Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 39.963
Filtrer
1.
Chem Biol Drug Des ; 104(1): e14573, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38965664

RÉSUMÉ

Infectious diseases have been jeopardized problem that threaten public health over a long period of time. The growing prevalence of drug-resistant pathogens and infectious cases have led to a decrease in the number of effective antibiotics, which highlights the urgent need for the development of new antibacterial agents. Serine acetyltransferase (SAT), also known as CysE in certain bacterial species, and O-acetylserine sulfhydrylase (OASS), also known as CysK in select bacteria, are indispensable enzymes within the cysteine biosynthesis pathway of various pathogenic microorganisms. These enzymes play a crucial role in the survival of these pathogens, making SAT and OASS promising targets for the development of novel anti-infective agents. In this comprehensive review, we present an introduction to the structure and function of SAT and OASS, along with an overview of existing inhibitors for SAT and OASS as potential antibacterial agents. Our primary focus is on elucidating the inhibitory activities, structure-activity relationships, and mechanisms of action of these inhibitors. Through this exploration, we aim to provide insights into promising strategies and prospects in the development of antibacterial agents that target these essential enzymes.


Sujet(s)
Antibactériens , O-acetylserine(thiol)-lyase , Cystéine , Antienzymes , Serine O-acetyltransferase , Serine O-acetyltransferase/métabolisme , Serine O-acetyltransferase/composition chimique , Serine O-acetyltransferase/antagonistes et inhibiteurs , Antienzymes/composition chimique , Antienzymes/pharmacologie , Antienzymes/métabolisme , Cystéine/métabolisme , Cystéine/composition chimique , Cystéine/biosynthèse , Antibactériens/composition chimique , Antibactériens/pharmacologie , Antibactériens/biosynthèse , O-acetylserine(thiol)-lyase/métabolisme , O-acetylserine(thiol)-lyase/antagonistes et inhibiteurs , Relation structure-activité , Humains , Bactéries/enzymologie , Bactéries/effets des médicaments et des substances chimiques , Bactéries/métabolisme
2.
Proc Natl Acad Sci U S A ; 121(28): e2408092121, 2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-38968106

RÉSUMÉ

The multinuclear nonheme iron-dependent oxidases (MNIOs) are a rapidly growing family of enzymes involved in the biosynthesis of ribosomally synthesized, posttranslationally modified peptide natural products (RiPPs). Recently, a secreted virulence factor from nontypeable Haemophilus influenzae (NTHi) was found to be expressed from an operon, which we designate the hvf operon, that also encodes an MNIO. Here, we show by Mössbauer spectroscopy that the MNIO HvfB contains a triiron cofactor. We demonstrate that HvfB works together with HvfC [a RiPP recognition element (RRE)-containing partner protein] to perform six posttranslational modifications of cysteine residues on the virulence factor precursor peptide HvfA. Structural characterization by tandem mass spectrometry and NMR shows that these six cysteine residues are converted to oxazolone and thioamide pairs, similar to those found in the RiPP methanobactin. Like methanobactin, the mature virulence factor, which we name oxazolin, uses these modified residues to coordinate Cu(I) ions. Considering the necessity of oxazolin for host cell invasion by NTHi, these findings point to a key role for copper during NTHi infection. Furthermore, oxazolin and its biosynthetic pathway represent a potential therapeutic target for NTHi.


Sujet(s)
Protéines bactériennes , Cuivre , Haemophilus influenzae , 4-Éthoxyméthylène-2-phényl-oxazol-5(4H)-one , Facteurs de virulence , Haemophilus influenzae/métabolisme , Haemophilus influenzae/enzymologie , Haemophilus influenzae/génétique , Haemophilus influenzae/pathogénicité , Facteurs de virulence/métabolisme , Facteurs de virulence/génétique , Cuivre/métabolisme , Cuivre/composition chimique , Protéines bactériennes/métabolisme , Protéines bactériennes/génétique , 4-Éthoxyméthylène-2-phényl-oxazol-5(4H)-one/métabolisme , Thioamides/métabolisme , Thioamides/composition chimique , Fer/métabolisme , Maturation post-traductionnelle des protéines , Oxidoreductases/métabolisme , Oxidoreductases/génétique , Opéron , Cystéine/métabolisme
3.
Front Immunol ; 15: 1369326, 2024.
Article de Anglais | MEDLINE | ID: mdl-38953022

RÉSUMÉ

Objectives: Mast cell (MC) degranulation is a key process in allergic reactions and inflammatory responses. Aspartate aminotransferase 1 (AAT1)-derived endogenous sulfur dioxide (SO2) is an important regulator of MC function. However, the mechanism underlying its role in MC degranulation remains unclear. This study aimed to investigate the mechanism by which endogenous SO2 controlled MC degranulation. Methods: HMC-1 and Rat basophilic leukemia cell MC line (RBL-2H3) were used in the cell experiments. SO2 content was detected by in situ fluorescent probe. MC degranulation represented by the release rate of MC ß-hexosaminidase was determined using a colorimetric assay. Sulfenylation of galectin-9 (Gal-9) in MCs and purified protein was detected using a biotin switch assay. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to determine the exact sulfenylation sites of Gal-9 by SO2. Animal models of passive cutaneous anaphylaxis (PCA) and hypoxia-driven pulmonary vascular remodeling were used to investigate the effect of SO2 on mast cell activation in vivo. Site-directed mutation of Gal-9 was conducted to confirm the exact site of SO2 and support the significance of SO2/Gal-9 signal axis in the regulation of MC degranulation. Results: Degranulation was increased in AAT1-knockdowned MCs, and SO2 supplementation reversed the increase in MC degranulation. Furthermore, deficiency of endogenous SO2 contributed to IgE-mediated degranulation in vitro. Besides, SO2 inhibited IgE-mediated and hypoxia-driven MC degranulation in vivo. Mechanistically, LC-MS/MS analysis and site-directed mutation results showed that SO2 sulfenylated Gal-9 at cysteine 74. Sulfenylation of the 74th cysteine of Gal-9 protein was required in the SO2-inhibited MC degranulation under both physiological and pathophysiological conditions. Conclusion: These findings elucidated that SO2 inhibited MC degranulation via sulfenylating Gal-9 under both physiological and pathophysiological conditions, which might provide a novel treatment approach for MC activation-related diseases.


Sujet(s)
Dégranulation cellulaire , Cystéine , Galectines , Mastocytes , Dioxyde de soufre , Animaux , Dégranulation cellulaire/effets des médicaments et des substances chimiques , Mastocytes/métabolisme , Mastocytes/immunologie , Mastocytes/effets des médicaments et des substances chimiques , Cystéine/métabolisme , Rats , Dioxyde de soufre/pharmacologie , Dioxyde de soufre/métabolisme , Humains , Galectines/métabolisme , Souris , Mâle , Anaphylaxie cutanée passive , Lignée cellulaire
4.
Proc Natl Acad Sci U S A ; 121(29): e2400883121, 2024 Jul 16.
Article de Anglais | MEDLINE | ID: mdl-38980908

RÉSUMÉ

Gasdermin D (GSDMD)-mediated pyroptotic cell death drives inflammatory cytokine release and downstream immune responses upon inflammasome activation, which play important roles in host defense and inflammatory disorders. Upon activation by proteases, the GSDMD N-terminal domain (NTD) undergoes oligomerization and membrane translocation in the presence of lipids to assemble pores. Despite intensive studies, the molecular events underlying the transition of GSDMD from an autoinhibited soluble form to an oligomeric pore form inserted into the membrane remain incompletely understood. Previous work characterized S-palmitoylation for gasdermins from bacteria, fungi, invertebrates, as well as mammalian gasdermin E (GSDME). Here, we report that a conserved residue Cys191 in human GSDMD was S-palmitoylated, which promoted GSDMD-mediated pyroptosis and cytokine release. Mutation of Cys191 or treatment with palmitoyltransferase inhibitors cyano-myracrylamide (CMA) or 2-bromopalmitate (2BP) suppressed GSDMD palmitoylation, its localization to the membrane and dampened pyroptosis or IL-1ß secretion. Furthermore, Gsdmd-dependent inflammatory responses were alleviated by inhibition of palmitoylation in vivo. By contrast, coexpression of GSDMD with palmitoyltransferases enhanced pyroptotic cell death, while introduction of exogenous palmitoylation sequences fully restored pyroptotic activities to the C191A mutant, suggesting that palmitoylation-mediated membrane localization may be distinct from other molecular events such as GSDMD conformational change during pore assembly. Collectively, our study suggests that S-palmitoylation may be a shared regulatory mechanism for GSDMD and other gasdermins, which points to potential avenues for therapeutically targeting S-palmitoylation of gasdermins in inflammatory disorders.


Sujet(s)
Cystéine , Protéines et peptides de signalisation intracellulaire , Lipoylation , Protéines de liaison aux phosphates , Pyroptose , Protéines de liaison aux phosphates/métabolisme , Protéines de liaison aux phosphates/génétique , Humains , Protéines et peptides de signalisation intracellulaire/métabolisme , Protéines et peptides de signalisation intracellulaire/génétique , Cystéine/métabolisme , Animaux , Souris , Cytokines/métabolisme , Cellules HEK293 , Inflammasomes/métabolisme , Gasdermines
5.
Methods Mol Biol ; 2821: 57-63, 2024.
Article de Anglais | MEDLINE | ID: mdl-38997479

RÉSUMÉ

To produce antibodies against synthetic peptides, it is necessary to couple them to a protein carrier. This chapter provides a nonspecialist overview of peptide-carrier conjugation. Furthermore, a protocol for coupling cysteine-containing peptides to bovine serum albumin is outlined.


Sujet(s)
Cystéine , Peptides , Sérumalbumine bovine , Peptides/composition chimique , Sérumalbumine bovine/composition chimique , Cystéine/composition chimique , Animaux , Bovins
6.
Methods Mol Biol ; 2839: 249-259, 2024.
Article de Anglais | MEDLINE | ID: mdl-39008259

RÉSUMÉ

Thiol-disulfide interconversions are pivotal in the intricate chemistry of biological systems. They play a vital role in governing cellular redox potential and shielding against oxidative harm. These interconversions can also act as molecular switches within an expanding array of redox-regulated proteins, facilitating dynamic and responsive processes. Furthermore, metal-binding proteins often use thiols for coordination. Reverse thiol trapping is a valuable analytical tool to study the redox state of cysteines in biological systems. By selectively capturing and stabilizing free thiol species with an alkylating agent, reverse thiol trapping allows for their subsequent identification and quantification. Various methods can be employed to analyze the trapped thiol adducts, including electrophoresis-based methods, mass spectrometry, nuclear magnetic resonance spectroscopy, and chromatographic techniques. In this chapter, we will focus on describing a simple and sensitive method to sequentially block thiols in their cellular state with a cell-permeant agent (iodoacetamide), and following reduction and denaturation of the samples, trap the native disulfides with a second blocker that shifts the apparent molecular weight of the protein. The oxidation status of proteins for which suitable antibodies are available can then be analyzed by immunoblotting. We present examples of mitochondrial proteins that use cysteine thiols to coordinate metal factors such as iron-sulfur clusters, zinc, and copper.


Sujet(s)
Protéines mitochondriales , Oxydoréduction , Thiols , Thiols/composition chimique , Thiols/métabolisme , Protéines mitochondriales/métabolisme , Protéines mitochondriales/composition chimique , Humains , 2-Iodo-acétamide/composition chimique , Disulfures/composition chimique , Disulfures/métabolisme , Métaux/composition chimique , Métaux/métabolisme , Cystéine/composition chimique , Cystéine/métabolisme
7.
Nutrients ; 16(13)2024 Jun 24.
Article de Anglais | MEDLINE | ID: mdl-38999752

RÉSUMÉ

Vitamin D receptors are expressed in many organs and tissues, which suggests that vitamin D (VD) affects physiological functions beyond its role in maintaining bone health. Deficiency or inadequacy of 25(OH)VD is widespread globally. Population studies demonstrate that a positive association exists between a high incidence of VD deficiency and a high incidence of chronic diseases, including dementia, diabetes, and heart disease. However, many subjects have difficulty achieving the required circulating levels of 25(OH)VD even after high-dose VD supplementation, and randomized controlled clinical trials have reported limited therapeutic success post-VD supplementation. Thus, there is a discordance between the benefits of VD supplementation and the prevention of chronic diseases in those with VD deficiency. Why this dissociation exists is currently under debate and is of significant public interest. This review discusses the downregulation of VD-metabolizing genes needed to convert consumed VD into 25(OH)VD to enable its metabolic action exhibited by subjects with metabolic syndrome, obesity, and other chronic diseases. Research findings indicate a positive correlation between the levels of 25(OH)VD and glutathione (GSH) in both healthy and diabetic individuals. Cell culture and animal experiments reveal a novel mechanism through which the status of GSH can positively impact the expression of VD metabolism genes. This review highlights that for better success, VD deficiency needs to be corrected at multiple levels: (i) VD supplements and/or VD-rich foods need to be consumed to provide adequate VD, and (ii) the body needs to be able to upregulate VD-metabolizing genes to convert VD into 25(OH)VD and then to 1,25(OH)2VD to enhance its metabolic action. This review outlines the association between 25(OH)VD deficiency/inadequacy and decreased GSH levels, highlighting the positive impact of combined VD+LC supplementation on upregulating GSH, VD-metabolizing genes, and VDR. These effects have the potential to enhance 25(OH)VD levels and its therapeutic efficacy.


Sujet(s)
Cystéine , Compléments alimentaires , Glutathion , Régulation positive , Carence en vitamine D , Vitamine D , Humains , Carence en vitamine D/traitement médicamenteux , Carence en vitamine D/sang , Carence en vitamine D/génétique , Vitamine D/sang , Vitamine D/administration et posologie , Vitamine D/analogues et dérivés , Glutathion/métabolisme , Glutathion/sang , Animaux , Récepteur calcitriol/génétique , Récepteur calcitriol/métabolisme
8.
Int J Mol Sci ; 25(13)2024 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-39000066

RÉSUMÉ

Galectins are multifunctional effectors in cellular homeostasis and dysregulation. Oxidation of human galectin-1 (Gal-1) with its six sulfhydryls produces a disulfide-bridged oxidized form that lacks normal lectin activity yet gains new glycan-independent functionality. Nevertheless, the mechanistic details as to how Gal-1 oxidation occurs remain unclear. Here, we used 15N and 13C HSQC NMR spectroscopy to gain structural insight into the CuSO4-mediated path of Gal-1 oxidation and identified a minimum two-stage conversion process. During the first phase, disulfide bridges form slowly between C16-C88 and/or C42-C66 to produce a partially oxidized, conformationally flexible intermediate that retains the ability to bind lactose. Site-directed mutagenesis of C16 to S16 impedes the onset of this overall slow process. During the second phase, increased motional dynamics of the intermediate enable the relatively distant C2 and C130 residues to form the third and final disulfide bond, leading to an unfolded state and consequent dimer dissociation. This fully oxidized end state loses the ability to bind lactose, as shown by the hemagglutination assay. Consistent with this model, we observed that the Gal-1 C2S mutant maintains intermediate-state structural features with a free sulfhydryl group at C130. Incubation with dithiothreitol reduces all disulfide bonds and allows the lectin to revert to its native state. Thus, the sequential, non-random formation of three disulfide bridges in Gal-1 in an oxidative environment acts as a molecular switch for fundamental changes to its functionality. These data inspire detailed bioactivity analysis of the structurally defined oxidized intermediate in, e.g., acute and chronic inflammation.


Sujet(s)
Cystéine , Galectine 1 , Oxydoréduction , Galectine 1/métabolisme , Galectine 1/composition chimique , Galectine 1/génétique , Humains , Cystéine/métabolisme , Cystéine/composition chimique , Disulfures/métabolisme , Disulfures/composition chimique , Pliage des protéines , Dépliement des protéines , Modèles moléculaires , Lactose/métabolisme , Lactose/composition chimique , Mutagenèse dirigée
9.
Int J Mol Sci ; 25(13)2024 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-39000590

RÉSUMÉ

Protein cysteine S-glycosylation is a relatively rare and less well characterized post-translational modification (PTM). Creating reliable model proteins that carry this modification is challenging. The lack of available models or natural S-glycosylated proteins significantly hampers the development of mass-spectrometry-based (MS-based) methodologies for detecting protein cysteine S-glycosylation in real-world proteomic studies. There is also limited MS-sequencing data describing it as easier to create synthetic S-glycopeptides. Here, we present the results of an in-depth manual analysis of automatically annotated CID/HCD spectra for model S-glucopeptides. The CID spectra show a long series of y/b-fragment ions with retained S-glucosylation, regardless of the dominant m/z signals corresponding to neutral loss of 1,2-anhydroglucose from the precursor ions. In addition, the spectra show signals manifesting glucosyl transfer from the cysteine position onto lysine, arginine (Lys, Arg) side chains, and a peptide N-terminus. Other spectral evidence indicates that the N-glucosylated initial products of transfer are converted into N-fructosylated (i.e., glycated) structures due to Amadori rearrangement. We discuss the peculiar transfer of the glucose oxocarbenium ion (Glc+) to positively charged guanidinium residue (ArgH+) and propose a mechanism for the gas-phase Amadori rearrangement involving a 1,2-hydride ion shift.


Sujet(s)
Cystéine , Glycosylation , Cystéine/composition chimique , Cystéine/métabolisme , Maturation post-traductionnelle des protéines , Glycopeptides/composition chimique , Glycopeptides/métabolisme , Peptides/composition chimique , Peptides/métabolisme , Gaz/métabolisme , Gaz/composition chimique , Glucose/métabolisme , Glucose/composition chimique , Protéomique/méthodes , Spectrométrie de masse en tandem/méthodes
10.
Nat Commun ; 15(1): 5795, 2024 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-38987250

RÉSUMÉ

Animals protect themself from microbial attacks by robust skins or a cuticle as in Caenorhabditis elegans. Nematode-trapping fungi, like Arthrobotrys flagrans, overcome the cuticle barrier and colonize the nematode body. While lytic enzymes are important for infection, small-secreted proteins (SSPs) without enzymatic activity, emerge as crucial virulence factors. Here, we characterized NipA (nematode induced protein) which A. flagrans secretes at the penetration site. In the absence of NipA, A. flagrans required more time to penetrate C. elegans. Heterologous expression of the fungal protein in the epidermis of C. elegans led to blister formation. NipA contains 13 cysteines, 12 of which are likely to form disulfide bridges, and the remaining cysteine was crucial for blister formation. We hypothesize that NipA interferes with cuticle integrity to facilitate fungal entry. Genome-wide expression analyses of C. elegans expressing NipA revealed mis-regulation of genes associated with extracellular matrix (ECM) maintenance and innate immunity.


Sujet(s)
Ascomycota , Caenorhabditis elegans , Cystéine , Protéines fongiques , Facteurs de virulence , Animaux , Caenorhabditis elegans/microbiologie , Facteurs de virulence/métabolisme , Facteurs de virulence/génétique , Cystéine/métabolisme , Protéines fongiques/métabolisme , Protéines fongiques/génétique , Ascomycota/pathogénicité , Ascomycota/génétique , Ascomycota/métabolisme , Immunité innée , Matrice extracellulaire/métabolisme , Protéines de Caenorhabditis elegans/métabolisme , Protéines de Caenorhabditis elegans/génétique , Épiderme/métabolisme , Épiderme/microbiologie
11.
Nat Commun ; 15(1): 5535, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38951545

RÉSUMÉ

The conversion of a soluble protein into polymeric amyloid structures is a process that is poorly understood. Here, we describe a fully redox-regulated amyloid system in which cysteine oxidation of the tumor suppressor protein p16INK4a leads to rapid amyloid formation. We identify a partially-structured disulfide-bonded dimeric intermediate species that subsequently assembles into fibrils. The stable amyloid structures disassemble when the disulfide bond is reduced. p16INK4a is frequently mutated in cancers and is considered highly vulnerable to single-point mutations. We find that multiple cancer-related mutations show increased amyloid formation propensity whereas mutations stabilizing the fold prevent transition into amyloid. The complex transition into amyloids and their structural stability is therefore strictly governed by redox reactions and a single regulatory disulfide bond.


Sujet(s)
Amyloïde , Inhibiteur p16 de kinase cycline-dépendante , Cystéine , Oxydoréduction , Amyloïde/métabolisme , Amyloïde/composition chimique , Humains , Inhibiteur p16 de kinase cycline-dépendante/métabolisme , Inhibiteur p16 de kinase cycline-dépendante/génétique , Cystéine/métabolisme , Cystéine/composition chimique , Disulfures/métabolisme , Disulfures/composition chimique , Thiols/métabolisme , Thiols/composition chimique , Mutation , Polymérisation
12.
Nat Commun ; 15(1): 5939, 2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-39009599

RÉSUMÉ

The precise regulation of protein function is essential in biological systems and a key goal in chemical biology and protein engineering. Here, we describe a straightforward method to engineer functional control into the isopeptide bond-forming SpyTag/SpyCatcher protein ligation system. First, we perform a cysteine scan of the structured region of SpyCatcher. Except for two known reactive and catalytic residues, none of these mutations abolish reactivity. In a second screening step, we modify the cysteines with disulfide bond-forming small molecules. Here we identify 8 positions at which modifications strongly inhibit reactivity. This inhibition can be reversed by reducing agents. We call such a reversibly inhibitable SpyCatcher "SpyLock". Using "BiLockCatcher", a genetic fusion of wild-type SpyCatcher and SpyLock, and SpyTagged antibody fragments, we generate bispecific antibodies in a single, scalable format, facilitating the screening of a large number of antibody combinations. We demonstrate this approach by screening anti-PD-1/anti-PD-L1 bispecific antibodies using a cellular reporter assay.


Sujet(s)
Anticorps bispécifiques , Cystéine , Ingénierie des protéines , Anticorps bispécifiques/pharmacologie , Anticorps bispécifiques/immunologie , Anticorps bispécifiques/composition chimique , Humains , Ingénierie des protéines/méthodes , Cystéine/composition chimique , Cystéine/métabolisme , Récepteur-1 de mort cellulaire programmée/antagonistes et inhibiteurs , Récepteur-1 de mort cellulaire programmée/immunologie , Récepteur-1 de mort cellulaire programmée/métabolisme , Antigène CD274/métabolisme , Antigène CD274/antagonistes et inhibiteurs , Antigène CD274/immunologie , Cellules HEK293 , Disulfures/composition chimique , Animaux
13.
Nat Commun ; 15(1): 5360, 2024 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-38918375

RÉSUMÉ

Oxygen homeostasis is maintained in plants and animals by O2-sensing enzymes initiating adaptive responses to low O2 (hypoxia). Recently, the O2-sensitive enzyme ADO was shown to initiate degradation of target proteins RGS4/5 and IL32 via the Cysteine/Arginine N-degron pathway. ADO functions by catalysing oxidation of N-terminal cysteine residues, but despite multiple proteins in the human proteome having an N-terminal cysteine, other endogenous ADO substrates have not yet been identified. This could be because alternative modifications of N-terminal cysteine residues, including acetylation, prevent ADO-catalysed oxidation. Here we investigate the relationship between ADO-catalysed oxidation and NatA-catalysed acetylation of a broad range of protein sequences with N-terminal cysteines. We present evidence that human NatA catalyses N-terminal cysteine acetylation in vitro and in vivo. We then show that sequences downstream of the N-terminal cysteine dictate whether this residue is oxidised or acetylated, with ADO preferring basic and aromatic amino acids and NatA preferring acidic or polar residues. In vitro, the two modifications appear to be mutually exclusive, suggesting that distinct pools of N-terminal cysteine proteins may be acetylated or oxidised. These results reveal the sequence determinants that contribute to N-terminal cysteine protein modifications, with implications for O2-dependent protein stability and the hypoxic response.


Sujet(s)
Cystéine , Oxydoréduction , Stabilité protéique , Cystéine/métabolisme , Cystéine/composition chimique , Acétylation , Humains , Oxygène/métabolisme , Oxygène/composition chimique , Maturation post-traductionnelle des protéines , Séquence d'acides aminés , Cellules HEK293
14.
Anal Chim Acta ; 1312: 342768, 2024 Jul 11.
Article de Anglais | MEDLINE | ID: mdl-38834271

RÉSUMÉ

A novel biothiols-sensitive near-infrared (NIR) fluorescent probe RhDN based on a rhodamine skeleton was developed for early detection of drug-induced hepatotoxicity in living mice. RhDN can be used not only as a conventional large stokes shift fluorescent (FL) probe, but also as a kind of anti-Stokes frequency upconversion luminescence (FUCL) molecular probe, which represents a long wavelength excitation (808 nm) to short wavelength emission (760 nm), and response to Cys/Hcy/GSH with high sensitivity. Compared with traditional FL methods, the FUCL method exhibited a lower detection limit of Cys, Hcy, and GSH in 75.1 nM, 101.8 nM, and 84.9 nM, respectively. We exemplify RhDN for tracking endogenously biothiols distribution in living cells and further realize real-time in vivo bioimaging of biothiols activity in mice with dual-mode luminescence system. Moreover, RhDN has been successfully applied to visualize the detection of drug-induced hepatotoxicity in living mice. Overall, this report presents a unique approach to the development of large stokes shift NIR FUCL molecular probes for in vitro and in vivo biothiols biosensing.


Sujet(s)
Lésions hépatiques dues aux substances , Colorants fluorescents , Animaux , Colorants fluorescents/composition chimique , Colorants fluorescents/toxicité , Lésions hépatiques dues aux substances/imagerie diagnostique , Souris , Humains , Rayons infrarouges , Imagerie optique , Glutathion/analyse , Thiols/analyse , Thiols/composition chimique , Cystéine/analyse , Rhodamines/composition chimique , Rhodamines/toxicité , Homocystéine/analyse , Luminescence
15.
Appl Microbiol Biotechnol ; 108(1): 358, 2024 Jun 03.
Article de Anglais | MEDLINE | ID: mdl-38829381

RÉSUMÉ

Biosurfactants are in demand by the global market as natural commodities suitable for incorporation into commercial products or utilization in environmental applications. Fungi are promising producers of these molecules and have garnered interest also for their metabolic capabilities in efficiently utilizing recalcitrant and complex substrates, like hydrocarbons, plastic, etc. Within this framework, biosurfactants produced by two Fusarium solani fungal strains, isolated from plastic waste-contaminated landfill soils, were analyzed. Mycelia of these fungi were grown in the presence of 5% olive oil to drive biosurfactant production. The characterization of the emulsifying and surfactant capacity of these extracts highlighted that two different components are involved. A protein was purified and identified as a CFEM (common in fungal extracellular membrane) containing domain, revealing a good propensity to stabilize emulsions only in its aggregate form. On the other hand, an unidentified cationic smaller molecule exhibits the ability to reduce surface tension. Based on the 3D structural model of the protein, a plausible mechanism for the formation of very stable aggregates, endowed with the emulsifying ability, is proposed. KEY POINTS: • Two Fusarium solani strains are analyzed for their surfactant production. • A cationic surfactant is produced, exhibiting the ability to remarkably reduce surface tension. • An identified protein reveals a good propensity to stabilize emulsions only in its aggregate form.


Sujet(s)
Protéines fongiques , Fusarium , Tensioactifs , Fusarium/métabolisme , Fusarium/génétique , Protéines fongiques/métabolisme , Protéines fongiques/composition chimique , Protéines fongiques/génétique , Tensioactifs/métabolisme , Tensioactifs/composition chimique , Émulsifiants/métabolisme , Émulsifiants/composition chimique , Microbiologie du sol , Émulsions/composition chimique , Émulsions/métabolisme , Tension superficielle , Cystéine/métabolisme , Cystéine/composition chimique , Huile d'olive/métabolisme , Huile d'olive/composition chimique , Mycelium/métabolisme
16.
Nat Commun ; 15(1): 4901, 2024 Jun 08.
Article de Anglais | MEDLINE | ID: mdl-38851779

RÉSUMÉ

Antimicrobial resistance remains a significant global threat, driving up mortality rates worldwide. Ribosomally synthesized and post-translationally modified peptides have emerged as a promising source of novel peptide antibiotics due to their diverse chemical structures. Here, we report the discovery of new aminovinyl-(methyl)cysteine (Avi(Me)Cys)-containing peptide antibiotics through a synergistic approach combining biosynthetic rule-based omics mining and heterologous expression. We first bioinformatically identify 1172 RiPP biosynthetic gene clusters (BGCs) responsible for Avi(Me)Cys-containing peptides formation from a vast pool of over 50,000 bacterial genomes. Subsequently, we successfully establish the connection between three identified BGCs and the biosynthesis of five peptide antibiotics via biosynthetic rule-guided metabolic analysis. Notably, we discover a class V lanthipeptide, massatide A, which displays excellent activity against gram-positive pathogens, including drug-resistant clinical isolates like linezolid-resistant S. aureus and methicillin-resistant S. aureus, with a minimum inhibitory concentration of 0.25 µg/mL. The remarkable performance of massatide A in an animal infection model, coupled with a relatively low risk of resistance and favorable safety profile, positions it as a promising candidate for antibiotic development. Our study highlights the potential of Avi(Me)Cys-containing peptides in expanding the arsenal of antibiotics against multi-drug-resistant bacteria, offering promising drug leads in the ongoing battle against infectious diseases.


Sujet(s)
Antibactériens , Staphylococcus aureus résistant à la méticilline , Tests de sensibilité microbienne , Animaux , Antibactériens/pharmacologie , Antibactériens/composition chimique , Staphylococcus aureus résistant à la méticilline/effets des médicaments et des substances chimiques , Staphylococcus aureus résistant à la méticilline/génétique , Peptides cycliques/pharmacologie , Peptides cycliques/composition chimique , Humains , Famille multigénique , Souris , Peptides antimicrobiens/pharmacologie , Peptides antimicrobiens/composition chimique , Peptides antimicrobiens/génétique , Peptides antimicrobiens/métabolisme , Infections à staphylocoques/traitement médicamenteux , Infections à staphylocoques/microbiologie , Résistance bactérienne aux médicaments/génétique , Résistance bactérienne aux médicaments/effets des médicaments et des substances chimiques , Génome bactérien/génétique , Staphylococcus aureus/effets des médicaments et des substances chimiques , Staphylococcus aureus/génétique , Biologie informatique/méthodes , Cystéine/métabolisme , Cystéine/composition chimique
17.
Phys Chem Chem Phys ; 26(23): 16579-16588, 2024 Jun 12.
Article de Anglais | MEDLINE | ID: mdl-38832404

RÉSUMÉ

The transsulfuration pathway plays a key role in mammals for maintaining the balance between cysteine and homocysteine, whose concentrations are critical in several biochemical processes. Human cystathionine ß-synthase is a heme-containing, pyridoxal 5'-phosphate (PLP)-dependent enzyme found in this pathway. The heme group does not participate directly in catalysis, but has a regulatory function, whereby CO or NO binding inhibits the PLP-dependent reactions. In this study, we explore the detailed structural changes responsible for inhibition using quantum chemical calculations to validate the experimentally observed bonding patterns associated with heme CO and NO binding and molecular dynamics simulations to explore the medium-range structural changes triggered by gas binding and propagating to the PLP active site, which is more than 20 Å distant from the heme group. Our results support a previously proposed mechanical signaling model, whereby the cysteine decoordination associated with gas ligand binding leads to breaking of a hydrogen bond with an arginine residue on a neighbouring helix. In turn, this leads to a shift in position of the helix, and hence also of the PLP cofactor, ultimately disrupting a key hydrogen bond that stabilizes the PLP in its catalytically active form.


Sujet(s)
Cystathionine beta-synthase , Simulation de dynamique moléculaire , Phosphate de pyridoxal , Cystathionine beta-synthase/métabolisme , Cystathionine beta-synthase/composition chimique , Humains , Phosphate de pyridoxal/métabolisme , Phosphate de pyridoxal/composition chimique , Gaz/composition chimique , Gaz/métabolisme , Monoxyde d'azote/métabolisme , Monoxyde d'azote/composition chimique , Liaison hydrogène , Monoxyde de carbone/composition chimique , Monoxyde de carbone/métabolisme , Hème/composition chimique , Hème/métabolisme , Domaine catalytique , Théorie quantique , Cystéine/composition chimique , Cystéine/métabolisme
18.
Oncotarget ; 15: 392-399, 2024 Jun 20.
Article de Anglais | MEDLINE | ID: mdl-38900609

RÉSUMÉ

Prostate cancer (PCa) poses significant challenges in treatment, particularly when it progresses to a metastatic, castrate-resistant state. Conventional therapies, including chemotherapy, radiotherapy, and hormonal treatments, often fail due to toxicities, off-target effects, and acquired resistance. This research perspective defines an alternative therapeutic strategy focusing on the metabolic vulnerabilities of PCa cells, specifically their reliance on non-essential amino acids such as cysteine. Using an engineered enzyme cyst(e)inase to deplete the cysteine/cystine can induce oxidative stress and DNA damage in cancer cells. This depletion elevates reactive oxygen species (ROS) levels, disrupts glutathione synthesis, and enhances DNA damage, leading to cancer cell death. The combinatorial use of cyst(e)inase with agents targeting antioxidant defenses, such as thioredoxins, further amplifies ROS accumulation and cytotoxicity in PCa cells. Overall, in this perspective provides a compressive overview of the previous work on manipulating amino acid metabolism and redox balance modulate the efficacy of DNA repair-targeted and immune checkpoint blockade therapies in prostate cancer.


Sujet(s)
Altération de l'ADN , Immunothérapie , Tumeurs de la prostate , Espèces réactives de l'oxygène , Humains , Immunothérapie/méthodes , Tumeurs de la prostate/anatomopathologie , Tumeurs de la prostate/métabolisme , Tumeurs de la prostate/thérapie , Tumeurs de la prostate/génétique , Espèces réactives de l'oxygène/métabolisme , Mâle , Stress oxydatif , Réparation de l'ADN , Animaux , Cystéine/métabolisme
19.
Methods Mol Biol ; 2832: 99-113, 2024.
Article de Anglais | MEDLINE | ID: mdl-38869790

RÉSUMÉ

Redox modulation is a common posttranslational modification to regulate protein activity. The targets of oxidizing agents are cysteine residues (Cys), which have to be exposed at the surface of the proteins and are characterized by an environment that favors redox modulation. This includes their protonation state and the neighboring amino acids. The Cys redox state can be assessed experimentally by redox titrations to determine the midpoint redox potential in the protein. Exposed cysteine residues and putative intramolecular disulfide bonds can be predicted by alignments with structural data using dedicated software tools and information on conserved cysteine residues. Labeling with light and heavy reagents, such as N-ethylmaleimide (NEM), followed by mass spectrometric analysis, allows for the experimental determination of redox-responsive cysteine residues. This type of thiol redox proteomics is a powerful approach to assessing the redox state of the cell, e.g., in dependence on environmental conditions and, in particular, under abiotic stress.


Sujet(s)
Cystéine , Oxydoréduction , Protéomique , Thiols , Cystéine/métabolisme , Cystéine/composition chimique , Protéomique/méthodes , Thiols/métabolisme , Thiols/composition chimique , Stress physiologique , Maturation post-traductionnelle des protéines , Spectrométrie de masse/méthodes , Protéines/composition chimique , Protéines/métabolisme
20.
J Extracell Vesicles ; 13(6): e12455, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38887871

RÉSUMÉ

Neuroinflammation is an underlying feature of neurodegenerative conditions, often appearing early in the aetiology of a disease. Microglial activation, a prominent initiator of neuroinflammation, can be induced through lipopolysaccharide (LPS) treatment resulting in expression of the inducible form of nitric oxide synthase (iNOS), which produces nitric oxide (NO). NO post-translationally modifies cysteine thiols through S-nitrosylation, which can alter function of the target protein. Furthermore, packaging of these NO-modified proteins into extracellular vesicles (EVs) allows for the exertion of NO signalling in distant locations, resulting in further propagation of the neuroinflammatory phenotype. Despite this, the NO-modified proteome of activated microglial EVs has not been investigated. This study aimed to identify the protein post-translational modifications NO signalling induces in neuroinflammation. EVs isolated from LPS-treated microglia underwent mass spectral surface imaging using time of flight-secondary ion mass spectrometry (ToF-SIMS), in addition to iodolabelling and comparative proteomic analysis to identify post-translation S-nitrosylation modifications. ToF-SIMS imaging successfully identified cysteine thiol side chains modified through NO signalling in the LPS treated microglial-derived EV proteins. In addition, the iodolabelling proteomic analysis revealed that the EVs from LPS-treated microglia carried S-nitrosylated proteins indicative of neuroinflammation. These included known NO-modified proteins and those associated with LPS-induced microglial activation that may play an essential role in neuroinflammatory communication. Together, these results show activated microglia can exert broad NO signalling changes through the selective packaging of EVs during neuroinflammation.


Sujet(s)
Vésicules extracellulaires , Lipopolysaccharides , Microglie , Monoxyde d'azote , Transduction du signal , Microglie/métabolisme , Vésicules extracellulaires/métabolisme , Monoxyde d'azote/métabolisme , Animaux , Lipopolysaccharides/pharmacologie , Souris , Protéomique/méthodes , Maturation post-traductionnelle des protéines , Cystéine/métabolisme , Nitric oxide synthase type II/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...