Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 1.985
Filtrer
1.
Sci Rep ; 14(1): 18206, 2024 08 06.
Article de Anglais | MEDLINE | ID: mdl-39107509

RÉSUMÉ

The combination of cisplatin and pemetrexed remains the gold standard chemotherapy for malignant pleural mesothelioma (MPM), although resistance and poor response pose a significant challenge. Cytidine deaminase (CDA) is a key enzyme in the nucleotide salvage pathway and is involved in the adaptive stress response to chemotherapy. The cytidine analog capecitabine and its metabolite 5'-deoxy-5-fluorocytidine (5'-DFCR) are converted via CDA to 5-fluorouracil, which affects DNA and RNA metabolism. This study investigated a schedule-dependent treatment strategy, proposing that initial chemotherapy induces CDA expression, sensitizing cells to subsequent capecitabine treatment. Basal CDA protein expression was low in different mesothelioma cell lines but increased in the corresponding xenografts. Standard chemotherapy increased CDA protein levels in MPM cells in vitro and in vivo in a schedule-dependent manner. This was associated with epithelial-to-mesenchymal transition and with HIF-1alpha expression at the transcriptional level. In addition, pretreatment with cisplatin and pemetrexed in combination sensitized MPM xenografts to capecitabine. Analysis of a tissue microarray (TMA) consisting of samples from 98 human MPM patients revealed that most human MPM samples had negative CDA expression. While survival curves based on CDA expression in matched samples clearly separated, significance was not reached due to the limited sample size. In non-matched samples, CDA expression before but not after neoadjuvant therapy was significantly associated with worse overall survival. In conclusion, chemotherapy increases CDA expression in xenografts, which is consistent with our in vitro results in MPM and lung cancer. A subset of matched patient samples showed increased CDA expression after therapy, suggesting that a schedule-dependent treatment strategy based on chemotherapy and capecitabine may benefit a selected MPM patient population.


Sujet(s)
Capécitabine , Cytidine deaminase , Mésothéliome malin , Pémétrexed , Tumeurs de la plèvre , Tests d'activité antitumorale sur modèle de xénogreffe , Humains , Capécitabine/pharmacologie , Animaux , Lignée cellulaire tumorale , Mésothéliome malin/traitement médicamenteux , Mésothéliome malin/métabolisme , Mésothéliome malin/anatomopathologie , Cytidine deaminase/métabolisme , Cytidine deaminase/génétique , Souris , Pémétrexed/pharmacologie , Tumeurs de la plèvre/traitement médicamenteux , Tumeurs de la plèvre/métabolisme , Tumeurs de la plèvre/anatomopathologie , Cisplatine/pharmacologie , Cisplatine/usage thérapeutique , Tumeurs du poumon/traitement médicamenteux , Tumeurs du poumon/métabolisme , Tumeurs du poumon/anatomopathologie , Transition épithélio-mésenchymateuse/effets des médicaments et des substances chimiques , Mésothéliome/traitement médicamenteux , Mésothéliome/métabolisme , Mésothéliome/anatomopathologie , Femelle , Protocoles de polychimiothérapie antinéoplasique/pharmacologie , Protocoles de polychimiothérapie antinéoplasique/usage thérapeutique , Régulation de l'expression des gènes tumoraux/effets des médicaments et des substances chimiques
2.
Sci Rep ; 14(1): 15395, 2024 07 04.
Article de Anglais | MEDLINE | ID: mdl-38965255

RÉSUMÉ

The APOBEC/AID family is known for its mutator activity, and recent evidence also supports the potential impact of ADARs. Furthermore, the mutator impacts of APOBEC/ADAR mutations have not yet been investigated. Assessment of pancancer TCGA exomes identified enriched somatic variants among exomes with nonsynonymous APOBEC1, APOBEC3B, APOBEC3C, ADAR, and ADARB1 mutations, compared to exomes with synonymous ones. Principal component (PC) analysis reduced the number of potential players to eight in cancer exomes/genomes, and to five in cancer types. Multivariate regression analysis was used to assess the impact of the PCs on each COSMIC mutational signature among pancancer exomes/genomes and particular cancers, identifying several novel links, including SBS17b, SBS18, and ID7 mainly determined by APOBEC1 mRNA levels; SBS40, ID1, and ID2 by age; SBS3 and SBS16 by APOBEC3A/APOBEC3B mRNA levels; ID5 and DBS9 by DNA repair/replication (DRR) defects; and SBS7a-d, SBS38, ID4, ID8, ID13, and DBS1 by ultraviolet (UV) radiation/ADARB1 mRNA levels. APOBEC/ADAR mutations appeared to potentiate the impact of DRR defects on several mutational signatures, and some factors seemed to inversely affect certain signatures. These findings potentially implicate certain APOBEC/ADAR mutations/mRNA levels in distinct mutational signatures, particularly APOBEC1 mRNA levels in aging-related signatures and ADARB1 mRNA levels in UV radiation-related signatures.


