Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 1.108
Filtrer
1.
Int J Mol Sci ; 25(15)2024 Jul 31.
Article de Anglais | MEDLINE | ID: mdl-39125941

RÉSUMÉ

Marine water temperatures are increasing due to anthropogenic climate change, constituting a major threat to marine ecosystems. Diatoms are major marine primary producers, and as such, they are subjected to marine heat waves and rising ocean temperatures. Additionally, under low tide, diatoms are regularly exposed to high temperatures. However, physiological and epigenetic responses to long-term exposure to heat stress remain largely unknown in the diatom Phaeodactylum tricornutum. In this study, we investigated changes in cell morphology, photosynthesis, and H3K27me3 abundance (an epigenetic mark consisting of the tri-methylation of lysine 27 on histone H3) after moderate and elevated heat stresses. Mutants impaired in PtEZH-the enzyme depositing H3K27me3-presented reduced growth and moderate changes in their PSII quantum capacities. We observed shape changes for the three morphotypes of P. tricornutum (fusiform, oval, and triradiate) in response to heat stress. These changes were found to be under the control of PtEZH. Additionally, both moderate and elevated heat stresses modulated the expression of genes encoding proteins involved in photosynthesis. Finally, heat stress elicited a reduction of genome-wide H3K27me3 levels in the various morphotypes. Hence, we provided direct evidence of epigenetic control of the H3K27me3 mark in the responses of Phaeodactylum tricornutum to heat stress.


Sujet(s)
Diatomées , Épigenèse génétique , Réaction de choc thermique , Histone , Photosynthèse , Diatomées/métabolisme , Diatomées/génétique , Diatomées/croissance et développement , Histone/métabolisme , Méthylation
2.
Int J Mol Sci ; 25(15)2024 Jul 23.
Article de Anglais | MEDLINE | ID: mdl-39125576

RÉSUMÉ

Epitranscriptomics is considered as a new regulatory step in eukaryotes for developmental processes and stress responses. The aim of this study was, for the first time, to identify RNA methyltransferase (writers) and demethylase (erasers) in four investigated species, i.e., the dinoflagellates Alexandrium tamutum and Amphidinium carterae, the diatom Cylindrotheca closterium, and the green alga Tetraselmis suecica. As query sequences for the enzymatic classes of interest, we selected those ones that were previously detected in marine plants, evaluating their expression upon nutrient starvation stress exposure. The hypothesis was that upon stress exposure, the activation/deactivation of specific writers and erasers may occur. In microalgae, we found almost all plant writers and erasers (ALKBH9B, ALKBH10B, MTB, and FIP37), except for three writers (MTA, VIRILIZER, and HAKAI). A sequence similarity search by scanning the corresponding genomes confirmed their presence. Thus, we concluded that the three writer sequences were lacking from the studied transcriptomes probably because they were not expressed in those experimental conditions, rather than a real lack of these genes from their genomes. This study showed that some of them were expressed only in specific culturing conditions. We also investigated their expression in other culturing conditions (i.e., nitrogen depletion, phosphate depletion, and Zinc addition at two different concentrations) in A. carterae, giving new insights into their possible roles in regulating gene expression upon stress.


Sujet(s)
Microalgues , Transcriptome , Microalgues/génétique , Microalgues/métabolisme , Analyse de profil d'expression de gènes/méthodes , Dinoflagellida/génétique , Dinoflagellida/métabolisme , Stress physiologique/génétique , Methyltransferases/métabolisme , Methyltransferases/génétique , Diatomées/génétique , Diatomées/métabolisme
3.
PLoS Biol ; 22(8): e3002733, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39116044

RÉSUMÉ

A principal goal in ecology is to identify the determinants of species abundances in nature. Body size has emerged as a fundamental and repeatable predictor of abundance, with smaller organisms occurring in greater numbers than larger ones. A biogeographic component, known as Bergmann's rule, describes the preponderance, across taxonomic groups, of larger-bodied organisms in colder areas. Although undeniably important, the extent to which body size is the key trait underlying these patterns is unclear. We explored these questions in diatoms, unicellular algae of global importance for their roles in carbon fixation and energy flow through marine food webs. Using a phylogenomic dataset from a single lineage with worldwide distribution, we found that body size (cell volume) was strongly correlated with genome size, which varied by 50-fold across species and was driven by differences in the amount of repetitive DNA. However, directional models identified temperature and genome size, not cell size, as having the greatest influence on maximum population growth rate. A global metabarcoding dataset further identified genome size as a strong predictor of species abundance in the ocean, but only in colder regions at high and low latitudes where diatoms with large genomes dominated, a pattern consistent with Bergmann's rule. Although species abundances are shaped by myriad interacting abiotic and biotic factors, genome size alone was a remarkably strong predictor of abundance. Taken together, these results highlight the cascading cellular and ecological consequences of macroevolutionary changes in an emergent trait, genome size, one of the most fundamental and irreducible properties of an organism.


Sujet(s)
Diatomées , Taille du génome , Océans et mers , Phylogenèse , Diatomées/génétique , Diatomées/physiologie , Mensurations corporelles , Température
4.
Biomolecules ; 14(7)2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-39062536

RÉSUMÉ

The diatom Phaeodactylum tricornutum, known for its high triacylglycerol (TAG) content and significant levels of n-3 long chain polyunsaturated fatty acids (LC-PUFAs), such as eicosapentaenoic acid (EPA), has a limited ability to utilize exogenous organic matter. This study investigates the enhancement of acetate utilization in P. tricornutum by introducing an exogenous acetate transport protein. The acetate transporter gene ADY2 from Saccharomyces cerevisiae endowed the organism with the capability to assimilate acetate and accelerating its growth. The transformants exhibited superior growth rates at an optimal NaAc concentration of 0.01 M, with a 1.7- to 2.0-fold increase compared to the wild-type. The analysis of pigments and photosynthetic activities demonstrated a decline in photosynthetic efficiency and maximum electron transport rate. This decline is speculated to result from the over-reduction of the electron transport components between photosystems due to acetate utilization. Furthermore, the study assessed the impact of acetate on the crude lipid content and fatty acid composition, revealing an increase in the crude lipid content and alterations in fatty acid profiles, particularly an increase in C16:1n-7 at the expense of EPA and a decrease in the unsaturation index. The findings provide insights into guiding the biomass and biologically active products production of P. tricornutum through metabolic engineering.


Sujet(s)
Acétates , Diatomées , Photosynthèse , Diatomées/métabolisme , Diatomées/génétique , Acétates/métabolisme , Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/génétique , Acides gras/métabolisme , Transport d'électrons , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/génétique
5.
Nat Commun ; 15(1): 5578, 2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38956103

RÉSUMÉ

Diatoms often outnumber other eukaryotic algae in the oceans, especially in coastal environments characterized by frequent fluctuations in light intensity. The identities and operational mechanisms of regulatory factors governing diatom acclimation to high light stress remain largely elusive. Here, we identified the AUREO1c protein from the coastal diatom Phaeodactylum tricornutum as a crucial regulator of non-photochemical quenching (NPQ), a photoprotective mechanism that dissipates excess energy as heat. AUREO1c detects light stress using a light-oxygen-voltage (LOV) domain and directly activates the expression of target genes, including LI818 genes that encode NPQ effector proteins, via its bZIP DNA-binding domain. In comparison to a kinase-mediated pathway reported in the freshwater green alga Chlamydomonas reinhardtii, the AUREO1c pathway exhibits a faster response and enables accumulation of LI818 transcript and protein levels to comparable degrees between continuous high-light and fluctuating-light treatments. We propose that the AUREO1c-LI818 pathway contributes to the resilience of diatoms under dynamic light conditions.


Sujet(s)
Acclimatation , Diatomées , Lumière , Diatomées/métabolisme , Diatomées/génétique , Diatomées/effets des radiations , Chlamydomonas reinhardtii/métabolisme , Chlamydomonas reinhardtii/génétique , Chlamydomonas reinhardtii/effets des radiations , Protéines d'algue/métabolisme , Protéines d'algue/génétique , Régulation de l'expression des gènes/effets des radiations
6.
mBio ; 15(8): e0038324, 2024 Aug 14.
Article de Anglais | MEDLINE | ID: mdl-38980008

RÉSUMÉ

Seasonal fluctuations profoundly affect marine microeukaryotic plankton composition and metabolism, but accurately tracking these changes has been a long-standing challenge. In this study, we present a year-long metatranscriptomic data set from the Southern Bight of the North Sea, shedding light on the seasonal dynamics in temperate plankton ecosystems. We observe distinct shifts in active plankton species and their metabolic processes in response to seasonal changes. We characterized the metabolic signatures of different seasonal phases in detail, thereby revealing the metabolic versatility of dinoflagellates, the heterotrophic dietary strategy of Phaeocystis during its late-stage blooms, and stark variations in summer and fall diatom abundance and metabolic activity across nearby sampling stations. Our data illuminate the varied contributions of microeukaryotic taxa to biomass production and nutrient cycling at different times of the year and allow delineation of their ecological niches. IMPORTANCE: Ecosystem composition and metabolic functions of temperate marine microeukaryote plankton are strongly influenced by seasonal dynamics. Although monitoring of species composition of microeukaryotes has expanded recently, few methods also contain seasonally resolved information on ecosystem functioning. We generated a year-long spatially resolved metatranscriptomic data set to assess seasonal dynamics of microeukaryote species and their associated metabolic functions in the Southern Bight of the North Sea. Our study underscores the potential of metatranscriptomics as a powerful tool for advancing our understanding of marine ecosystem functionality and resilience in response to environmental changes, emphasizing its potential in continuous marine ecosystem monitoring to enhance our ecological understanding of the ocean's eukaryotic microbiome.


Sujet(s)
Plancton , Saisons , Mer du Nord , Plancton/génétique , Plancton/métabolisme , Plancton/classification , Écosystème , Eau de mer/microbiologie , Dinoflagellida/génétique , Dinoflagellida/métabolisme , Dinoflagellida/croissance et développement , Diatomées/génétique , Diatomées/métabolisme , Diatomées/classification , Diatomées/croissance et développement , Transcriptome , Analyse de profil d'expression de gènes , Métagénomique
7.
J Hazard Mater ; 477: 135301, 2024 Sep 15.
Article de Anglais | MEDLINE | ID: mdl-39053058

RÉSUMÉ

The neurotoxin ß-N-methylamino-L-alanine (BMAA) produced by marine diatoms has been implicated as an important environmental trigger of neurodegenerative diseases in humans. However, the biosynthesis mechanism of BMAA in marine diatoms is still unknown. In the present study, the strain of diatom Thalassiosira minima almost lost the biosynthesis ability for BMAA after a long-term subculture in our laboratory. The production of BMAA-containing proteins in the mutant strain of T. minima reduced to 18.2 % of that in the wild strain, meanwhile the cell size decreased but pigment content increased in the mutant strain. Take consideration of our previous transcriptional data on the mixed diatom and cyanobacterium cultures, the current transcriptome analysis showed four identical and highly correlated KEGG pathways associated with the accumulation of misfolded proteins in diatom, including ribosome, proteasome, SNARE interactions in vesicle transport, and protein processing in the endoplasmic reticulum. Analysis of amino acids and transcriptional information suggested that amino acid synthesis and degradation are associated with the biosynthesis of BMAA-containing proteins. In addition, a reduction in the precision of ubiquitination-mediated protein hydrolysis and vesicular transport by the COPII system will exacerbate the accumulation of BMAA-containing proteins in diatoms.


Sujet(s)
Acides aminés diaminés , Toxines de cyanobactéries , Diatomées , Mutation , Photosynthèse , Diatomées/métabolisme , Diatomées/génétique , Acides aminés diaminés/métabolisme
8.
Sci Rep ; 14(1): 16209, 2024 07 13.
Article de Anglais | MEDLINE | ID: mdl-39003315

RÉSUMÉ

Marine microbial communities form the basis for the functioning of marine ecosystems and the conservation of biodiversity. With the application of metagenomics and metatranscriptomics in marine environmental studies, significant progress has been made in analysing the functioning of microbial communities as a whole. These molecular techniques are highly dependent on reliable, well-characterised, comprehensive and taxonomically diverse sequenced reference transcriptomes of microbial organisms. Here we present a set of 12 individual transcriptome assemblies derived from 6 representative diatom species from the northern Adriatic Sea grown under 2 environmentally relevant growth conditions (phosphate replete vs. phosphate deprived). After filtering the reads and assembly, an average number of 64,932 transcripts per assembly was obtained, of which an average of 8856 were assigned to functionally known proteins. Of all assigned transcripts, an average of 6483 proteins were taxonomically assigned to diatoms (Bacillariophyta). On average, a higher number of assigned proteins was detected in the transcriptome assemblies of diatoms grown under replete media condition. On average, 50% of the mapped proteins were shared between the two growth conditions. All recorded proteins in the dataset were classified into 24 COG categories, with approximately 25% belonging to the unknown function and the remaining 75% belonging to all other categories. The resulting diatom reference database for the northern Adriatic, focussing on the response to nutrient limitation as characteristic for the region and predicted for the future world oceans, provides a valuable resource for analysing environmental metatranscriptome and metagenome data. Each northern Adriatic transcriptome can also be used by itself as a reference database for the (meta)transcriptomes and gene expression studies of the associated species that will be generated in the future.


Sujet(s)
Diatomées , Transcriptome , Diatomées/génétique , Diatomées/classification , Métagénomique/méthodes , Analyse de profil d'expression de gènes/méthodes , Bases de données génétiques
9.
Sci Adv ; 10(29): eado2623, 2024 Jul 19.
Article de Anglais | MEDLINE | ID: mdl-39018398

RÉSUMÉ

Diatoms are major players in the global carbon cycle, and their metabolism is affected by ocean conditions. Understanding the impact of changing inorganic nutrients in the oceans on diatoms is crucial, given the changes in global carbon dioxide levels. Here, we present a genome-scale metabolic model (iMK1961) for Cylindrotheca closterium, an in silico resource to understand uncharacterized metabolic functions in this ubiquitous diatom. iMK1961 represents the largest diatom metabolic model to date, comprising 1961 open reading frames and 6718 reactions. With iMK1961, we identified the metabolic response signature to cope with drastic changes in growth conditions. Comparing model predictions with Tara Oceans transcriptomics data unraveled C. closterium's metabolism in situ. Unexpectedly, the diatom only grows photoautotrophically in 21% of the sunlit ocean samples, while the majority of the samples indicate a mixotrophic (71%) or, in some cases, even a heterotrophic (8%) lifestyle in the light. Our findings highlight C. closterium's metabolic flexibility and its potential role in global carbon cycling.


Sujet(s)
Diatomées , Diatomées/métabolisme , Diatomées/génétique , Diatomées/croissance et développement , Cycle du carbone , Océans et mers , Eau de mer , Modèles biologiques , Transcriptome , Voies et réseaux métaboliques
10.
FEMS Microbiol Ecol ; 100(8)2024 Jul 12.
Article de Anglais | MEDLINE | ID: mdl-38986513

RÉSUMÉ

Turbulence is one of the least investigated environmental factors impacting the ecophysiology of phytoplankton, both at the community and individual species level. Here, we investigated, for the first time, the effect of a turbulence gradient (Reynolds number, from Reλ = 0 to Reλ = 360) on two species of the marine diatom Pseudo-nitzschia and their associated bacterial communities under laboratory conditions. Cell abundance, domoic acid (DA) production, chain formation, and Chl a content of P. fraudulenta and P. multiseries were higher for intermediate turbulence (Reλ = 160 or 240). DA was detectable only in P. multiseries samples. These observations were supported by transcriptomic analyses results, which suggested the turbulence related induction of the expression of the DA production locus, with a linkage to an increased photosynthetic activity of the total metatranscriptome. This study also highlighted a higher richness of the bacterial community associated with the nontoxic strain of P. fraudulenta in comparison to the toxic strain of P. multiseries. Bacillus was an important genus in P. multiseries cultures (relative abundance 15.5%) and its highest abundances coincided with the highest DA levels. However, associated bacterial communities of both Pseudo-nitzschia species did not show clear patterns relative to turbulence intensity.


Sujet(s)
Bactéries , Diatomées , Diatomées/génétique , Diatomées/croissance et développement , Bactéries/génétique , Bactéries/classification , Bactéries/isolement et purification , Bactéries/métabolisme , Acide kaïnique/analogues et dérivés , Acide kaïnique/métabolisme , Phytoplancton/génétique , Chlorophylle A/métabolisme , Photosynthèse , Transcriptome
11.
Mar Environ Res ; 199: 106625, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38959781

RÉSUMÉ

Diatom has evolved response mechanisms to cope with multiple environmental stresses. Heat shock protein 40 (HSP40) plays a key role in these response mechanisms. HSP40 gene family in higher plants has been well-studied. However, the HSP40 gene family has not been systematically investigated in marine diatom. In this study, the bioinformatic characteristics, phylogenetic relationship, conserved motifs, gene structure, chromosome distribution and the transcriptional response of PtHSP40 to different environmental stresses were analyzed in the diatom Phaeodactylum tricornutum, and quantitative real-time PCR was conducted. Totally, 55 putative PtHSP40 genes are distributed to 21 chromosomes. All PtHSP40 proteins can be divided into four groups based on their evolutionary relationship, and 54 of them contain a conserved HPD (histidine-proline-aspartic acid tripeptide) motif. Additionally, six, eleven, ten and four PtHSP40 genes were significantly upregulated under the treatments of nitrogen starvation, phosphorus deprivation, 2,2',4,4'-tetrabrominated biphenyl ether (BDE-47) and ocean acidification, respectively. More interestingly, the expression level of 9 PtHSP40 genes was obviously upregulated in response to nickel stress, suggesting the sensitive to metal stress. The different expression models of PtHSP40 genes to environmental stresses imply the specificity of PtHSP40 proteins under different stresses. This study provides a systematic understanding of the PtHSP40 gene family in P. tricornutum and a comprehensive cognition in its functions and response mechanisms to environmental stresses.


Sujet(s)
Diatomées , Diatomées/génétique , Diatomées/effets des médicaments et des substances chimiques , Famille multigénique , Phylogenèse , Stress physiologique/génétique
12.
J Biosci Bioeng ; 138(2): 105-110, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38825559

RÉSUMÉ

Omega-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA; C20:5n-3) and docosahexaenoic acid (DHA; C22:6n-3) are widely used as additives in fish feed in the aquaculture sector. To date, the supply of omega-3 PUFAs have heavily depended upon fish oil production. As the need for omega-3 PUFAs supply for the growing population increases, a more sustainable approach is required to keep up with the demand. The oleaginous diatom Fistulifera solaris is known to synthesize EPA with the highest level among autotrophically cultured microalgae, however, this species does not accumulate significant amounts of DHA, which, in some cases, is required in aquaculture rather than EPA. This is likely due to the lack of expression of essential enzymes namely Δ5 elongase (Δ5ELO) and Δ4 desaturase. In this study, we identified endogenous Δ5ELO genes in F. solaris and introduced recombinant expression cassettes harboring Δ5ELO into F. solaris through bacterial conjugation. As a result, it managed to induce the synthesis of docosapentaenoic acid (DPA; C22:5n-3), a direct precursor of DHA. This study paves the way for expanding our understanding of the omega-3 PUFAs pathway using endogenous genes in the oleaginous diatom.


Sujet(s)
Diatomées , Acide docosahexaénoïque , Acide eicosapentanoïque , Acides gras omega-3 , Diatomées/métabolisme , Diatomées/génétique , Acides gras omega-3/métabolisme , Acide eicosapentanoïque/métabolisme , Acide eicosapentanoïque/biosynthèse , Acide docosahexaénoïque/métabolisme , Acide docosahexaénoïque/biosynthèse , Fatty acid desaturases/métabolisme , Fatty acid desaturases/génétique , Génie génétique , Fatty acid elongases/métabolisme , Fatty acid elongases/génétique , Microalgues/métabolisme , Microalgues/génétique , Aquaculture
13.
mSphere ; 9(7): e0036624, 2024 Jul 30.
Article de Anglais | MEDLINE | ID: mdl-38940511

RÉSUMÉ

Dinoflagellates and diatoms are highly prevalent and ecologically important phytoplankton in coastal waters, greatly contributing to primary productivity in marine ecosystems. Although their composition and diversity have been extensively elucidated in the open ocean, their interaction patterns and community assembly in long-term eutrophic coastal waters remain poorly understood. This investigation aimed to elucidate the seasonal successional patterns of dinoflagellates and diatoms by 18S rRNA gene amplicon sequencing in a semi-enclosed bay. The results revealed that dinoflagellate and diatom communities have pronounced seasonal succession patterns, which are primarily associated with temperature. Furthermore, the most prevalent species throughout the year were Heterocapsa rotundata and Skeletonema costatum. Moreover, the assembly of dinoflagellate and diatom communities was mainly dominated by stochastic processes, with drift being the major factor. The co-occurrence of dinoflagellates and diatoms showed seasonal patterns, with the highest interactions observed in autumn. In addition, interactions of Syndiniales with dinoflagellates and diatoms highlighted the roles of parasites in eutrophic conditions. Flavobacteriaceae and Rhodobacteraceae are the bacterial taxa that most frequently interacted with dinoflagellates and diatoms, with interactions between dinoflagellates and bacteria being more complex than those between diatoms and bacteria. Overall, this study provides results that deepen our understanding of the phytoplankton dynamics in coastal eutrophic waters.IMPORTANCEDinoflagellates and diatoms are major phytoplankton groups in coastal waters. The composition and diversity of dinoflagellates and diatoms in the open ocean have been well documented; however, it remains uncertain to what extent their adaptation to long-term eutrophic conditions influences their response to environmental disturbances. Here, we investigated the interactions and assembly processes of dinoflagellates and diatoms in a eutrophic bay throughout the whole year. Our findings revealed that interactions between dinoflagellates and diatoms are primarily shaped by seasonal transitions, while prolonged eutrophic conditions tend to amplify stochastic processes in community assembly. These findings provide novel perspectives on the influence of long-term eutrophication on phytoplankton dynamics within eutrophic waters.


Sujet(s)
Baies (géographie) , Diatomées , Dinoflagellida , Eutrophisation , ARN ribosomique 18S , Saisons , Diatomées/classification , Diatomées/génétique , Dinoflagellida/génétique , Dinoflagellida/physiologie , Dinoflagellida/classification , Baies (géographie)/microbiologie , ARN ribosomique 18S/génétique , Eau de mer/microbiologie , Phytoplancton/classification , Phytoplancton/génétique , Écosystème , Biodiversité
14.
mSphere ; 9(7): e0019824, 2024 Jul 30.
Article de Anglais | MEDLINE | ID: mdl-38940599

RÉSUMÉ

Skeletonema costatum, a cosmopolitan diatom primarily inhabiting coastal ecosystems, exhibits a typically close yet variable relationship with heterotrophic bacteria. The increasing temperature of surface seawater is expected to substantially affect the viability and ecological dynamics of S. costatum, potentially altering its relationship with bacteria. However, it remains unclear to what extent the elevated temperature could change these relationships. Here, the relationship between axenic S. costatum and natural seawater bacteria underwent a dramatic shift from mutualism to antagonism as the co-culture temperature increased from 20°C to 25°C. The co-occurrence network indicated significantly increased complexity of interaction between S. costatum and bacteria community after temperature elevation, especially with Flavobacteriaceae, implying their potential role in eliminating S. costatum under higher temperatures. Additionally, a Flavobacteriaceae isolate, namely MS1 identified as Tamlana genus, was isolated from the co-culture system at 25°C. MS1 had a remarkable ability to eliminate S. costatum, with the mortality rate at 25°C steadily rising from 30.2% at 48 h to 92.4% at 120 h. However, it promoted algal growth to some extent at 20°C. These results demonstrated that increased temperature promotes MS1 shifts from mutualism to antagonism with S. costatum. According to the comparative genomics analysis, changes in the lifestyle of MS1 were attributed to the increased gliding motility and attachment of MS1 under elevated temperature, enabling it to exert an algicidal effect through direct contact with alga. This investigation provided an advanced understanding of interactions between phytoplankton and bacteria in future warming oceanic ecosystems. IMPORTANCE: Ocean warming profoundly influences the growth and metabolism of phytoplankton and bacteria, thereby significantly reshaping their interactions. Previous studies have shown that warming can change bacterial lifestyle from mutualism to antagonism with phytoplankton, but the underlying mechanism remains unclear. In this study, we found that high temperature promotes Tamlana sp. MS1 adhesion to Skeletonema costatum, leading to algal lysis through direct contact, demonstrating a transition in lifestyle from mutualism to antagonism with increasing temperature. Furthermore, the gliding motility of MS1 appears to be pivotal in mediating the transition of its lifestyle. These findings not only advance our understanding of the phytoplankton-bacteria relationship under ocean warming but also offer valuable insights for predicting the impact of warming on phytoplankton carbon sequestration.


Sujet(s)
Antibiose , Diatomées , Flavobacteriaceae , Eau de mer , Symbiose , Eau de mer/microbiologie , Flavobacteriaceae/génétique , Flavobacteriaceae/physiologie , Diatomées/physiologie , Diatomées/génétique , Bactéries/classification , Bactéries/génétique , Température , Phylogenèse , Température élevée , Techniques de coculture , Microbiote
15.
Plant J ; 119(4): 2001-2020, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38943614

RÉSUMÉ

While it is known that increased dissolved CO2 concentrations and rising sea surface temperature (ocean warming) can act interactively on marine phytoplankton, the ultimate molecular mechanisms underlying this interaction on a long-term evolutionary scale are relatively unexplored. Here, we performed transcriptomics and quantitative metabolomics analyses, along with a physiological trait analysis, on the marine diatom Thalassiosira weissflogii adapted for approximately 3.5 years to warming and/or high CO2 conditions. We show that long-term warming has more pronounced impacts than elevated CO2 on gene expression, resulting in a greater number of differentially expressed genes (DEGs). The largest number of DEGs was observed in populations adapted to warming + high CO2, indicating a potential synergistic interaction between these factors. We further identified the metabolic pathways in which the DEGs function and the metabolites with significantly changed abundances. We found that ribosome biosynthesis-related pathways were upregulated to meet the increased material and energy demands after warming or warming in combination with high CO2. This resulted in the upregulation of energy metabolism pathways such as glycolysis, photorespiration, the tricarboxylic acid cycle, and the oxidative pentose phosphate pathway, as well as the associated metabolites. These metabolic changes help compensate for reduced photochemical efficiency and photosynthesis. Our study emphasizes that the upregulation of ribosome biosynthesis plays an essential role in facilitating the adaptation of phytoplankton to global ocean changes and elucidates the interactive effects of warming and high CO2 on the adaptation of marine phytoplankton in the context of global change.


Sujet(s)
Dioxyde de carbone , Diatomées , Diatomées/métabolisme , Diatomées/génétique , Diatomées/physiologie , Dioxyde de carbone/métabolisme , Phytoplancton/génétique , Phytoplancton/physiologie , Phytoplancton/métabolisme , Adaptation physiologique , Transcriptome , Réchauffement de la planète , Photosynthèse , Métabolomique
16.
BMC Genomics ; 25(1): 560, 2024 Jun 05.
Article de Anglais | MEDLINE | ID: mdl-38840265

RÉSUMÉ

BACKGROUND: Nitzschia closterium f. minutissima is a commonly available diatom that plays important roles in marine aquaculture. It was originally classified as Nitzschia (Bacillariaceae, Bacillariophyta) but is currently regarded as a heterotypic synonym of Phaeodactylum tricornutum. The aim of this study was to obtain the draft genome of the marine microalga N. closterium f. minutissima to understand its phylogenetic placement and evolutionary specialization. Given that the ornate hierarchical silicified cell walls (frustules) of diatoms have immense applications in nanotechnology for biomedical fields, biosensors and optoelectric devices, transcriptomic data were generated by using reference genome-based read mapping to identify significantly differentially expressed genes and elucidate the molecular processes involved in diatom biosilicification. RESULTS: In this study, we generated 13.81 Gb of pass reads from the PromethION sequencer. The draft genome of N. closterium f. minutissima has a total length of 29.28 Mb, and contains 28 contigs with an N50 value of 1.23 Mb. The GC content was 48.55%, and approximately 18.36% of the genome assembly contained repeat sequences. Gene annotation revealed 9,132 protein-coding genes. The results of comparative genomic analysis showed that N. closterium f. minutissima was clustered as a sister lineage of Phaeodactylum tricornutum and the divergence time between them was estimated to be approximately 17.2 million years ago (Mya). CAFF analysis demonstrated that 220 gene families that significantly changed were unique to N. closterium f. minutissima and that 154 were specific to P. tricornutum, moreover, only 26 gene families overlapped between these two species. A total of 818 DEGs in response to silicon were identified in N. closterium f. minutissima through RNA sequencing, these genes are involved in various molecular processes such as transcription regulator activity. Several genes encoding proteins, including silicon transporters, heat shock factors, methyltransferases, ankyrin repeat domains, cGMP-mediated signaling pathways-related proteins, cytoskeleton-associated proteins, polyamines, glycoproteins and saturated fatty acids may contribute to the formation of frustules in N. closterium f. minutissima. CONCLUSIONS: Here, we described a draft genome of N. closterium f. minutissima and compared it with those of eight other diatoms, which provided new insight into its evolutionary features. Transcriptome analysis to identify DEGs in response to silicon will help to elucidate the underlying molecular mechanism of diatom biosilicification in N. closterium f. minutissima.


Sujet(s)
Diatomées , Analyse de profil d'expression de gènes , Phylogenèse , Diatomées/génétique , Diatomées/métabolisme , Diatomées/classification , Génome , Transcriptome , Annotation de séquence moléculaire
17.
Appl Environ Microbiol ; 90(6): e0206823, 2024 Jun 18.
Article de Anglais | MEDLINE | ID: mdl-38786362

RÉSUMÉ

Phaeodactylum tricornutum a prominent source of industrial fucoxanthin production, faces challenges in its application due to its tolerance to high-temperature environments. This study investigates the physiological responses of P. tricornutum to high-temperature stress and its impact on fucoxanthin content, with a specific focus on the role of cis-zeatin. The results reveal that high-temperature stress inhibits P. tricornutum's growth and photosynthetic activity, leading to a decrease in fucoxanthin content. Transcriptome analysis shows that high temperature suppresses the expression of genes related to photosynthesis (e.g., psbO, psbQ, and OEC) and fucoxanthin biosynthesis (e.g., PYS, PDS1, and PSD2), underscoring the negative effects of high temperature on P. tricornutum. Interestingly, genes associated with cis-zeatin biosynthesis and cytokinesis signaling pathways exhibited increased expression under high-temperature conditions, indicating a potential role of cis-zeatin signaling in response to elevated temperatures. Content measurements confirm that high temperature enhances cis-zeatin content. Furthermore, the exogenous addition of cytokinesis mimetics or inhibitors significantly affected P. tricornutum's high-temperature resistance. Overexpression of the cis-zeatin biosynthetic enzyme gene tRNA DMATase enhanced P. tricornutum's resistance to high-temperature stress, while genetic knockout of tRNA DMATase reduced its resistance to high temperatures. Therefore, this research not only uncovers a novel mechanism for high-temperature resistance in P. tricornutum but also offers a possible alga species that can withstand high temperatures for the industrial production of fucoxanthin, offering valuable insights for practical utilization.IMPORTANCEThis study delves into Phaeodactylum tricornutum's response to high-temperature stress, specifically focusing on cis-zeatin. We uncover inhibited growth, reduced fucoxanthin, and significant cis-zeatin-related gene expression under high temperatures, highlighting potential signaling mechanisms. Crucially, genetic engineering and exogenous addition experiments confirm that the change in cis-zeatin levels could influence P. tricornutum's resistance to high-temperature stress. This breakthrough deepens our understanding of microalgae adaptation to high temperatures and offers an innovative angle for industrial fucoxanthin production. This research is a pivotal step toward developing heat-resistant microalgae for industrial use.


Sujet(s)
Diatomées , Température élevée , Xanthophylles , Xanthophylles/métabolisme , Diatomées/métabolisme , Diatomées/génétique , Diatomées/croissance et développement , Photosynthèse
18.
Gene ; 924: 148589, 2024 Oct 05.
Article de Anglais | MEDLINE | ID: mdl-38777108

RÉSUMÉ

Nitrogen is the principal nutrient deficiency that increases lipids and carbohydrate content in diatoms but negatively affects biomass production. Marine diatom Chaetoceros muelleri is characterized by lipid and carbohydrate accumulation under low nitrogen concentration without affecting biomass. To elucidate the molecular effects of nitrogen concentrations, we performed an RNA-seq analysis of C. muelleri grown under four nitrogen concentrations (3.53 mM, 1.76 mM, 0.44 mM, and 0.18 mM of NaNO3). This research revealed that changes in global transcription in C. muelleri are differentially expressed by nitrogen concentration. "Energetic metabolism", "Carbohydrate metabolism" and "Lipid metabolism" pathways were identified as the most upregulated by N deficiency. Due to N limitation, alternative pathways to self-supply nitrogen employed by microalgal cells were identified. Additionally, nitrogen limitation decreased chlorophyll content and caused a greater response at the transcriptional level with a higher number of unigenes differentially expressed. By contrast, the highest N concentration (3.53 mM) recorded the lowest number of differentially expressed genes. Amt1, Nrt2, Fad2, Skn7, Wrky19, and Dgat2 genes were evaluated by RT-qPCR. In conclusion, C. muelleri modify their metabolic pathways to optimize nitrogen utilization and minimize nitrogen losses. On the other hand, the assembled transcriptome serves as the basis for metabolic engineering focused on improving the quantity and quality of the diatom for biotechnological applications. However, proteomic and metabolomic analysis is also required to compare gene expression, protein, and metabolite accumulation.


Sujet(s)
Diatomées , Azote , Transcriptome , Azote/métabolisme , Diatomées/métabolisme , Diatomées/génétique , Analyse de profil d'expression de gènes/méthodes , Métabolisme lipidique/génétique , Métabolisme glucidique/génétique , Voies et réseaux métaboliques/effets des médicaments et des substances chimiques , Voies et réseaux métaboliques/génétique , Biomasse
19.
Environ Microbiol ; 26(5): e16624, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38757353

RÉSUMÉ

Laminarin, a ß(1,3)-glucan, serves as a storage polysaccharide in marine microalgae such as diatoms. Its abundance, water solubility and simple structure make it an appealing substrate for marine bacteria. Consequently, many marine bacteria have evolved strategies to scavenge and decompose laminarin, employing carbohydrate-binding modules (CBMs) as crucial components. In this study, we characterized two previously unassigned domains as laminarin-binding CBMs in multimodular proteins from the marine bacterium Christiangramia forsetii KT0803T, thereby introducing the new laminarin-binding CBM families CBM102 and CBM103. We identified four CBM102s in a surface glycan-binding protein (SGBP) and a single CBM103 linked to a glycoside hydrolase module from family 16 (GH16_3). Our analysis revealed that both modular proteins have an elongated shape, with GH16_3 exhibiting greater flexibility than SGBP. This flexibility may aid in the recognition and/or degradation of laminarin, while the constraints in SGBP could facilitate the docking of laminarin onto the bacterial surface. Exploration of bacterial metagenome-assembled genomes (MAGs) from phytoplankton blooms in the North Sea showed that both laminarin-binding CBM families are widespread among marine Bacteroidota. The high protein abundance of CBM102- and CBM103-containing proteins during phytoplankton blooms further emphasizes their significance in marine laminarin utilization.


Sujet(s)
Protéines bactériennes , Glucanes , Phytoplancton , Glucanes/métabolisme , Phytoplancton/métabolisme , Phytoplancton/génétique , Protéines bactériennes/métabolisme , Protéines bactériennes/génétique , Bacteroidetes/métabolisme , Bacteroidetes/génétique , Eutrophisation , Diatomées/métabolisme , Diatomées/génétique , Récepteurs de surface cellulaire
20.
Sci Data ; 11(1): 522, 2024 May 22.
Article de Anglais | MEDLINE | ID: mdl-38778120

RÉSUMÉ

Diatoms are microalgae that live in marine and freshwater environments and are responsible for about 20% of the world's carbon fixation. Population dynamics of these cells is finely regulated by intricate signal transduction systems, in which oxylipins are thought to play a relevant role. These are oxygenated fatty acids whose biosynthesis is initiated by a lipoxygenase enzyme (LOX) and are widely distributed in all phyla, including diatoms. Here, we present a de novo transcriptome obtained from the RNA-seq performed in the diatom species Pseudo-nitzschia arenysensis, using both a wild-type and a LOX-silenced strain, which will represent a reliable reference for comparative analyses within the Pseudo-nitzschia genus and at a broader taxonomic scale. Moreover, the RNA-seq data can be interrogated to go deeper into the oxylipins metabolic pathways.


Sujet(s)
Diatomées , Lipoxygenase , Transcriptome , Diatomées/génétique , Diatomées/enzymologie , Lipoxygenase/génétique , Lipoxygenase/métabolisme , Oxylipines/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE