-induced cardiac damage in hearts. Nonselective PDE3A inhibition is a final, short-term option in heart failure treatment to increase cardiac cAMP and improve contractility. Our data argue that mimicking the effect of PDE3A mutations in the heart rather than nonselective PDE3 inhibition is cardioprotective in the long term. Our findings could facilitate the search for new treatments to prevent hypertension-induced cardiac damage.


Sujet(s)
Défaillance cardiaque , Hypertension artérielle , Cellules souches pluripotentes induites , Humains , Rats , Animaux , Cyclic Nucleotide Phosphodiesterases, Type 3/génétique , Cyclic Nucleotide Phosphodiesterases, Type 3/métabolisme , Microtomographie aux rayons X , Cellules souches pluripotentes induites/métabolisme , Hypertension artérielle/complications , Hypertension artérielle/génétique , Myocytes cardiaques/métabolisme , Cardiomégalie , ARN
17.
FASEB J ; 36(10): e22545, 2022 10.
Article de Anglais | MEDLINE | ID: mdl-36094323

RÉSUMÉ

The kidneys are radiosensitive and dose-limiting organs for radiotherapy (RT) targeting abdominal and paraspinal tumors. Excessive radiation doses to the kidneys ultimately lead to radiation nephropathy. Our prior work unmasked a novel role for the lipid-modifying enzyme, sphingomyelin phosphodiesterase acid-like 3b (SMPDL3b), in regulating the response of renal podocytes to radiation injury. In this study, we investigated the role of SMPDL3b in DNA double-strand breaks (DSBs) repair in vitro and in vivo. We assessed the kinetics of DSBs recognition and repair along with the ATM pathway and nuclear sphingolipid metabolism in wild-type (WT) and SMPDL3b overexpressing (OE) human podocytes. We also assessed the extent of DNA damage repair in SMPDL3b knock-down (KD) human podocytes, and C57BL6 WT and podocyte-specific SMPDL3b-knock out (KO) mice after radiation injury. We found that SMPDL3b overexpression enhanced DSBs recognition and repair through modulating ATM nuclear shuttling. OE podocytes were protected against radiation-induced apoptosis by increasing the phosphorylation of p53 at serine 15 and attenuating subsequent caspase-3 cleavage. SMPDL3b overexpression prevented radiation-induced alterations in nuclear ceramide-1-phosphate (C1P) and ceramide levels. Interestingly, exogenous C1P pretreatment radiosensitized OE podocytes by delaying ATM nuclear foci formation and DSBs repair. On the other hand, SMPDL3b knock-down, in vitro and in vivo, induced a significant delay in DSBs repair. Additionally, increased activation of apoptosis was induced in podocytes of SMPDL3b-KO mice compared to WT mice at 24 h post-irradiation. Together, our results unravel a novel role for SMPDL3b in radiation-induced DNA damage response. The current work suggests that SMPDL3b modulates nuclear sphingolipid metabolism, ATM nuclear shuttling, and DSBs repair.


Sujet(s)
Podocytes , Lésions radiques , Animaux , Céramides/métabolisme , Cyclic Nucleotide Phosphodiesterases, Type 3 , Cassures double-brin de l'ADN , Humains , Rein/métabolisme , Souris , Souris de lignée C57BL , Souris knockout , Podocytes/métabolisme , Lésions radiques/génétique , Lésions radiques/métabolisme , Sphingomyeline phosphodiesterase/génétique , Sphingomyeline phosphodiesterase/métabolisme
18.
J Cell Biochem ; 123(12): 2030-2043, 2022 12.
Article de Anglais | MEDLINE | ID: mdl-36125973

RÉSUMÉ

Cilostamide, a phosphodiesterase 3A (Pde3A) inhibitor, is known to increase intraoocyte cyclic adenosine monophosphate (cAMP) level which is involved in sustaining meiotic arrest of the oocytes. To explore the mechanisms involved in the cilostamide-mediated meiotic arrest of the oocytes, the present study describes the effects of cilostamide on cAMP level and related factors involved in maturation of the oocytes at its different meiotic stages; diplotene, metaphase I (MI) and metaphase II (MII). The oocytes from these three stages were collected from rat ovary and incubated with 10 µM cilostamide for 3 h in CO2 incubator. The levels of cAMP, cyclic guanosine monophosphate (cGMP) and the key players of maintaining meiotic arrest during oocyte maturation; Emi2, Apc, Cyclin B1, and Cdk1, were analyzed in diplotene, MI and MII stages. Pde3A was found to be expressed at all three stages but with the lowest level in MI oocyte. As compared to the control sets, the cAMP concentration was found to be highest in MII whereas cGMP was highest in the diplotene stage of cilostamide-treated group. The treated group showed declined reactive oxygen species level as compared with the control counterparts. Relatively increased levels of the Emi2, Cyclin B1, and phosphorylated thr161 of Cdk1 versus declined levels of phosphorylated thr14/tyr15 of Cdk1 in diplotene and MII stage oocytes are known to be involved in maintaining meiotic arrest and all these factors were found to undergo similar pattern of change due to the treatment with cilostamide. The findings thus suggest that cilostamide treatment promotes meiotic arrest by Pde3A inhibition led increase of both cAMP and cGMP level vis-a-vis modulation of the related regulatory factors such as Emi2, CyclinB1, and phosphorylated status of Cdk1 in diplotene and MII stage oocytes. Such a mechanism of meiotic arrest could allow the oocyte to prepare itself for meiotic maturation and thereby to improve oocyte quality.


Sujet(s)
Facteur de promotion de la maturation , Inhibiteurs de la phosphodiestérase , Femelle , Rats , Animaux , Cycline B1 , Inhibiteurs de la phosphodiestérase/pharmacologie , Méiose , Cyclic Nucleotide Phosphodiesterases, Type 3 , Ovocytes , AMP cyclique/pharmacologie , GMP cyclique/pharmacologie , AMP/pharmacologie
19.
Phytother Res ; 36(9): 3540-3554, 2022 Sep.
Article de Anglais | MEDLINE | ID: mdl-35703011

RÉSUMÉ

Protein signaling complexes play important roles in prevention of several cancer types and can be used for development of targeted therapy. The roles of signaling complexes of phosphodiesterase 3B (PDE3B) and Rap guanine nucleotide exchange factor 3 (RAPGEF3), which are two important enzymes of cyclic adenosine monophosphate (cAMP) metabolism, in cancer have not been fully explored. In the current study, a natural product Kaempferol-3-O-(3'',4''-di-E-p-coumaroyl)-α-L-rhamnopyranoside designated as KOLR was extracted from Cinnamomum pauciflorum Nees leaves. KOLR exhibited higher cytotoxic effects against BxCP-3 pancreatic cancer cell line. In BxPC-3 cells, the KOLR could enhance the formation of RAPGEF 3/ PDE3B protein complex to inhibit the activation of Rap-1 and PI3K-AKT pathway, thereby promoting cell apoptosis and inhibiting cell metastasis. Mutation of RAPGEF3 G557A or low expression of PDE3B inactivated the binding action of KOLR resulting in KOLR resistance. The findings of this study show that PDE3B/RAPGEF3 complex is a potential therapeutic cancer target.


Sujet(s)
Cinnamomum , Phosphatidylinositol 3-kinases , AMP cyclique/métabolisme , Cyclic Nucleotide Phosphodiesterases, Type 3/génétique , Cyclic Nucleotide Phosphodiesterases, Type 3/métabolisme , Facteurs d'échange de nucléotides guanyliques/métabolisme , Phosphatidylinositol 3-kinases/métabolisme , Feuilles de plante/métabolisme
20.
Cell Signal ; 94: 110322, 2022 06.
Article de Anglais | MEDLINE | ID: mdl-35346821

RÉSUMÉ

Cyclic-AMP (cAMP), the first second messenger to be identified, is synthesized, and is universally utilized as a second messenger, and plays important roles in integrity, and function of organs, including heart. Through its coupling with other intracellular messengers, cAMP facilitates excitation-contraction coupling, increases heart rate and conduction velocity. It is degraded by a class of enzymes called cAMP-dependent phosphodiesterase (PDE), with PDE3 and PDE4 being the predominant isoforms in the heart. This highly diverse class of enzymes degrade cAMP and through anchoring proteins generates dynamic microdomains to target specific proteins and control specific cell functions in response to various stimuli. The impaired function of the anchoring protein either by inherited genetic mutations or acquired injuries results in altered intracellular targeting, and blunted responsiveness to stimulating pathways and contributes to pathological cardiac remodeling, cardiac arrhythmias and reduced cell survival. Recent genetic studies provide compelling evidence for an association between the variants in the anchoring protein PDE4DIP and atrial fibrillation, stroke, and heart failure.


Sujet(s)
Cyclic Nucleotide Phosphodiesterases, Type 4 , Défaillance cardiaque , 3',5'-Cyclic-AMP Phosphodiesterases/métabolisme , AMP cyclique/métabolisme , Cyclic Nucleotide Phosphodiesterases, Type 3/génétique , Cyclic Nucleotide Phosphodiesterases, Type 3/métabolisme , Cyclic Nucleotide Phosphodiesterases, Type 4/génétique , Cyclic Nucleotide Phosphodiesterases, Type 4/métabolisme , Coeur , Humains , Systèmes de seconds messagers
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...