Sujet(s)
Adenosine deaminase , Vieillissement , Mutation , ARN messager , Protéines de liaison à l'ARN , Rayons ultraviolets , Humains , Rayons ultraviolets/effets indésirables , ARN messager/génétique , ARN messager/métabolisme , Vieillissement/génétique , Adenosine deaminase/génétique , Adenosine deaminase/métabolisme , Protéines de liaison à l'ARN/génétique , Protéines de liaison à l'ARN/métabolisme , APOBEC-1 Deaminase/génétique , APOBEC-1 Deaminase/métabolisme , APOBEC Deaminases/génétique , APOBEC Deaminases/métabolisme , Cytidine deaminase/génétique , Cytidine deaminase/métabolisme , Tumeurs/génétique , Exome
3.
Viruses ; 16(7)2024 Jul 16.
Article de Anglais | MEDLINE | ID: mdl-39066304

RÉSUMÉ

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has acquired multiple mutations since its emergence. Analyses of the SARS-CoV-2 genomes from infected patients exhibit a bias toward C-to-U mutations, which are suggested to be caused by the apolipoprotein B mRNA editing enzyme polypeptide-like 3 (APOBEC3, A3) cytosine deaminase proteins. However, the role of A3 enzymes in SARS-CoV-2 replication remains unclear. To address this question, we investigated the effect of A3 family proteins on SARS-CoV-2 replication in the myeloid leukemia cell line THP-1 lacking A3A to A3G genes. The Wuhan, BA.1, and BA.5 variants had comparable viral replication in parent and A3A-to-A3G-null THP-1 cells stably expressing angiotensin-converting enzyme 2 (ACE2) protein. On the other hand, the replication and infectivity of these variants were abolished in A3A-to-A3G-null THP-1-ACE2 cells in a series of passage experiments over 20 days. In contrast to previous reports, we observed no evidence of A3-induced SARS-CoV-2 mutagenesis in the passage experiments. Furthermore, our analysis of a large number of publicly available SARS-CoV-2 genomes did not reveal conclusive evidence for A3-induced mutagenesis. Our studies suggest that A3 family proteins can positively contribute to SARS-CoV-2 replication; however, this effect is deaminase-independent.


Sujet(s)
APOBEC Deaminases , COVID-19 , Cytidine deaminase , SARS-CoV-2 , Réplication virale , Humains , SARS-CoV-2/génétique , SARS-CoV-2/physiologie , SARS-CoV-2/métabolisme , APOBEC Deaminases/métabolisme , APOBEC Deaminases/génétique , COVID-19/virologie , COVID-19/métabolisme , Cytidine deaminase/métabolisme , Cytidine deaminase/génétique , Cellules THP-1 , Mutation , Angiotensin-converting enzyme 2/métabolisme , Angiotensin-converting enzyme 2/génétique , Génome viral
4.
Biotechnol J ; 19(7): e2400115, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38987223

RÉSUMÉ

The nonconventional methylotrophic yeast Komagataella phaffii is widely applied in the production of industrial enzymes, pharmaceutical proteins, and various high-value chemicals. The development of robust and versatile genome editing tools for K. phaffii is crucial for the design of increasingly advanced cell factories. Here, we first developed a base editing method for K. phaffii based on the CRISPR-nCas9 system. We engineered 24 different base editor constructs, using a variety of promoters and cytidine deaminases (CDAs). The optimal base editor (PAOX2*-KpA3A-nCas9-KpUGI-DAS1TT) comprised a truncated AOX2 promoter (PAOX2*), a K. phaffii codon-optimized human APOBEC3A CDA (KpA3A), human codon-optimized nCas9 (D10A), and a K. phaffii codon-optimized uracil glycosylase inhibitor (KpUGI). This optimal base editor efficiently performed C-to-T editing in K. phaffii, with single-, double-, and triple-locus editing efficiencies of up to 96.0%, 65.0%, and 5.0%, respectively, within a 7-nucleotide window from C-18 to C-12. To expand the targetable genomic region, we also replaced nCas9 in the optimal base editor with nSpG and nSpRy, and achieved 50.0%-60.0% C-to-T editing efficiency for NGN-protospacer adjacent motif (PAM) sites and 20.0%-93.2% C-to-T editing efficiency for NRN-PAM sites, respectively. Therefore, these constructed base editors have emerged as powerful tools for gene function research, metabolic engineering, genetic improvement, and functional genomics research in K. phaffii.


Sujet(s)
Systèmes CRISPR-Cas , Édition de gène , Saccharomycetales , Édition de gène/méthodes , Saccharomycetales/génétique , Systèmes CRISPR-Cas/génétique , Humains , Cytidine deaminase/génétique , Cytidine deaminase/métabolisme , Régions promotrices (génétique)/génétique , Protéines
5.
BMC Biol ; 22(1): 151, 2024 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-38977974

RÉSUMÉ

BACKGROUND: RNA-DNA hybrids or R-loops are associated with deleterious genomic instability and protective immunoglobulin class switch recombination (CSR). However, the underlying phenomenon regulating the two contrasting functions of R-loops is unknown. Notably, the underlying mechanism that protects R-loops from classic RNase H-mediated digestion thereby promoting persistence of CSR-associated R-loops during CSR remains elusive. RESULTS: Here, we report that during CSR, R-loops formed at the immunoglobulin heavy (IgH) chain are modified by ribose 2'-O-methylation (2'-OMe). Moreover, we find that 2'-O-methyltransferase fibrillarin (FBL) interacts with activation-induced cytidine deaminase (AID) associated snoRNA aSNORD1C to facilitate the 2'-OMe. Moreover, deleting AID C-terminal tail impairs its association with aSNORD1C and FBL. Disrupting FBL, AID or aSNORD1C expression severely impairs 2'-OMe, R-loop stability and CSR. Surprisingly, FBL, AID's interaction partner and aSNORD1C promoted AID targeting to the IgH locus. CONCLUSION: Taken together, our results suggest that 2'-OMe stabilizes IgH-associated R-loops to enable productive CSR. These results would shed light on AID-mediated CSR and explain the mechanism of R-loop-associated genomic instability.


Sujet(s)
Cytidine deaminase , Commutation de classe des immunoglobulines , Structures en boucle R , Commutation de classe des immunoglobulines/génétique , Cytidine deaminase/métabolisme , Cytidine deaminase/génétique , Cytidine deaminase/composition chimique , Animaux , Souris , Méthylation , Chaines lourdes des immunoglobulines/génétique , Chaines lourdes des immunoglobulines/métabolisme , Recombinaison génétique , ARN/métabolisme , ARN/génétique
6.
Genetics ; 227(4)2024 Aug 07.
Article de Anglais | MEDLINE | ID: mdl-38946641

RÉSUMÉ

APOBEC proteins are cytidine deaminases that restrict the replication of viruses and transposable elements. Several members of the APOBEC3 family, APOBEC3A, APOBEC3B, and APOBEC3H-I, can access the nucleus and cause what is thought to be indiscriminate deamination of the genome, resulting in mutagenesis and genome instability. Although APOBEC3C is also present in the nucleus, the full scope of its deamination target preferences is unknown. By expressing human APOBEC3C in a yeast model system, I have defined the APOBEC3C mutation signature, as well as the preferred genome features of APOBEC3C targets. The APOBEC3C mutation signature is distinct from those of the known cancer genome mutators APOBEC3A and APOBEC3B. APOBEC3C produces DNA strand-coordinated mutation clusters, and APOBEC3C mutations are enriched near the transcription start sites of active genes. Surprisingly, APOBEC3C lacks the bias for the lagging strand of DNA replication that is seen for APOBEC3A and APOBEC3B. The unique preferences of APOBEC3C constitute a mutation profile that will be useful in defining sites of APOBEC3C mutagenesis in human genomes.


Sujet(s)
Cytidine deaminase , Mutation , Cytidine deaminase/génétique , Cytidine deaminase/métabolisme , Humains , Génome humain , Réplication de l'ADN , Protéines/génétique , Protéines/métabolisme , Mutagenèse , Saccharomyces cerevisiae/génétique , Antigènes mineurs d'histocompatibilité
7.
PLoS Genet ; 20(7): e1011367, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-39058749

RÉSUMÉ

The pathway for axon regeneration in Caenorhabditis elegans is activated by SVH-1, a growth factor belonging to the HGF/plasminogen family. SVH-1 is a dual-function factor that acts as an HGF-like growth factor to promote axon regeneration and as a protease to regulate early development. It is important to understand how SVH-1 is converted from a protease to a growth factor for axon regeneration. In this study, we demonstrate that cytidine deaminase (CDD) SVH-17/CDD-2 plays a role in the functional conversion of SVH-1. We find that the codon exchange of His-755 to Tyr in the Asp-His-Ser catalytic triad of SVH-1 can suppress the cdd-2 defect in axon regeneration. Furthermore, the stem hairpin structure around the His-755 site in svh-1 mRNA is required for the activation of axon regeneration by SVH-1. These results suggest that CDD-2 promotes axon regeneration by transforming the function of SVH-1 from a protease to a growth factor through modification of svh-1 mRNA.


Sujet(s)
Axones , Protéines de Caenorhabditis elegans , Caenorhabditis elegans , Cytidine deaminase , Animaux , Caenorhabditis elegans/génétique , Protéines de Caenorhabditis elegans/métabolisme , Protéines de Caenorhabditis elegans/génétique , Axones/métabolisme , Axones/physiologie , Cytidine deaminase/métabolisme , Cytidine deaminase/génétique , Régénération nerveuse/génétique , Régénération nerveuse/physiologie , Facteur de croissance des hépatocytes/métabolisme , Facteur de croissance des hépatocytes/génétique , Régénération/génétique
8.
Nucleic Acids Res ; 52(14): 8609-8627, 2024 Aug 12.
Article de Anglais | MEDLINE | ID: mdl-38967005

RÉSUMÉ

High spontaneous mutation rate is crucial for obtaining ideal phenotype and exploring the relationship between genes and phenotype. How to break the genetic stability of organisms and increase the mutation frequency has become a research hotspot. Here, we present a practical and controllable evolutionary tool (oMut-Cgts) based on dual genetic level modification engineering for Corynebacterium glutamicum. Firstly, the modification engineering of transcription and replication levels based on RNA polymerase α subunit and DNA helicase Cgl0854 as the 'dock' of cytidine deaminase (pmCDA1) significantly increased the mutation rate, proving that the localization of pmCDA1 around transient ssDNA is necessary for genome mutation. Then, the combined modification and optimization of engineering at dual genetic level achieved 1.02 × 104-fold increased mutation rate. The genome sequencing revealed that the oMut-Cgts perform uniform and efficient C:G→T:A transitions on a genome-wide scale. Furthermore, oMut-Cgts-mediated rapid evolution of C. glutamicum with stress (acid, oxidative and ethanol) tolerance proved that the tool has powerful functions in multi-dimensional biological engineering (rapid phenotype evolution, gene function mining and protein evolution). The strategies for rapid genome evolution provided in this study are expected to be applicable to a variety of applications in all prokaryotic cells.


Sujet(s)
Corynebacterium glutamicum , Génome bactérien , Corynebacterium glutamicum/génétique , Génie génétique/méthodes , Cytidine deaminase/génétique , Cytidine deaminase/métabolisme , Taux de mutation , Évolution moléculaire , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , Helicase/génétique , Helicase/métabolisme , Réplication de l'ADN/génétique , Mutation
9.
DNA Repair (Amst) ; 141: 103734, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39047499

RÉSUMÉ

Enzymes of the apolipoprotein B mRNA editing catalytic polypeptide like (APOBEC) family are cytosine deaminases that convert cytosine to uracil in DNA and RNA. Among these proteins, APOBEC3 sub-family members, APOBEC3A (A3A) and APOBEC3B (A3B), are prominent sources of mutagenesis in cancer cells. The aberrant expression of A3A and A3B in cancer cells leads to accumulation of mutations with specific single-base substitution (SBS) signatures, characterized by C→T and C→G changes, in a number of tumor types. In addition to fueling mutagenesis, A3A and A3B, particularly A3A, induce DNA replication stress, DNA damage, and chromosomal instability through their catalytic activities, triggering a range of cellular responses. Thus, A3A/B have emerged as key drivers of genome evolution during cancer development, contributing to tumorigenesis, tumor heterogeneity, and therapeutic resistance. Yet, the expression of A3A/B in cancer cells presents a cancer vulnerability that can be exploited therapeutically. In this review, we discuss the recent studies that shed light on the mechanisms regulating A3A expression and the impact of A3A in cancer. We also review recent advances in the development of A3A inhibitors and provide perspectives on the future directions of A3A research.


Sujet(s)
Cytidine deaminase , Tumeurs , Humains , Tumeurs/génétique , Tumeurs/métabolisme , Tumeurs/traitement médicamenteux , Cytidine deaminase/métabolisme , Régulation de l'expression des gènes tumoraux , Animaux , Protéines/métabolisme , Protéines/génétique , Altération de l'ADN , Mutagenèse
10.
PLoS Biol ; 22(7): e3002718, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38976757

RÉSUMÉ

Cancer initiates as a consequence of genomic mutations and its subsequent progression relies in part on increased production of ribosomes to maintain high levels of protein synthesis for unchecked cell growth. Recently, cytidine deaminases have been uncovered as sources of mutagenesis in cancer. In an attempt to form a connection between these 2 cancer driving processes, we interrogated the cytidine deaminase family of proteins for potential roles in human ribosome biogenesis. We identified and validated APOBEC3A and APOBEC4 as novel ribosome biogenesis factors through our laboratory's established screening platform for the discovery of regulators of nucleolar function in MCF10A cells. Through siRNA depletion experiments, we highlight APOBEC3A's requirement in making ribosomes and specific role within the processing and maturation steps that form the large subunit 5.8S and 28S ribosomal (r)RNAs. We demonstrate that a subset of APOBEC3A resides within the nucleolus and associates with critical ribosome biogenesis factors. Mechanistic insight was revealed by transient overexpression of both wild-type and a catalytically dead mutated APOBEC3A, which both increase cell growth and protein synthesis. Through an innovative nuclear RNA sequencing methodology, we identify only modest predicted APOBEC3A C-to-U target sites on the pre-rRNA and pre-mRNAs. Our work reveals a potential direct role for APOBEC3A in ribosome biogenesis likely independent of its editing function. More broadly, we found an additional function of APOBEC3A in cancer pathology through its function in ribosome biogenesis, expanding its relevance as a target for cancer therapeutics.


Sujet(s)
Nucléole , Prolifération cellulaire , Cytidine deaminase , Ribosomes , Humains , Cytidine deaminase/métabolisme , Cytidine deaminase/génétique , Nucléole/métabolisme , Ribosomes/métabolisme , Prolifération cellulaire/génétique , ARN ribosomique/métabolisme , ARN ribosomique/génétique , Lignée cellulaire tumorale , Protéines/métabolisme , Protéines/génétique
11.
Front Immunol ; 15: 1407470, 2024.
Article de Anglais | MEDLINE | ID: mdl-38863710

RÉSUMÉ

Introduction: Somatic hypermutation (SHM) of immunoglobulin variable (V) regions by activation induced deaminase (AID) is essential for robust, long-term humoral immunity against pathogen and vaccine antigens. AID mutates cytosines preferentially within WRCH motifs (where W=A or T, R=A or G and H=A, C or T). However, it has been consistently observed that the mutability of WRCH motifs varies substantially, with large variations in mutation frequency even between multiple occurrences of the same motif within a single V region. This has led to the notion that the immediate sequence context of WRCH motifs contributes to mutability. Recent studies have highlighted the potential role of local DNA sequence features in promoting mutagenesis of AGCT, a commonly mutated WRCH motif. Intriguingly, AGCT motifs closer to 5' ends of V regions, within the framework 1 (FW1) sub-region1, mutate less frequently, suggesting an SHM-suppressing sequence context. Methods: Here, we systematically examined the basis of AGCT positional biases in human SHM datasets with DeepSHM, a machine-learning model designed to predict SHM patterns. This was combined with integrated gradients, an interpretability method, to interrogate the basis of DeepSHM predictions. Results: DeepSHM predicted the observed positional differences in mutation frequencies at AGCT motifs with high accuracy. For the conserved, lowly mutating AGCT motifs in FW1, integrated gradients predicted a large negative contribution of 5'C and 3'G flanking residues, suggesting that a CAGCTG context in this location was suppressive for SHM. CAGCTG is the recognition motif for E-box transcription factors, including E2A, which has been implicated in SHM. Indeed, we found a strong, inverse relationship between E-box motif fidelity and mutation frequency. Moreover, E2A was found to associate with the V region locale in two human B cell lines. Finally, analysis of human SHM datasets revealed that naturally occurring mutations in the 3'G flanking residues, which effectively ablate the E-box motif, were associated with a significantly increased rate of AGCT mutation. Discussion: Our results suggest an antagonistic relationship between mutation frequency and the binding of E-box factors like E2A at specific AGCT motif contexts and, therefore, highlight a new, suppressive mechanism regulating local SHM patterns in human V regions.


Sujet(s)
Apprentissage profond , Région variable d'immunoglobuline , Motifs nucléotidiques , Hypermutation somatique des gènes des immunoglobulines , Humains , Hypermutation somatique des gènes des immunoglobulines/génétique , Région variable d'immunoglobuline/génétique , Mutation , Cytidine deaminase/génétique , Cytidine deaminase/métabolisme , Motifs d'acides aminés
12.
Oncol Res ; 32(6): 1021-1030, 2024.
Article de Anglais | MEDLINE | ID: mdl-38827321

RÉSUMÉ

Background: Apolipoprotein B mRNA editing catalytic polypeptide (APOBEC), an endogenous mutator, induces DNA damage and activates the ataxia telangiectasia and Rad3-related (ATR)-checkpoint kinase 1 (Chk1) pathway. Although cisplatin-based therapy is the mainstay for muscle-invasive bladder cancer (MIBC), it has a poor survival rate. Therefore, this study aimed to evaluate the efficacy of an ATR inhibitor combined with cisplatin in the treatment of APOBEC catalytic subunit 3B (APOBEC3B) expressing MIBC. Methods: Immunohistochemical staining was performed to analyze an association between APOBEC3B and ATR in patients with MIBC. The APOBEC3B expression in MIBC cell lines was assessed using real-time polymerase chain reaction and western blot analysis. Western blot analysis was performed to confirm differences in phosphorylated Chk1 (pChk1) expression according to the APOBEC3B expression. Cell viability and apoptosis analyses were performed to examine the anti-tumor activity of ATR inhibitors combined with cisplatin. Conclusion: There was a significant association between APOBEC3B and ATR expression in the tumor tissues obtained from patients with MIBC. Cells with higher APOBEC3B expression showed higher pChk1 expression than cells expressing low APOBEC3B levels. Combination treatment of ATR inhibitor and cisplatin inhibited cell growth in MIBC cells with a higher APOBEC3B expression. Compared to cisplatin single treatment, combination treatment induced more apoptotic cell death in the cells with higher APOBEC3B expression. Conclusion: Our study shows that APOBEC3B's higher expression status can enhance the sensitivity of MIBC to cisplatin upon ATR inhibition. This result provides new insight into appropriate patient selection for the effective application of ATR inhibitors in MIBC.


Sujet(s)
Protéines mutées dans l'ataxie-télangiectasie , Cisplatine , Cytidine deaminase , Antigènes mineurs d'histocompatibilité , Tumeurs de la vessie urinaire , Humains , Tumeurs de la vessie urinaire/traitement médicamenteux , Tumeurs de la vessie urinaire/anatomopathologie , Tumeurs de la vessie urinaire/génétique , Tumeurs de la vessie urinaire/métabolisme , Protéines mutées dans l'ataxie-télangiectasie/métabolisme , Protéines mutées dans l'ataxie-télangiectasie/antagonistes et inhibiteurs , Cisplatine/pharmacologie , Cisplatine/usage thérapeutique , Cytidine deaminase/génétique , Cytidine deaminase/métabolisme , Lignée cellulaire tumorale , Mâle , Antigènes mineurs d'histocompatibilité/métabolisme , Antigènes mineurs d'histocompatibilité/génétique , Adulte d'âge moyen , Femelle , Checkpoint kinase 1/métabolisme , Checkpoint kinase 1/antagonistes et inhibiteurs , Checkpoint kinase 1/génétique , Apoptose , Sujet âgé , Invasion tumorale , Prolifération cellulaire , Survie cellulaire/effets des médicaments et des substances chimiques
13.
EMBO J ; 43(15): 3240-3255, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38886582

RÉSUMÉ

Mutational patterns caused by APOBEC3 cytidine deaminase activity are evident throughout human cancer genomes. In particular, the APOBEC3A family member is a potent genotoxin that causes substantial DNA damage in experimental systems and human tumors. However, the mechanisms that ensure genome stability in cells with active APOBEC3A are unknown. Through an unbiased genome-wide screen, we define the Structural Maintenance of Chromosomes 5/6 (SMC5/6) complex as essential for cell viability when APOBEC3A is active. We observe an absence of APOBEC3A mutagenesis in human tumors with SMC5/6 dysfunction, consistent with synthetic lethality. Cancer cells depleted of SMC5/6 incur substantial genome damage from APOBEC3A activity during DNA replication. Further, APOBEC3A activity results in replication tract lengthening which is dependent on PrimPol, consistent with re-initiation of DNA synthesis downstream of APOBEC3A-induced lesions. Loss of SMC5/6 abrogates elongated replication tracts and increases DNA breaks upon APOBEC3A activity. Our findings indicate that replication fork lengthening reflects a DNA damage response to APOBEC3A activity that promotes genome stability in an SMC5/6-dependent manner. Therefore, SMC5/6 presents a potential therapeutic vulnerability in tumors with active APOBEC3A.


Sujet(s)
Protéines du cycle cellulaire , Protéines chromosomiques nonhistones , Cytidine deaminase , Altération de l'ADN , Réplication de l'ADN , Humains , Cytidine deaminase/métabolisme , Cytidine deaminase/génétique , Protéines du cycle cellulaire/métabolisme , Protéines du cycle cellulaire/génétique , Protéines chromosomiques nonhistones/métabolisme , Protéines chromosomiques nonhistones/génétique , Instabilité du génome , Lignée cellulaire tumorale , Protéines
14.
Nature ; 630(8017): 752-761, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38867045

RÉSUMÉ

Mutations accumulate in the genome of every cell of the body throughout life, causing cancer and other diseases1,2. Most mutations begin as nucleotide mismatches or damage in one of the two strands of the DNA before becoming double-strand mutations if unrepaired or misrepaired3,4. However, current DNA-sequencing technologies cannot accurately resolve these initial single-strand events. Here we develop a single-molecule, long-read sequencing method (Hairpin Duplex Enhanced Fidelity sequencing (HiDEF-seq)) that achieves single-molecule fidelity for base substitutions when present in either one or both DNA strands. HiDEF-seq also detects cytosine deamination-a common type of DNA damage-with single-molecule fidelity. We profiled 134 samples from diverse tissues, including from individuals with cancer predisposition syndromes, and derive from them single-strand mismatch and damage signatures. We find correspondences between these single-strand signatures and known double-strand mutational signatures, which resolves the identity of the initiating lesions. Tumours deficient in both mismatch repair and replicative polymerase proofreading show distinct single-strand mismatch patterns compared to samples that are deficient in only polymerase proofreading. We also define a single-strand damage signature for APOBEC3A. In the mitochondrial genome, our findings support a mutagenic mechanism occurring primarily during replication. As double-strand DNA mutations are only the end point of the mutation process, our approach to detect the initiating single-strand events at single-molecule resolution will enable studies of how mutations arise in a variety of contexts, especially in cancer and ageing.


Sujet(s)
Mésappariement de bases , Altération de l'ADN , ADN simple brin , Analyse de séquence d'ADN , Imagerie de molécules uniques , Humains , Vieillissement/génétique , APOBEC Deaminases/génétique , APOBEC Deaminases/métabolisme , Mésappariement de bases/génétique , Cytidine deaminase/métabolisme , Cytidine deaminase/génétique , Cytosine/métabolisme , Désamination , Altération de l'ADN/génétique , Réparation de mésappariement de l'ADN/génétique , Réplication de l'ADN/génétique , ADN simple brin/génétique , Génome mitochondrial/génétique , Mutation , Tumeurs/génétique , Analyse de séquence d'ADN/méthodes , Analyse de séquence d'ADN/normes , Imagerie de molécules uniques/méthodes , Mâle , Femelle
15.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167213, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38714266

RÉSUMÉ

Cytidine deaminase (CDA) is a pyrimidine salvage pathway enzyme that catalyzes the hydrolytic deamination of free cytidine and deoxycytidine to uridine and deoxyuridine, respectively. Our team discovered that CDA deficiency is associated with several aspects of genetic instability, such as increased sister chromatid exchange and ultrafine anaphase bridge frequencies. Based on these results, we sought (1) to determine how CDA deficiency contributes to genetic instability, (2) to explore the possible relationships between CDA deficiency and carcinogenesis, and (3) to develop a new anticancer treatment targeting CDA-deficient tumors. This review summarizes our major findings indicating that CDA deficiency is associated with a genetic instability that does not confer an increased cancer risk. In light of our results and published data, I propose a novel hypothesis that loss of CDA, by reducing basal PARP-1 activity and increasing Tau levels, may reflect an attempt to prevent, slow or reverse the process of carcinogenesis.


Sujet(s)
Carcinogenèse , Cytidine deaminase , Poly (ADP-Ribose) polymerase-1 , Humains , Cytidine deaminase/métabolisme , Cytidine deaminase/génétique , Carcinogenèse/métabolisme , Carcinogenèse/génétique , Carcinogenèse/anatomopathologie , Poly (ADP-Ribose) polymerase-1/métabolisme , Poly (ADP-Ribose) polymerase-1/génétique , Animaux , Tumeurs/métabolisme , Tumeurs/génétique , Tumeurs/anatomopathologie , Protéines tau/métabolisme , Protéines tau/génétique , Instabilité du génome
16.
PLoS Genet ; 20(5): e1011293, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38805570

RÉSUMÉ

APOBEC-induced mutations occur in 50% of sequenced human tumors, with APOBEC3A (A3A) being a major contributor to mutagenesis in breast cancer cells. The mechanisms that cause A3A activation and mutagenesis in breast cancers are still unknown. Here, we describe factors that influence basal A3A mRNA transcript levels in breast cancer cells. We found that basal A3A mRNA correlates with A3A protein levels and predicts the amount of APOBEC signature mutations in a panel of breast cancer cell lines, indicating that increased basal transcription may be one mechanism leading to breast cancer mutagenesis. We also show that alteration of ERBB2 expression can drive A3A mRNA levels, suggesting the enrichment of the APOBEC mutation signature in Her2-enriched breast cancer could in part result from elevated A3A transcription. Hierarchical clustering of transcripts in primary breast cancers determined that A3A mRNA was co-expressed with other genes functioning in viral restriction and interferon responses. However, reduction of STAT signaling via inhibitors or shRNA in breast cancer cell lines had only minor impact on A3A abundance. Analysis of single cell RNA-seq from primary tumors indicated that A3A mRNA was highest in infiltrating immune cells within the tumor, indicating that correlations of A3A with STAT signaling in primary tumors may be result from higher immune infiltrates and are not reflective of STAT signaling controlling A3A expression in breast cancer cells. Analysis of ATAC-seq data in multiple breast cancer cell lines identified two transcription factor sites in the APOBEC3A promoter region that could promote A3A transcription. We determined that Rel-A, and Bach1, which have binding sites in these peaks, elevated basal A3A expression. Our findings highlight a complex and variable set of transcriptional activators for A3A in breast cancer cells.


Sujet(s)
Facteurs de transcription à motif basique et à glissière à leucines , Tumeurs du sein , Cytidine deaminase , Régulation de l'expression des gènes tumoraux , Récepteur ErbB-2 , Humains , Tumeurs du sein/génétique , Tumeurs du sein/anatomopathologie , Tumeurs du sein/métabolisme , Femelle , Facteurs de transcription à motif basique et à glissière à leucines/génétique , Facteurs de transcription à motif basique et à glissière à leucines/métabolisme , Lignée cellulaire tumorale , Cytidine deaminase/génétique , Cytidine deaminase/métabolisme , Récepteur ErbB-2/génétique , Récepteur ErbB-2/métabolisme , Mutation , Amplification de gène , Régions promotrices (génétique)/génétique , Protéines
17.
Proc Natl Acad Sci U S A ; 121(22): e2314619121, 2024 May 28.
Article de Anglais | MEDLINE | ID: mdl-38776375

RÉSUMÉ

Humoral immunity depends on the germinal center (GC) reaction where B cells are tightly controlled for class-switch recombination and somatic hypermutation and finally generated into plasma and memory B cells. However, how protein SUMOylation regulates the process of the GC reaction remains largely unknown. Here, we show that the expression of SUMO-specific protease 1 (SENP1) is up-regulated in GC B cells. Selective ablation of SENP1 in GC B cells results in impaired GC dark and light zone organization and reduced IgG1-switched GC B cells, leading to diminished production of class-switched antibodies with high-affinity in response to a TD antigen challenge. Mechanistically, SENP1 directly binds to Paired box protein 5 (PAX5) to mediate PAX5 deSUMOylation, sustaining PAX5 protein stability to promote the transcription of activation-induced cytidine deaminase. In summary, our study uncovers SUMOylation as an important posttranslational mechanism regulating GC B cell response.


Sujet(s)
Lymphocytes B , Cysteine endopeptidases , Centre germinatif , Protéine activatrice spécifique des lymphocytes B , Sumoylation , Centre germinatif/immunologie , Centre germinatif/métabolisme , Protéine activatrice spécifique des lymphocytes B/métabolisme , Protéine activatrice spécifique des lymphocytes B/génétique , Animaux , Lymphocytes B/immunologie , Lymphocytes B/métabolisme , Cysteine endopeptidases/métabolisme , Cysteine endopeptidases/génétique , Souris , Commutation de classe des immunoglobulines , Humains , Cytidine deaminase/métabolisme , Cytidine deaminase/génétique , Immunité humorale , Souris de lignée C57BL
18.
J Biol Chem ; 300(6): 107410, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38796062

RÉSUMÉ

Over the past decade, the connection between APOBEC3 cytosine deaminases and cancer mutagenesis has become increasingly apparent. This growing awareness has created a need for biochemical tools that can be used to identify and characterize potential inhibitors of this enzyme family. In response to this challenge, we have developed a Real-time APOBEC3-mediated DNA Deamination assay. This assay offers a single-step set-up and real-time fluorescent read-out, and it is capable of providing insights into enzyme kinetics. The assay also offers a high-sensitivity and easily scalable method for identifying APOBEC3 inhibitors. This assay serves as a crucial addition to the existing APOBEC3 biochemical and cellular toolkit and possesses the versatility to be readily adapted into a high-throughput format for inhibitor discovery.


Sujet(s)
Cytidine deaminase , ADN , Humains , Désamination , Cytidine deaminase/métabolisme , ADN/métabolisme , ADN/composition chimique , Cinétique , APOBEC Deaminases/métabolisme , Antienzymes/pharmacologie
20.
Commun Biol ; 7(1): 529, 2024 May 04.
Article de Anglais | MEDLINE | ID: mdl-38704509

RÉSUMÉ

Intra-organism biodiversity is thought to arise from epigenetic modification of constituent genes and post-translational modifications of translated proteins. Here, we show that post-transcriptional modifications, like RNA editing, may also contribute. RNA editing enzymes APOBEC3A and APOBEC3G catalyze the deamination of cytosine to uracil. RNAsee (RNA site editing evaluation) is a computational tool developed to predict the cytosines edited by these enzymes. We find that 4.5% of non-synonymous DNA single nucleotide polymorphisms that result in cytosine to uracil changes in RNA are probable sites for APOBEC3A/G RNA editing; the variant proteins created by such polymorphisms may also result from transient RNA editing. These polymorphisms are associated with over 20% of Medical Subject Headings across ten categories of disease, including nutritional and metabolic, neoplastic, cardiovascular, and nervous system diseases. Because RNA editing is transient and not organism-wide, future work is necessary to confirm the extent and effects of such editing in humans.


Sujet(s)
APOBEC Deaminases , Cytidine deaminase , Édition des ARN , Humains , Cytidine deaminase/métabolisme , Cytidine deaminase/génétique , Polymorphisme de nucléotide simple , Cytosine/métabolisme , APOBEC-3G Deaminase/métabolisme , APOBEC-3G Deaminase/génétique , Uracile/métabolisme , Protéines/génétique , Protéines/métabolisme , Cytosine deaminase/génétique , Cytosine deaminase/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE