Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 11.443
Filtrer
1.
Science ; 385(6709): eadf4478, 2024 Aug 09.
Article de Anglais | MEDLINE | ID: mdl-39116228

RÉSUMÉ

Despite recent studies implicating liquid-like biomolecular condensates in diverse cellular processes, many biomolecular condensates exist in a solid-like state, and their function and regulation are less understood. We show that the tumor suppressor Merlin, an upstream regulator of the Hippo pathway, localizes to both cell junctions and medial apical cortex in Drosophila epithelia, with the latter forming solid-like condensates that activate Hippo signaling. Merlin condensation required phosphatidylinositol-4-phosphate (PI4P)-mediated plasma membrane targeting and was antagonistically controlled by Pez and cytoskeletal tension through plasma membrane PI4P regulation. The solid-like material properties of Merlin condensates are essential for physiological function and protect the condensates against external perturbations. Collectively, these findings uncover an essential role for solid-like condensates in normal physiology and reveal regulatory mechanisms for their formation and disassembly.


Sujet(s)
Condensats biomoléculaires , Protéines de Drosophila , Drosophila melanogaster , Voie de signalisation Hippo , Neurofibromine-2 , Animaux , Membrane cellulaire/métabolisme , Drosophila melanogaster/métabolisme , Drosophila melanogaster/génétique , Protéines de Drosophila/métabolisme , Protéines de Drosophila/génétique , Jonctions intercellulaires/métabolisme , Protéines et peptides de signalisation intracellulaire/métabolisme , Protéines et peptides de signalisation intracellulaire/génétique , Neurofibromine-2/métabolisme , Neurofibromine-2/génétique , Phosphates phosphatidylinositol/métabolisme , Protein-Serine-Threonine Kinases/métabolisme , Condensats biomoléculaires/métabolisme
2.
NPJ Syst Biol Appl ; 10(1): 85, 2024 Aug 10.
Article de Anglais | MEDLINE | ID: mdl-39127695

RÉSUMÉ

The strength of molecular interactions is characterized by their dissociation constants (KD). Only high-affinity interactions (KD ≤ 10-8 M) are extensively investigated and support binary on/off switches. However, such analyses have discounted the presence of low-affinity binders (KD > 10-5 M) in the cellular environment. We assess the potential influence of low-affinity binders on high-affinity interactions. By employing Gillespie stochastic simulations and continuous methods, we demonstrate that the presence of low-affinity binders can alter the kinetics and the steady state of high-affinity interactions. We refer to this effect as 'herd regulation' and have evaluated its possible impact in two different contexts including sex determination in Drosophila melanogaster and in signalling systems that employ molecular thresholds. We have also suggested experiments to validate herd regulation in vitro. We speculate that low-affinity binders are prevalent in biological contexts where the outcomes depend on molecular thresholds impacting homoeostatic regulation.


Sujet(s)
Drosophila melanogaster , Animaux , Drosophila melanogaster/métabolisme , Cinétique , Liaison aux protéines , Transduction du signal/physiologie , Simulation numérique , Modèles biologiques , Processus stochastiques
3.
Cells ; 13(15)2024 Jul 25.
Article de Anglais | MEDLINE | ID: mdl-39120284

RÉSUMÉ

Mitochondria are crucial for cellular ATP production. They are highly dynamic organelles, whose morphology and function are controlled through mitochondrial fusion and fission. The specific roles of mitochondria in podocytes, the highly specialized cells of the kidney glomerulus, remain less understood. Given the significant structural, functional, and molecular similarities between mammalian podocytes and Drosophila nephrocytes, we employed fly nephrocytes to explore the roles of mitochondria in cellular function. Our study revealed that alterations in the Pink1-Park (mammalian PINK1-PRKN) pathway can disrupt mitochondrial dynamics in Drosophila nephrocytes. This disruption led to either fragmented or enlarged mitochondria, both of which impaired mitochondrial function. The mitochondrial dysfunction subsequently triggered defective intracellular endocytosis, protein aggregation, and cellular damage. These findings underscore the critical roles of mitochondria in nephrocyte functionality.


Sujet(s)
Protéines de Drosophila , Drosophila melanogaster , Endocytose , Mitochondries , Dynamique mitochondriale , Podocytes , Animaux , Podocytes/métabolisme , Podocytes/anatomopathologie , Protéines de Drosophila/métabolisme , Protéines de Drosophila/génétique , Mitochondries/métabolisme , Mitochondries/anatomopathologie , Drosophila melanogaster/métabolisme , Protein-Serine-Threonine Kinases/métabolisme , Ubiquitin-protein ligases
4.
Mol Cell ; 84(15): 2856-2869.e9, 2024 Aug 08.
Article de Anglais | MEDLINE | ID: mdl-39121843

RÉSUMÉ

RNA polymerase II (RNA Pol II)-mediated transcription is a critical, highly regulated process aided by protein complexes at distinct steps. Here, to investigate RNA Pol II and transcription-factor-binding and dissociation dynamics, we generated endogenous photoactivatable-GFP (PA-GFP) and HaloTag knockins using CRISPR-Cas9, allowing us to track a population of molecules at the induced Hsp70 loci in Drosophila melanogaster polytene chromosomes. We found that early in the heat-shock response, little RNA Pol II and DRB sensitivity-inducing factor (DSIF) are reused for iterative rounds of transcription. Surprisingly, although PAF1 and Spt6 are found throughout the gene body by chromatin immunoprecipitation (ChIP) assays, they show markedly different binding behaviors. Additionally, we found that PAF1 and Spt6 are only recruited after positive transcription elongation factor (P-TEFb)-mediated phosphorylation and RNA Pol II promoter-proximal pause escape. Finally, we observed that PAF1 may be expendable for transcription of highly expressed genes where nucleosome density is low. Thus, our live-cell imaging data provide key constraints to mechanistic models of transcription regulation.


Sujet(s)
Protéines de Drosophila , Drosophila melanogaster , RNA polymerase II , Transcription génétique , Facteurs d'élongation transcriptionnelle , RNA polymerase II/métabolisme , RNA polymerase II/génétique , Animaux , Drosophila melanogaster/génétique , Drosophila melanogaster/métabolisme , Protéines de Drosophila/génétique , Protéines de Drosophila/métabolisme , Facteurs d'élongation transcriptionnelle/métabolisme , Facteurs d'élongation transcriptionnelle/génétique , Protéines du choc thermique HSP70/métabolisme , Protéines du choc thermique HSP70/génétique , Facteur B d'élongation transcriptionnelle positive/métabolisme , Facteur B d'élongation transcriptionnelle positive/génétique , Régions promotrices (génétique) , Systèmes CRISPR-Cas , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique , Chromosomes polytènes/génétique , Chromosomes polytènes/métabolisme , Régulation de l'expression des gènes , Phosphorylation , Liaison aux protéines , Réaction de choc thermique/génétique , Protéines nucléaires/métabolisme , Protéines nucléaires/génétique , Nucléosomes/métabolisme , Nucléosomes/génétique
5.
Methods Mol Biol ; 2845: 79-93, 2024.
Article de Anglais | MEDLINE | ID: mdl-39115659

RÉSUMÉ

Mitophagy is the degradation of mitochondria via the autophagy-lysosome system, disruption of which has been linked to multiple neurodegenerative diseases. As a flux process involving the identification, tagging, and degradation of subcellular components, the analysis of mitophagy benefits from the microscopy analysis of fluorescent reporters. Studying the pathogenic mechanisms of disease also benefits from analysis in animal models in order to capture the complex interplay of molecular and cell biological phenomena. Here, we describe protocols to analyze mitophagy reporters in Drosophila by light microscopy.


Sujet(s)
Mitochondries , Mitophagie , Animaux , Mitochondries/métabolisme , Gènes rapporteurs , Drosophila/métabolisme , Microscopie de fluorescence/méthodes , Drosophila melanogaster/métabolisme , Lysosomes/métabolisme , Autophagie/physiologie , Protéines de Drosophila/métabolisme , Protéines de Drosophila/génétique
6.
Nat Commun ; 15(1): 6993, 2024 Aug 14.
Article de Anglais | MEDLINE | ID: mdl-39143098

RÉSUMÉ

RNA interference (RNAi) is a gene-silencing mechanism triggered by the cytosolic entry of double-stranded RNAs (dsRNAs). Many animal cells internalize extracellular dsRNAs via endocytosis for RNAi induction. However, it is not clear how the endocytosed dsRNAs are translocated into the cytosol across the endo/lysosomal membrane. Herein, we show that in Drosophila S2 cells, endocytosed dsRNAs induce lysosomal membrane permeabilization (LMP) that allows cytosolic dsRNA translocation. LMP mediated by dsRNAs requires the lysosomal Cl-/H+ antiporter ClC-b/DmOstm1. In clc-b or dmostm1 knockout S2 cells, extracellular dsRNAs are endocytosed and reach the lysosomes normally but fail to enter the cytosol. Pharmacological induction of LMP restores extracellular dsRNA-directed RNAi in clc-b or dmostm1-knockout cells. Furthermore, clc-b or dmostm1 mutant flies are defective in extracellular dsRNA-directed RNAi and its associated antiviral immunity. Therefore, endocytosed dsRNAs have an intrinsic ability to induce ClC-b/DmOstm1-dependent LMP that allows cytosolic dsRNA translocation for RNAi responses in Drosophila cells.


Sujet(s)
Cytosol , Protéines de Drosophila , Endocytose , Lysosomes , Interférence par ARN , ARN double brin , Animaux , ARN double brin/métabolisme , Lysosomes/métabolisme , Cytosol/métabolisme , Protéines de Drosophila/métabolisme , Protéines de Drosophila/génétique , Drosophila melanogaster/métabolisme , Drosophila melanogaster/génétique , Canaux chlorure/métabolisme , Canaux chlorure/génétique , Lignée cellulaire , Membranes intracellulaires/métabolisme , Perméabilité , Drosophila/métabolisme , Drosophila/génétique
7.
Int J Mol Sci ; 25(15)2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-39125997

RÉSUMÉ

The transmembrane protein ß-amyloid precursor protein (APP) is central to the pathophysiology of Alzheimer's disease (AD). The ß-amyloid hypothesis posits that aberrant processing of APP forms neurotoxic ß-amyloid aggregates, which lead to the cognitive impairments observed in AD. Although numerous additional factors contribute to AD, there is a need to better understand the synaptic function of APP. We have found that Drosophila APP-like (APPL) has both shared and non-shared roles at the synapse with Kismet (Kis), a chromatin helicase binding domain (CHD) protein. Kis is the homolog of CHD7 and CHD8, both of which are implicated in neurodevelopmental disorders including CHARGE Syndrome and autism spectrum disorders, respectively. Loss of function mutations in kis and animals expressing human APP and BACE in their central nervous system show reductions in the glutamate receptor subunit, GluRIIC, the GTPase Rab11, and the bone morphogenetic protein (BMP), pMad, at the Drosophila larval neuromuscular junction (NMJ). Similarly, processes like endocytosis, larval locomotion, and neurotransmission are deficient in these animals. Our pharmacological and epistasis experiments indicate that there is a functional relationship between Kis and APPL, but Kis does not regulate appl expression at the larval NMJ. Instead, Kis likely influences the synaptic localization of APPL, possibly by promoting rab11 transcription. These data identify a potential mechanistic connection between chromatin remodeling proteins and aberrant synaptic function in AD.


Sujet(s)
Précurseur de la protéine bêta-amyloïde , Protéines de Drosophila , Jonction neuromusculaire , Protéines G rab , Animaux , Jonction neuromusculaire/métabolisme , Protéines de Drosophila/métabolisme , Protéines de Drosophila/génétique , Protéines G rab/métabolisme , Protéines G rab/génétique , Précurseur de la protéine bêta-amyloïde/métabolisme , Précurseur de la protéine bêta-amyloïde/génétique , Drosophila melanogaster/métabolisme , Drosophila melanogaster/génétique , Transmission synaptique , Synapses/métabolisme , Récepteurs au glutamate/métabolisme , Récepteurs au glutamate/génétique , Protéines de liaison à l'ADN/métabolisme , Protéines de liaison à l'ADN/génétique , Humains , Helicase/métabolisme , Helicase/génétique , Protéines membranaires , Protéines de tissu nerveux , Protéines à homéodomaine , Récepteurs ionotropes du glutamate
8.
Nat Commun ; 15(1): 6873, 2024 Aug 11.
Article de Anglais | MEDLINE | ID: mdl-39127721

RÉSUMÉ

Ribosomes are regulated by evolutionarily conserved ubiquitination/deubiquitination events. We uncover the role of the deubiquitinase OTUD6 in regulating global protein translation through deubiquitination of the RPS7/eS7 subunit on the free 40 S ribosome in vivo in Drosophila. Coimmunoprecipitation and enrichment of monoubiquitinated proteins from catalytically inactive OTUD6 flies reveal RPS7 as the ribosomal substrate. The 40 S protein RACK1 and E3 ligases CNOT4 and RNF10 function upstream of OTUD6 to regulate alkylation stress. OTUD6 interacts with RPS7 specifically on the free 40 S, and not on 43 S/48 S initiation complexes or the translating ribosome. Global protein translation levels are bidirectionally regulated by OTUD6 protein abundance. OTUD6 protein abundance is physiologically regulated in aging and in response to translational and alkylation stress. Thus, OTUD6 may promote translation initiation, the rate limiting step in protein translation, by titering the amount of 40 S ribosome that recycles.


Sujet(s)
Protéines de Drosophila , Biosynthèse des protéines , Protéines ribosomiques , Ubiquitination , Animaux , Protéines ribosomiques/métabolisme , Protéines ribosomiques/génétique , Protéines de Drosophila/métabolisme , Protéines de Drosophila/génétique , Drosophila melanogaster/métabolisme , Drosophila melanogaster/génétique , Ribosomes/métabolisme , Stress physiologique , Ubiquitin-protein ligases/métabolisme , Ubiquitin-protein ligases/génétique
9.
J Cell Biol ; 223(9)2024 Sep 02.
Article de Anglais | MEDLINE | ID: mdl-39136998

RÉSUMÉ

Extracellular vesicles are known for intercellular signaling roles but can also serve to simply dispose of unwanted cargoes. In this issue, Bostelman and Broihier discuss new work from Rodal and colleagues (https://doi.org/10.1083/jcb.202405025) that refutes prior work by showing that extracellular vesicles at Drosophila neuromuscular junctions are not required for signaling and instead likely serve a proteostasis role.


Sujet(s)
Vésicules extracellulaires , Jonction neuromusculaire , Animaux , Vésicules extracellulaires/métabolisme , Jonction neuromusculaire/métabolisme , Transduction du signal , Synapses/métabolisme , Drosophila melanogaster/métabolisme , Protéines de Drosophila/métabolisme , Protéines de Drosophila/génétique , Drosophila/métabolisme , Communication cellulaire , Homéostasie protéique
10.
J Cell Biol ; 223(10)2024 Oct 07.
Article de Anglais | MEDLINE | ID: mdl-38949648

RÉSUMÉ

The diverse roles of the dynein motor in shaping microtubule networks and cargo transport complicate in vivo analysis of its functions significantly. To address this issue, we have generated a series of missense mutations in Drosophila Dynein heavy chain. We show that mutations associated with human neurological disease cause a range of defects, including impaired cargo trafficking in neurons. We also describe a novel microtubule-binding domain mutation that specifically blocks the metaphase-anaphase transition during mitosis in the embryo. This effect is independent from dynein's canonical role in silencing the spindle assembly checkpoint. Optical trapping of purified dynein complexes reveals that this mutation only compromises motor performance under load, a finding rationalized by the results of all-atom molecular dynamics simulations. We propose that dynein has a novel function in anaphase progression that depends on it operating in a specific load regime. More broadly, our work illustrates how in vivo functions of motors can be dissected by manipulating their mechanical properties.


Sujet(s)
Anaphase , Protéines de Drosophila , Drosophila melanogaster , Dynéines , Microtubules , Animaux , Dynéines/métabolisme , Dynéines/génétique , Drosophila melanogaster/génétique , Drosophila melanogaster/métabolisme , Protéines de Drosophila/métabolisme , Protéines de Drosophila/génétique , Microtubules/métabolisme , Microtubules/génétique , Simulation de dynamique moléculaire , Mutation/génétique , Appareil du fuseau/métabolisme , Appareil du fuseau/génétique , Humains , Mutation faux-sens
11.
Elife ; 132024 Jul 12.
Article de Anglais | MEDLINE | ID: mdl-38995818

RÉSUMÉ

Members of the diverse heterochromatin protein 1 (HP1) family play crucial roles in heterochromatin formation and maintenance. Despite the similar affinities of their chromodomains for di- and tri-methylated histone H3 lysine 9 (H3K9me2/3), different HP1 proteins exhibit distinct chromatin-binding patterns, likely due to interactions with various specificity factors. Previously, we showed that the chromatin-binding pattern of the HP1 protein Rhino, a crucial factor of the Drosophila PIWI-interacting RNA (piRNA) pathway, is largely defined by a DNA sequence-specific C2H2 zinc finger protein named Kipferl (Baumgartner et al., 2022). Here, we elucidate the molecular basis of the interaction between Rhino and its guidance factor Kipferl. Through phylogenetic analyses, structure prediction, and in vivo genetics, we identify a single amino acid change within Rhino's chromodomain, G31D, that does not affect H3K9me2/3 binding but disrupts the interaction between Rhino and Kipferl. Flies carrying the rhinoG31D mutation phenocopy kipferl mutant flies, with Rhino redistributing from piRNA clusters to satellite repeats, causing pronounced changes in the ovarian piRNA profile of rhinoG31D flies. Thus, Rhino's chromodomain functions as a dual-specificity module, facilitating interactions with both a histone mark and a DNA-binding protein.


Sujet(s)
Chromatine , Homologue-5 de la protéine chromobox , Protéines chromosomiques nonhistones , Protéines de Drosophila , Drosophila melanogaster , Animaux , Protéines de Drosophila/métabolisme , Protéines de Drosophila/génétique , Protéines chromosomiques nonhistones/métabolisme , Protéines chromosomiques nonhistones/génétique , Chromatine/métabolisme , Chromatine/génétique , Drosophila melanogaster/génétique , Drosophila melanogaster/métabolisme , Évolution moléculaire , Phylogenèse , Liaison aux protéines , Petit ARN interférent/métabolisme , Petit ARN interférent/génétique , Histone/métabolisme , Histone/génétique , ADN/métabolisme , ADN/génétique
12.
Methods Mol Biol ; 2805: 137-151, 2024.
Article de Anglais | MEDLINE | ID: mdl-39008179

RÉSUMÉ

Transcription in developing metazoans is inherently stochastic, involving transient and dynamic interactions among transcriptional machinery. A fundamental challenge with traditional techniques, including fixed-tissue protein and RNA staining, is the lack of temporal resolution. Quantifying kinetic changes in transcription can elucidate underlying mechanisms of interaction among regulatory modules. In this protocol, we describe the successful implementation of a combination of MS2/MCP and PP7/PCP systems in living Drosophila embryos to further our understanding of transcriptional dynamics during development. Our technique can be extended to visualize transcriptional activities of multiple genes or alleles simultaneously, characterize allele-specific expression of a target gene, and quantitatively analyze RNA polymerase II activity in a single-cell resolution.


Sujet(s)
Développement embryonnaire , Régulation de l'expression des gènes au cours du développement , Animaux , Développement embryonnaire/génétique , RNA polymerase II/métabolisme , RNA polymerase II/génétique , Embryon non mammalien/métabolisme , Drosophila/embryologie , Drosophila/génétique , Drosophila melanogaster/génétique , Drosophila melanogaster/embryologie , Drosophila melanogaster/métabolisme , Transcription génétique , Protéines de Drosophila/génétique , Protéines de Drosophila/métabolisme
13.
Int J Mol Sci ; 25(13)2024 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-39000597

RÉSUMÉ

Drosophila spermatogenesis involves the renewal of germline stem cells, meiosis of spermatocytes, and morphological transformation of spermatids into mature sperm. We previously demonstrated that Ocnus (ocn) plays an essential role in spermatogenesis. The ValRS-m (Valyl-tRNA synthetase, mitochondrial) gene was down-regulated in ocn RNAi testes. Here, we found that ValRS-m-knockdown induced complete sterility in male flies. The depletion of ValRS-m blocked mitochondrial behavior and ATP synthesis, thus inhibiting the transition from spermatogonia to spermatocytes, and eventually, inducing the accumulation of spermatogonia during spermatogenesis. To understand the intrinsic reason for this, we further conducted transcriptome-sequencing analysis for control and ValRS-m-knockdown testes. The differentially expressed genes (DEGs) between these two groups were selected with a fold change of ≥2 or ≤1/2. Compared with the control group, 4725 genes were down-regulated (dDEGs) and 2985 genes were up-regulated (uDEGs) in the ValRS-m RNAi group. The dDEGs were mainly concentrated in the glycolytic pathway and pyruvate metabolic pathway, and the uDEGs were primarily related to ribosomal biogenesis. A total of 28 DEGs associated with mitochondria and 6 meiosis-related genes were verified to be suppressed when ValRS-m was deficient. Overall, these results suggest that ValRS-m plays a wide and vital role in mitochondrial behavior and spermatogonia differentiation in Drosophila.


Sujet(s)
Protéines de Drosophila , Drosophila melanogaster , Infertilité masculine , Spermatogenèse , Animaux , Mâle , Drosophila melanogaster/génétique , Drosophila melanogaster/métabolisme , Infertilité masculine/génétique , Infertilité masculine/métabolisme , Protéines de Drosophila/génétique , Protéines de Drosophila/métabolisme , Protéines de Drosophila/déficit , Spermatogenèse/génétique , Mitochondries/métabolisme , Mitochondries/génétique , Testicule/métabolisme , Méiose/génétique , Spermatogonies/métabolisme , Analyse de profil d'expression de gènes , Amino acyl-tRNA synthetases/génétique , Amino acyl-tRNA synthetases/métabolisme , Spermatocytes/métabolisme , Transcriptome
14.
Elife ; 122024 Jul 16.
Article de Anglais | MEDLINE | ID: mdl-39010741

RÉSUMÉ

Multicellular organisms are composed of specialized cell types with distinct proteomes. While recent advances in single-cell transcriptome analyses have revealed differential expression of mRNAs, cellular diversity in translational profiles remains underinvestigated. By performing RNA-seq and Ribo-seq in genetically defined cells in the Drosophila brain, we here revealed substantial post-transcriptional regulations that augment the cell-type distinctions at the level of protein expression. Specifically, we found that translational efficiency of proteins fundamental to neuronal functions, such as ion channels and neurotransmitter receptors, was maintained low in glia, leading to their preferential translation in neurons. Notably, distribution of ribosome footprints on these mRNAs exhibited a remarkable bias toward the 5' leaders in glia. Using transgenic reporter strains, we provide evidence that the small upstream open-reading frames in the 5' leader confer selective translational suppression in glia. Overall, these findings underscore the profound impact of translational regulation in shaping the proteomics for cell-type distinction and provide new insights into the molecular mechanisms driving cell-type diversity.


Sujet(s)
Névroglie , Biosynthèse des protéines , Animaux , Névroglie/métabolisme , Neurones/métabolisme , Drosophila melanogaster/génétique , Drosophila melanogaster/métabolisme , ARN messager/métabolisme , ARN messager/génétique , Régulation de l'expression des gènes , Protéines de Drosophila/métabolisme , Protéines de Drosophila/génétique , Encéphale/métabolisme , Encéphale/cytologie , Ribosomes/métabolisme , Drosophila/génétique
15.
J Cell Biol ; 223(10)2024 Oct 07.
Article de Anglais | MEDLINE | ID: mdl-39037431

RÉSUMÉ

The polarization of cells often involves the transport of specific mRNAs and their localized translation in distal projections. Neurons and glia are both known to contain long cytoplasmic processes, while localized transcripts have only been studied extensively in neurons, not glia, especially in intact nervous systems. Here, we predict 1,740 localized Drosophila glial transcripts by extrapolating from our meta-analysis of seven existing studies characterizing the localized transcriptomes and translatomes of synaptically associated mammalian glia. We demonstrate that the localization of mRNAs in mammalian glial projections strongly predicts the localization of their high-confidence Drosophila homologs in larval motor neuron-associated glial projections and are highly statistically enriched for genes associated with neurological diseases. We further show that some of these localized glial transcripts are specifically required in glia for structural plasticity at the nearby neuromuscular junction synapses. We conclude that peripheral glial mRNA localization is a common and conserved phenomenon and propose that it is likely to be functionally important in disease.


Sujet(s)
Névroglie , Jonction neuromusculaire , Plasticité neuronale , ARN messager , Animaux , Névroglie/métabolisme , ARN messager/génétique , ARN messager/métabolisme , Plasticité neuronale/génétique , Jonction neuromusculaire/métabolisme , Jonction neuromusculaire/génétique , Souris , Drosophila melanogaster/génétique , Drosophila melanogaster/métabolisme , Motoneurones/métabolisme , Transcriptome/génétique , Protéines de Drosophila/métabolisme , Protéines de Drosophila/génétique , Drosophila/métabolisme , Drosophila/génétique
16.
Mol Biol Rep ; 51(1): 843, 2024 Jul 23.
Article de Anglais | MEDLINE | ID: mdl-39042338

RÉSUMÉ

BACKGROUND: Energy homeostasis is vital for insects to survive food shortages. This study investigated the starvation tolerance of Spodoptera frugiperda, which invaded China in 2019, focusing on its storage protein family, crucial for energy balance. 10 storage protein family members were identified and their expression patterns at different development stages and under different starvation stress were analyzed. METHODS AND RESULTS: We used qPCR to evaluate the expression levels of storage protein family members under various larval instars and starvation conditions. We discovered that, among above 10 members, only 2 storage proteins, SfSP8 and SfSP7 showed significant upregulation in response to starvation stress. Notably, SfSP8 upregulated markedly after 24 h of fasting, whereas SfSP7 exhibited a delayed response, with significant upregulation observed only after 72 h of starvation. Then we significantly reduced the starvation tolerance of larvae through RNAi-mediated knockdown of SfSP8 and also altered the starvation response of SfSP7 from a late to an early activation pattern. Finally, we constructed transgenic Drosophila melanogaster with heterologous overexpressing SfSP8 revealed that the starvation tolerance of the transgenic line was significantly stronger than that of wild-type lines. CONCLUSIONS: SfSP8 was the core storage protein member that mediated the starvation tolerance of larvae of S. frugiperda. Our study on the novel function of storage proteins in mediating larval starvation tolerance of S. frugiperda is conducive to understanding the strong colonization of this terrible invasive pest.


Sujet(s)
Protéines d'insecte , Larve , Spodoptera , Inanition , Animaux , Spodoptera/génétique , Larve/génétique , Larve/métabolisme , Inanition/génétique , Protéines d'insecte/génétique , Protéines d'insecte/métabolisme , Drosophila melanogaster/génétique , Drosophila melanogaster/métabolisme , Animal génétiquement modifié , Stress physiologique/génétique
17.
Int J Mol Sci ; 25(14)2024 Jul 21.
Article de Anglais | MEDLINE | ID: mdl-39063211

RÉSUMÉ

Despite impressive advances in the broad field of innate immunity, our understanding of the molecules and signaling pathways that control the host immune response to nematode infection remains incomplete. We have shown recently that Transforming Growth Factor-ß (TGF-ß) signaling in the fruit fly Drosophila melanogaster is activated by nematode infection and certain TGF-ß superfamily members regulate the D. melanogaster anti-nematode immune response. Here, we investigate the effect of an entomopathogenic nematode infection factor on host TGF-ß pathway regulation and immune function. We find that Heterorhabditis bacteriophora serine carboxypeptidase activates the Activin branch in D. melanogaster adults and the immune deficiency pathway in Activin-deficient flies, it affects hemocyte numbers and survival in flies deficient for Activin signaling, and causes increased intestinal steatosis in Activin-deficient flies. Thus, insights into the D. melanogaster signaling pathways and metabolic processes interacting with H. bacteriophora pathogenicity factors will be applicable to entomopathogenic nematode infection of important agricultural insect pests and vectors of disease.


Sujet(s)
Protéines de Drosophila , Drosophila melanogaster , Métabolisme lipidique , Transduction du signal , Animaux , Drosophila melanogaster/parasitologie , Drosophila melanogaster/immunologie , Drosophila melanogaster/métabolisme , Protéines de Drosophila/métabolisme , Protéines de Drosophila/génétique , Carboxypeptidases/métabolisme , Carboxypeptidases/génétique , Activines/métabolisme , Facteur de croissance transformant bêta/métabolisme , Rhabditida/physiologie , Immunité innée , Protéines de transport
18.
Cell Death Dis ; 15(7): 536, 2024 Jul 28.
Article de Anglais | MEDLINE | ID: mdl-39069546

RÉSUMÉ

Intestinal epithelial cells line the luminal surface to establish the intestinal barrier, where the cells play essential roles in the digestion of food, absorption of nutrients and water, protection from microbial infections, and maintaining symbiotic interactions with the commensal microbial populations. Maintaining and coordinating all these functions requires tight regulatory signaling, which is essential for intestinal homeostasis and organismal health. Dysfunction of intestinal epithelial cells, indeed, is linked to gastrointestinal disorders such as irritable bowel syndrome, inflammatory bowel disease, and gluten-related enteropathies. Emerging evidence suggests that peroxisome metabolic functions are crucial in maintaining intestinal epithelial cell functions and intestinal epithelium regeneration and, therefore, homeostasis. Here, we investigated the molecular mechanisms by which peroxisome metabolism impacts enteric health using the fruit fly Drosophila melanogaster and murine model organisms and clinical samples. We show that peroxisomes control cellular cholesterol, which in turn regulates the conserved yes-associated protein-signaling and contributes to intestinal epithelial structure and epithelial barrier function. Moreover, analysis of intestinal organoid cultures derived from biopsies of patients affected by Crohn's Disease revealed that the dysregulation of peroxisome number, excessive cellular cholesterol, and inhibition of Yap-signaling are markers of disease and could be novel diagnostic and/or therapeutic targets for treating Crohn's Disease. Our studies provided mechanistic insights on peroxisomal signaling in intestinal epithelial cell functions and identified cholesterol as a novel metabolic regulator of yes-associated protein-signaling in tissue homeostasis.


Sujet(s)
Cholestérol , Maladie de Crohn , Drosophila melanogaster , Muqueuse intestinale , Péroxysomes , Transduction du signal , Protéines de signalisation YAP , Maladie de Crohn/métabolisme , Maladie de Crohn/anatomopathologie , Animaux , Humains , Muqueuse intestinale/métabolisme , Muqueuse intestinale/anatomopathologie , Drosophila melanogaster/métabolisme , Cholestérol/métabolisme , Souris , Péroxysomes/métabolisme , Protéines de signalisation YAP/métabolisme , Protéines adaptatrices de la transduction du signal/métabolisme , Cellules épithéliales/métabolisme , Cellules épithéliales/anatomopathologie , Facteurs de transcription/métabolisme
19.
Sci Rep ; 14(1): 16567, 2024 07 17.
Article de Anglais | MEDLINE | ID: mdl-39019933

RÉSUMÉ

Serine proteases are important regulators of airway epithelial homeostasis. Altered serum or cellular levels of two serpins, Scca1 and Spink5, have been described for airway diseases but their function beyond antiproteolytic activity is insufficiently understood. To close this gap, we generated fly lines with overexpression or knockdown for each gene in the airways. Overexpression of both fly homologues of Scca1 and Spink5 induced the growth of additional airway branches, with more variable results for the respective knockdowns. Dysregulation of Scca1 resulted in a general delay in fruit fly development, with increases in larval and pupal mortality following overexpression of this gene. In addition, the morphological changes in the airways were concomitant with lower tolerance to hypoxia. In conclusion, the observed structural changes of the airways evidently had a strong impact on the airway function in our model as they manifested in a lower physical fitness of the animals. We assume that this is due to insufficient tissue oxygenation. Future work will be directed at the identification of key molecular regulators following the airway-specific dysregulation of Scca1 and Spink5 expression.


Sujet(s)
Asthme , Drosophila melanogaster , Serpines , Trachée , Animaux , Drosophila melanogaster/métabolisme , Drosophila melanogaster/génétique , Trachée/métabolisme , Trachée/anatomopathologie , Asthme/métabolisme , Asthme/anatomopathologie , Asthme/génétique , Serpines/métabolisme , Serpines/génétique , Protéines de Drosophila/métabolisme , Protéines de Drosophila/génétique , Oxygène/métabolisme
20.
Proc Natl Acad Sci U S A ; 121(31): e2402755121, 2024 Jul 30.
Article de Anglais | MEDLINE | ID: mdl-39042673

RÉSUMÉ

The precise assembly of a functional nervous system relies on axon guidance cues. Beyond engaging their cognate receptors and initiating signaling cascades that modulate cytoskeletal dynamics, guidance cues also bind components of the extracellular matrix, notably proteoglycans, yet the role and mechanisms of these interactions remain poorly understood. We found that Drosophila secreted semaphorins bind specifically to glycosaminoglycan (GAG) chains of proteoglycans, showing a preference based on the degree of sulfation. Structural analysis of Sema2b unveiled multiple GAG-binding sites positioned outside canonical plexin-binding site, with the highest affinity binding site located at the C-terminal tail, characterized by a lysine-rich helical arrangement that appears to be conserved across secreted semaphorins. In vivo studies revealed a crucial role of the Sema2b C-terminal tail in specifying the trajectory of olfactory receptor neurons. We propose that secreted semaphorins tether to the cell surface through interactions with GAG chains of proteoglycans, facilitating their presentation to cognate receptors on passing axons.


Sujet(s)
Guidage axonal , Protéines de Drosophila , Protéoglycanes , Sémaphorines , Transduction du signal , Animaux , Sémaphorines/métabolisme , Sémaphorines/génétique , Protéoglycanes/métabolisme , Protéines de Drosophila/métabolisme , Protéines de Drosophila/génétique , Axones/métabolisme , Drosophila melanogaster/métabolisme , Glycosaminoglycanes/métabolisme , Sites de fixation , Liaison aux protéines , Neurorécepteurs olfactifs/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE