Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 4.106
Filtrer
1.
Clin Transl Med ; 14(8): e1791, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39113233

RÉSUMÉ

BACKGROUND: Mutations in several translation initiation factors are closely associated with premature ovarian insufficiency (POI), but the underlying pathogenesis remains largely unknown. METHODS AND RESULTS: We generated eukaryotic translation initiation factor 5 (Eif5) conditional knockout mice aiming to investigate the function of eIF5 during oocyte growth and follicle development. Here, we demonstrated that Eif5 deletion in mouse primordial and growing oocytes both resulted in the apoptosis of oocytes within the early-growing follicles. Further studies revealed that Eif5 deletion in oocytes downregulated the levels of mitochondrial fission-related proteins (p-DRP1, FIS1, MFF and MTFR) and upregulated the levels of the integrated stress response-related proteins (AARS1, SHMT2 and SLC7A1) and genes (Atf4, Ddit3 and Fgf21). Consistent with this, Eif5 deletion in oocytes resulted in mitochondrial dysfunction characterized by elongated form, aggregated distribution beneath the oocyte membrane, decreased adenosine triphosphate content and mtDNA copy numbers, and excessive accumulation of reactive oxygen species (ROS) and mitochondrial superoxide. Meanwhile, Eif5 deletion in oocytes led to a significant increase in the levels of DNA damage response proteins (γH2AX, p-CHK2 and p-p53) and proapoptotic proteins (PUMA and BAX), as well as a significant decrease in the levels of anti-apoptotic protein BCL-xL. CONCLUSION: These findings indicate that Eif5 deletion in mouse oocytes results in the apoptosis of oocytes within the early-growing follicles via mitochondrial fission defects, excessive ROS accumulation and DNA damage. This study provides new insights into pathogenesis, genetic diagnosis and potential therapeutic targets for POI. KEY POINTS: Eif5 deletion in oocytes leads to arrest in oocyte growth and follicle development. Eif5 deletion in oocytes impairs the translation of mitochondrial fission-related proteins, followed by mitochondrial dysfunction. Depletion of Eif5 causes oocyte apoptosis via ROS accumulation and DNA damage response pathway.


Sujet(s)
Apoptose , Altération de l'ADN , Souris knockout , Ovocytes , Espèces réactives de l'oxygène , Animaux , Espèces réactives de l'oxygène/métabolisme , Souris , Ovocytes/métabolisme , Altération de l'ADN/génétique , Femelle , Apoptose/génétique , Dynamique mitochondriale/génétique , Facteurs initiation chaîne peptidique/génétique , Facteurs initiation chaîne peptidique/métabolisme , , Follicule ovarique/métabolisme , Follicule ovarique/croissance et développement
2.
Methods Mol Biol ; 2831: 145-177, 2024.
Article de Anglais | MEDLINE | ID: mdl-39134849

RÉSUMÉ

Neurons contain three compartments, the soma, long axon, and dendrites, which have distinct energetic and biochemical requirements. Mitochondria feature in all compartments and regulate neuronal activity and survival, including energy generation and calcium buffering alongside other roles including proapoptotic signaling and steroid synthesis. Their dynamicity allows them to undergo constant fusion and fission events in response to the changing energy and biochemical requirements. These events, termed mitochondrial dynamics, impact their morphology and a variety of three-dimensional (3D) morphologies exist within the neuronal mitochondrial network. Distortions in the morphological profile alongside mitochondrial dysfunction may begin in the neuronal soma in ageing and common neurodegenerative disorders. However, 3D morphology cannot be comprehensively examined in flat, two-dimensional (2D) images. This highlights a need to segment mitochondria within volume data to provide a representative snapshot of the processes underpinning mitochondrial dynamics and mitophagy within healthy and diseased neurons. The advent of automated high-resolution volumetric imaging methods such as Serial Block Face Scanning Electron Microscopy (SBF-SEM) as well as the range of image software packages allow this to be performed.We describe and evaluate a method for randomly sampling mitochondria and manually segmenting their whole morphologies within randomly generated regions of interest of the neuronal soma from SBF-SEM image stacks. These 3D reconstructions can then be used to generate quantitative data about mitochondrial and cellular morphologies. We further describe the use of a macro that automatically dissects the soma and localizes 3D mitochondria into the subregions created.


Sujet(s)
Imagerie tridimensionnelle , Mitochondries , Dynamique mitochondriale , Neurones , Mitochondries/métabolisme , Neurones/métabolisme , Neurones/cytologie , Imagerie tridimensionnelle/méthodes , Animaux , Microscopie électronique à balayage/méthodes , Logiciel , Humains , Traitement d'image par ordinateur/méthodes ,
3.
J Cell Biol ; 223(10)2024 Oct 07.
Article de Anglais | MEDLINE | ID: mdl-39133213

RÉSUMÉ

Mitochondrial functions can be regulated by membrane contact sites with the endoplasmic reticulum (ER). These mitochondria-ER contact sites (MERCs) are functionally heterogeneous and maintained by various tethers. Here, we found that REEP5, an ER tubule-shaping protein, interacts with Mitofusins 1/2 to mediate mitochondrial distribution throughout the cytosol by a new transport mechanism, mitochondrial "hitchhiking" with tubular ER on microtubules. REEP5 depletion led to reduced tethering and increased perinuclear localization of mitochondria. Conversely, increasing REEP5 expression facilitated mitochondrial distribution throughout the cytoplasm. Rapamycin-induced irreversible REEP5-MFN1/2 interaction led to mitochondrial hyperfusion, implying that the dynamic release of mitochondria from tethering is necessary for normal mitochondrial distribution and dynamics. Functionally, disruption of MFN2-REEP5 interaction dynamics by forced dimerization or silencing REEP5 modulated the production of mitochondrial reactive oxygen species (ROS). Overall, our results indicate that dynamic REEP5-MFN1/2 interaction mediates cytosolic distribution and connectivity of the mitochondrial network by "hitchhiking" and this process regulates mitochondrial ROS, which is vital for multiple physiological functions.


Sujet(s)
Réticulum endoplasmique , dGTPases , Mitochondries , Espèces réactives de l'oxygène , Réticulum endoplasmique/métabolisme , Mitochondries/métabolisme , Humains , dGTPases/métabolisme , dGTPases/génétique , Espèces réactives de l'oxygène/métabolisme , Cellules HeLa , Microtubules/métabolisme , Cellules HEK293 , Protéines de transport de la membrane mitochondriale/métabolisme , Protéines de transport de la membrane mitochondriale/génétique , Liaison aux protéines , Protéines mitochondriales/métabolisme , Protéines mitochondriales/génétique , Cytosol/métabolisme , Dynamique mitochondriale
4.
Cells ; 13(15)2024 Jul 25.
Article de Anglais | MEDLINE | ID: mdl-39120284

RÉSUMÉ

Mitochondria are crucial for cellular ATP production. They are highly dynamic organelles, whose morphology and function are controlled through mitochondrial fusion and fission. The specific roles of mitochondria in podocytes, the highly specialized cells of the kidney glomerulus, remain less understood. Given the significant structural, functional, and molecular similarities between mammalian podocytes and Drosophila nephrocytes, we employed fly nephrocytes to explore the roles of mitochondria in cellular function. Our study revealed that alterations in the Pink1-Park (mammalian PINK1-PRKN) pathway can disrupt mitochondrial dynamics in Drosophila nephrocytes. This disruption led to either fragmented or enlarged mitochondria, both of which impaired mitochondrial function. The mitochondrial dysfunction subsequently triggered defective intracellular endocytosis, protein aggregation, and cellular damage. These findings underscore the critical roles of mitochondria in nephrocyte functionality.


Sujet(s)
Protéines de Drosophila , Drosophila melanogaster , Endocytose , Mitochondries , Dynamique mitochondriale , Podocytes , Animaux , Podocytes/métabolisme , Podocytes/anatomopathologie , Protéines de Drosophila/métabolisme , Protéines de Drosophila/génétique , Mitochondries/métabolisme , Mitochondries/anatomopathologie , Drosophila melanogaster/métabolisme , Protein-Serine-Threonine Kinases/métabolisme , Ubiquitin-protein ligases
5.
Int J Mol Sci ; 25(15)2024 Jul 28.
Article de Anglais | MEDLINE | ID: mdl-39125805

RÉSUMÉ

A previous study showed that high-glucose (HG) conditions induce mitochondria fragmentation through the calcium-mediated activation of extracellular signal-regulated kinase 1/2 (ERK 1/2) in H9C2 cells. This study tested whether empagliflozin could prevent HG-induced mitochondria fragmentation through this pathway. We found that exposing H9C2 cells to an HG concentration decreased cell viability and increased cell apoptosis and caspase-3. Empagliflozin could reverse the apoptosis effect of HG stimulation on H9C2 cells. In addition, the HG condition caused mitochondria fragmentation, which was reduced by empagliflozin. The expression of mitochondria fission protein was upregulated, and fusion proteins were downregulated under HG stimulation. The expression of fission proteins was decreased under empagliflozin treatment. Increased calcium accumulation was observed under the HG condition, which was decreased by empagliflozin. The increased expression of ERK 1/2 under HG stimulation was also reversed by empagliflozin. Our study shows that empagliflozin could reverse the HG condition, causing a calcium-dependent activation of the ERK 1/2 pathway, which caused mitochondria fragmentation in H9C2 cells.


Sujet(s)
Apoptose , Composés benzhydryliques , Calcium , Glucose , Glucosides , Système de signalisation des MAP kinases , Mitochondries , Apoptose/effets des médicaments et des substances chimiques , Composés benzhydryliques/pharmacologie , Glucosides/pharmacologie , Glucose/métabolisme , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Calcium/métabolisme , Animaux , Rats , Lignée cellulaire , Système de signalisation des MAP kinases/effets des médicaments et des substances chimiques , Survie cellulaire/effets des médicaments et des substances chimiques , Dynamique mitochondriale/effets des médicaments et des substances chimiques , Caspase-3/métabolisme , Mitogen-Activated Protein Kinase 3/métabolisme , Mitogen-Activated Protein Kinase 1/métabolisme
6.
Sci Rep ; 14(1): 18586, 2024 08 10.
Article de Anglais | MEDLINE | ID: mdl-39127716

RÉSUMÉ

Astrocytes display context-specific diversity in their functions and respond to noxious stimuli between brain regions. Astrocytic mitochondria have emerged as key players in governing astrocytic functional heterogeneity, given their ability to dynamically adapt their morphology to regional demands on ATP generation and Ca2+ buffering functions. Although there is reciprocal regulation between mitochondrial dynamics and mitochondrial Ca2+ signaling in astrocytes, the extent of this regulation in astrocytes from different brain regions remains unexplored. Brain-wide, experimentally induced mitochondrial DNA (mtDNA) loss in astrocytes showed that mtDNA integrity is critical for astrocyte function, however, possible diverse responses to this noxious stimulus between brain areas were not reported in these experiments. To selectively damage mtDNA in astrocytes in a brain-region-specific manner, we developed a novel adeno-associated virus (AAV)-based tool, Mito-PstI expressing the restriction enzyme PstI, specifically in astrocytic mitochondria. Here, we applied Mito-PstI to two brain regions, the dorsolateral striatum and dentate gyrus, and we show that Mito-PstI induces astrocytic mtDNA loss in vivo, but with remarkable brain-region-dependent differences on mitochondrial dynamics, Ca2+ fluxes, and astrocytic and microglial reactivity. Thus, AAV-Mito-PstI is a novel tool to explore the relationship between astrocytic mitochondrial network dynamics and astrocytic mitochondrial Ca2+ signaling in a brain-region-selective manner.


Sujet(s)
Astrocytes , Altération de l'ADN , ADN mitochondrial , Mitochondries , Astrocytes/métabolisme , Animaux , ADN mitochondrial/génétique , ADN mitochondrial/métabolisme , Souris , Mitochondries/métabolisme , Dependovirus/génétique , Calcium/métabolisme , Encéphale/métabolisme , Mâle , Signalisation calcique , Souris de lignée C57BL , Dynamique mitochondriale , Gyrus denté/métabolisme
7.
Sci Adv ; 10(31): eadp0443, 2024 Aug 02.
Article de Anglais | MEDLINE | ID: mdl-39093974

RÉSUMÉ

Mitochondrial fusion and fission accompany adaptive responses to stress and altered metabolic demands. Inner membrane fusion and cristae morphogenesis depends on optic atrophy 1 (Opa1), which is expressed in different isoforms and is cleaved from a membrane-bound, long to a soluble, short form. Here, we have analyzed the physiological role of Opa1 isoforms and Opa1 processing by generating mouse lines expressing only one cleavable Opa1 isoform or a non-cleavable variant thereof. Our results show that expression of a single cleavable or non-cleavable Opa1 isoform preserves embryonic development and the health of adult mice. Opa1 processing is dispensable under metabolic and thermal stress but prolongs life span and protects against mitochondrial cardiomyopathy in OXPHOS-deficient Cox10-/- mice. Mechanistically, loss of Opa1 processing disturbs the balance between mitochondrial biogenesis and mitophagy, suppressing cardiac hypertrophic growth in Cox10-/- hearts. Our results highlight the critical regulatory role of Opa1 processing, mitochondrial dynamics, and metabolism for cardiac hypertrophy.


Sujet(s)
Cardiomyopathies , dGTPases , Animaux , dGTPases/métabolisme , dGTPases/génétique , Souris , Cardiomyopathies/métabolisme , Cardiomyopathies/génétique , Cardiomyopathies/anatomopathologie , Dynamique mitochondriale , Mitophagie/génétique , Souris knockout , Isoformes de protéines/métabolisme , Isoformes de protéines/génétique , Mitochondries/métabolisme , Modèles animaux de maladie humaine , Développement embryonnaire/génétique
8.
Methods Mol Biol ; 2835: 39-48, 2024.
Article de Anglais | MEDLINE | ID: mdl-39105904

RÉSUMÉ

Mitochondrial transfer (MT) is a biological process that allows a donor cell to horizontally share its own mitochondria with a recipient cell. Mitochondria are highly dynamic membrane-bound sub-cellular organelles prominently involved in the regulation of the cell energy balance, calcium homeostasis, and apoptotic machinery activation. They physiologically undergo fusion and fission processes in response to the cell requirement, with a continuous morphological re-arrangement. This structural and functional plasticity is at the basis of the MT, described in tissue regeneration, cardiac and neurological diseases, as well as in cancer. Here, the MT has been observed in the tumor micro-environment (TME) from the adipose-derived stem cells (ASCs) to the cancer cells, eventually reverting the lack of the mitochondria respiration function, or enhancing their motility and drug resistance. In this chapter, we outline some key protocols for evaluating this exciting phenomenon of MT. These methodological and technical approaches are very important, considering all the limitations that scientists constantly face, especially in this field of the research.


Sujet(s)
Cellules souches mésenchymateuses , Mitochondries , Humains , Cellules souches mésenchymateuses/métabolisme , Cellules souches mésenchymateuses/cytologie , Mitochondries/métabolisme , Tumeurs/métabolisme , Tumeurs/anatomopathologie , Microenvironnement tumoral , Lignée cellulaire tumorale , Dynamique mitochondriale
9.
Nat Commun ; 15(1): 6979, 2024 Aug 14.
Article de Anglais | MEDLINE | ID: mdl-39143079

RÉSUMÉ

Oligodendrocyte precursor cells (OPCs) give rise to myelinating oligodendrocytes of the brain. This process persists throughout life and is essential for recovery from neurodegeneration. To better understand the cellular checkpoints that occur during oligodendrogenesis, we determined the mitochondrial distribution and morphometrics across the oligodendrocyte lineage in mouse and human cerebral cortex. During oligodendrocyte generation, mitochondrial content expands concurrently with a change in subcellular partitioning towards the distal processes. These changes are followed by an abrupt loss of mitochondria in the oligodendrocyte processes and myelin, coinciding with sheath compaction. This reorganization and extensive expansion and depletion take 3 days. Oligodendrocyte mitochondria are stationary over days while OPC mitochondrial motility is modulated by animal arousal state within minutes. Aged OPCs also display decreased mitochondrial size, volume fraction, and motility. Thus, mitochondrial dynamics are linked to oligodendrocyte generation, dynamically modified by their local microenvironment, and altered in the aging brain.


Sujet(s)
Mitochondries , Gaine de myéline , Oligodendroglie , Animaux , Mitochondries/métabolisme , Humains , Oligodendroglie/métabolisme , Oligodendroglie/cytologie , Souris , Gaine de myéline/métabolisme , Précurseurs des oligodendrocytes/métabolisme , Précurseurs des oligodendrocytes/cytologie , Cortex cérébral/cytologie , Cortex cérébral/métabolisme , Souris de lignée C57BL , Mâle , Dynamique mitochondriale , Différenciation cellulaire , Femelle
10.
Development ; 151(15)2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-39120082

RÉSUMÉ

To build a functional inner ear, hair cell morphology must be precisely controlled along the proximo-distal axis. A new paper in Development shows that differential mitochondrial dynamics in proximal versus distal cells impacts on the apical cell surface area - a key aspect of morphology. To find out more about this work, we spoke to first author James O'Sullivan and senior author Zoë Mann, both at King's College London, UK.


Sujet(s)
Biologie du développement , Animaux , Humains , Biologie du développement/histoire , Cellules ciliées auditives/cytologie , Histoire du 21ème siècle , Histoire du 20ème siècle , Oreille interne/embryologie , Oreille interne/cytologie , Dynamique mitochondriale
11.
Development ; 151(15)2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-39120083

RÉSUMÉ

In multicellular tissues, the size and shape of cells are intricately linked with their physiological functions. In the vertebrate auditory organ, the neurosensory epithelium develops as a mosaic of sensory hair cells (HCs), and their glial-like supporting cells, which have distinct morphologies and functional properties at different frequency positions along its tonotopic long axis. In the chick cochlea, the basilar papilla (BP), proximal (high-frequency) HCs, are larger than their distal (low-frequency) counterparts, a morphological feature essential for sound perception. Mitochondrial dynamics, which constitute the equilibrium between fusion and fission, regulate differentiation and functional refinement across a variety of cell types. We investigate this as a potential mechanism for regulating the shape of developing HCs. Using live imaging in intact BP explants, we identify distinct remodelling of mitochondrial networks in proximal compared with distal HCs. Manipulating mitochondrial dynamics in developing HCs alters their normal morphology along the proximal-distal (tonotopic) axis. Inhibition of the mitochondrial fusion machinery decreased proximal HC surface area, whereas promotion of fusion increased the distal HC surface area. We identify mitochondrial dynamics as a key regulator of HC morphology in developing inner ear epithelia.


Sujet(s)
Cochlée , Cellules ciliées auditives , Mitochondries , Dynamique mitochondriale , Animaux , Cochlée/embryologie , Cochlée/cytologie , Cochlée/croissance et développement , Cellules ciliées auditives/cytologie , Cellules ciliées auditives/métabolisme , Mitochondries/métabolisme , Embryon de poulet , Forme de la cellule , Poulets , Différenciation cellulaire
12.
FASEB J ; 38(14): e23816, 2024 Jul 31.
Article de Anglais | MEDLINE | ID: mdl-39072779

RÉSUMÉ

Acetaminophen (APAP) is one of the most clinically relevant medications associated with acute liver damage. A prolific deal of research validated the hepatoprotective effect of empagliflozin (EMPA); however, its effect on APAP-induced hepatotoxicity has still not been investigated. In this study, the prospective hepatoprotective impact of EMPA against APAP-induced hepatotoxicity was investigated. Twenty-eight Balb-C mice were assigned to four groups: control, APAP, EMPA10/APAP, and EMPA25/APAP. At the end of the experiment, serum hepatotoxicity biomarkers, MDA level, and GSH content were estimated. Hepatic mitofusin-2 (MFN2), optic atrophy 1 (OPA1), dynamin-related protein 1 (Drp1), and mitochondrial fission 1 protein (FIS1) were immunoassayed. PGC-1α, cGAS, and STING mRNA expression were assessed by real-time PCR. Histopathological changes and immunohistochemistry of INF-ß, p-NF-κB, and iNOS were evaluated. APAP treatment caused significant hepatic functional impairment and increased hepatic MDA levels, as well as a concomitant decrease in GSH content. Marked elevation in Drp1 and FIS1 levels, INF-ß, p-NF-κB, and iNOS immunoreactivity, and reduction in MFN2 and OPA1 levels in the APAP-injected group, PGC-1α downregulation, and high expression of cGAS and STING were also documented. EMPA effectively ameliorated APAP-generated structural and functional changes in the liver, restored redox homeostasis and mitochondrial dynamics balance, and enhanced mitochondrial biogenesis, remarkably diminished hepatic expression of cGAS and STING, and elicited a reduction in hepatic inflammation. Moreover, the computational modeling data support the interaction of APAP with antioxidant system-related proteins as well as the interactions of EMPA against Drp1, cGAS, IKKA, and iNOS proteins. Our findings demonstrated for the first time that EMPA has an ameliorative impact against APAP-induced hepatotoxicity in mice via modulation of mitochondrial dynamics, biogenesis, and cGAS/STING-dependent inflammation. Thus, this study concluded that EMPA could be a promising therapeutic modality for acute liver toxicity.


Sujet(s)
Acétaminophène , Composés benzhydryliques , Lésions hépatiques dues aux substances , Dynamines , dGTPases , Glucosides , Protéines membranaires , Dynamique mitochondriale , Nucleotidyltransferases , Animaux , Mâle , Souris , Acétaminophène/toxicité , Acétaminophène/effets indésirables , Composés benzhydryliques/pharmacologie , Composés benzhydryliques/toxicité , Lésions hépatiques dues aux substances/métabolisme , Lésions hépatiques dues aux substances/traitement médicamenteux , Dynamines/métabolisme , Dynamines/génétique , Glucosides/pharmacologie , dGTPases/métabolisme , Foie/métabolisme , Foie/effets des médicaments et des substances chimiques , Foie/anatomopathologie , Protéines membranaires/métabolisme , Protéines membranaires/génétique , Souris de lignée BALB C , Dynamique mitochondriale/effets des médicaments et des substances chimiques , Protéines mitochondriales/métabolisme , Facteur de transcription NF-kappa B/métabolisme , Nucleotidyltransferases/métabolisme , Biogenèse des organelles , Coactivateur 1-alpha du récepteur gamma activé par les proliférateurs de peroxysomes/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques
13.
Chin J Nat Med ; 22(7): 599-607, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-39059829

RÉSUMÉ

Panax ginseng (C.A. Mey.) has been traditionally employed in Korea and China to alleviate fatigue and digestive disorders. In particular, Korean red ginseng (KRG), derived from streamed and dried P. ginseng, is known for its anti-aging and anti-inflammatory properties. However, its effects on benign prostatic hyperplasia (BPH), a representative aging-related disease, and the underlying mechanisms remain unclear. This study aims to elucidate the therapeutic effects of KRG on BPH, with a particular focus on mitochondrial dynamics, including fission and fusion processes. The effects of KRG on cell proliferation, apoptosis, and mitochondrial dynamics and morphology were evaluated in a rat model of testosterone propionate (TP)-induced BPH and TP-treated LNCaP cells, with mdivi-1 as a control. The results revealed that KRG treatment reduced the levels of androgen receptors (AR) and prostate-specific antigens in the BPH group. KRG inhibited cell proliferation by downregulating cyclin D and proliferating cell nuclear antigen (PCNA) levels, and it promoted apoptosis by increasing the ratio of B-cell lymphoma protein 2 (Bcl-2)-associated X protein (Bax) to Bcl-2 expression. Notably, KRG treatment enhanced the phosphorylation of dynamin-related protein 1 (DRP-1, serine 637) compared with that in the BPH group, which inhibited mitochondrial fission and led to mitochondrial elongation. This modulation of mitochondrial dynamics was associated with decreased cell proliferation and increased apoptosis. By dysregulating AR signaling and inhibiting mitochondrial fission through enhanced DRP-1 (ser637) phosphorylation, KRG effectively reduced cell proliferation and induced apoptosis. These findings suggest that KRG's regulation of mitochondrial dynamics offers a promising clinical approach for the treatment of BPH.


Sujet(s)
Apoptose , Prolifération cellulaire , Dynamines , Dynamique mitochondriale , Panax , Hyperplasie de la prostate , Récepteurs aux androgènes , Transduction du signal , Animaux , Humains , Mâle , Rats , Apoptose/effets des médicaments et des substances chimiques , Prolifération cellulaire/effets des médicaments et des substances chimiques , Dynamines/métabolisme , Dynamique mitochondriale/effets des médicaments et des substances chimiques , Panax/composition chimique , Extraits de plantes/pharmacologie , Hyperplasie de la prostate/traitement médicamenteux , Hyperplasie de la prostate/métabolisme , Rat Sprague-Dawley , Récepteurs aux androgènes/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques
14.
Cells ; 13(14)2024 Jul 11.
Article de Anglais | MEDLINE | ID: mdl-39056765

RÉSUMÉ

Mitochondria play a fundamental role in the energy metabolism of eukaryotic cells. Numerous studies indicate lead (Pb) as a widely occurring environmental factor capable of disrupting oxidative metabolism by modulating the mitochondrial processes. The multitude of known molecular targets of Pb and its strong affinity for biochemical pathways involving divalent metals suggest that it may pose a health threat at any given dose. Changes in the bioenergetics of cells exposed to Pb have been repeatedly demonstrated in research, primarily showing a reduced ability to synthesize ATP. In addition, lead interferes with mitochondrial-mediated processes essential for maintaining homeostasis, such as apoptosis, mitophagy, mitochondrial dynamics, and the inflammatory response. This article describes selected aspects of mitochondrial metabolism in relation to potential mechanisms of energy metabolism disorders induced by Pb.


Sujet(s)
Métabolisme énergétique , Plomb , Mitochondries , Humains , Plomb/toxicité , Plomb/métabolisme , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Métabolisme énergétique/effets des médicaments et des substances chimiques , Animaux , Mitophagie/effets des médicaments et des substances chimiques , Apoptose/effets des médicaments et des substances chimiques , Dynamique mitochondriale/effets des médicaments et des substances chimiques
15.
Mol Cell ; 84(14): 2593-2595, 2024 Jul 25.
Article de Anglais | MEDLINE | ID: mdl-39059367

RÉSUMÉ

In this issue of Molecular Cell, Pilic et al.1 show that hexokinase, the first enzyme of glycolysis, forms perimitochondrial rings that prevent mitochondrial fragmentation when ATP levels drop.


Sujet(s)
Glucose , Hexokinase , Mitochondries , Dynamique mitochondriale , Hexokinase/métabolisme , Hexokinase/génétique , Mitochondries/métabolisme , Mitochondries/enzymologie , Glucose/métabolisme , Adénosine triphosphate/métabolisme , Humains , Animaux , Glycolyse
16.
Mol Cell ; 84(14): 2732-2746.e5, 2024 Jul 25.
Article de Anglais | MEDLINE | ID: mdl-38981483

RÉSUMÉ

Metabolic enzymes can adapt during energy stress, but the consequences of these adaptations remain understudied. Here, we discovered that hexokinase 1 (HK1), a key glycolytic enzyme, forms rings around mitochondria during energy stress. These HK1-rings constrict mitochondria at contact sites with the endoplasmic reticulum (ER) and mitochondrial dynamics protein (MiD51). HK1-rings prevent mitochondrial fission by displacing the dynamin-related protein 1 (Drp1) from mitochondrial fission factor (Mff) and mitochondrial fission 1 protein (Fis1). The disassembly of HK1-rings during energy restoration correlated with mitochondrial fission. Mechanistically, we identified that the lack of ATP and glucose-6-phosphate (G6P) promotes the formation of HK1-rings. Mutations that affect the formation of HK1-rings showed that HK1-rings rewire cellular metabolism toward increased TCA cycle activity. Our findings highlight that HK1 is an energy stress sensor that regulates the shape, connectivity, and metabolic activity of mitochondria. Thus, the formation of HK1-rings may affect mitochondrial function in energy-stress-related pathologies.


Sujet(s)
Dynamines , Métabolisme énergétique , Hexokinase , Mitochondries , Dynamique mitochondriale , Protéines mitochondriales , Hexokinase/métabolisme , Hexokinase/génétique , Humains , Mitochondries/métabolisme , Mitochondries/génétique , Mitochondries/enzymologie , Dynamines/métabolisme , Dynamines/génétique , Protéines mitochondriales/métabolisme , Protéines mitochondriales/génétique , Animaux , Adénosine triphosphate/métabolisme , Stress physiologique , Réticulum endoplasmique/métabolisme , Protéines membranaires/métabolisme , Protéines membranaires/génétique , Cycle citrique , Glucose-6-phosphate/métabolisme , Souris , Cellules HeLa , Cellules HEK293 , dGTPases/métabolisme , dGTPases/génétique , Mutation
17.
Ann Clin Lab Sci ; 54(3): 335-346, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-39048173

RÉSUMÉ

OBJECTIVE: Cardiac dysfunction can result from excessive fibrosis in cardiac fibroblasts (CFs) following an acute myocardial infarction (AMI). SIRT3 has been shown to be associated with numerous cardiovascular diseases. This study aimed to investigate the mechanism by which SIRT3 influences myocardial fibrosis following AMI. METHODS: An AMI model was established in rats and echocardiography was used to assess cardiac systolic function. Triphenyl tetrazolium chloride (TTC) and H&E staining were employed to observe the myocardial histopathological status. Masson trichrome staining was used to detect fibrosis, and the changes in expression of fibrosis-related proteins were detected by Western Blot (WB). In this study, we utilized in vitro cell models stimulated by Ang II to investigate the underlying mechanisms. We employed Transwell and CCK-8 assays to detect the function of CFs. Additionally, we used transmission electron microscopy (TEM) to observe the structural morphology of mitochondria, whereas WB was performed to quantify fibrosis-associated proteins and to assay the changes in SIRT3, SRV2, and Drp1. RESULTS: We observed a significant decrease in the expression of SIRT3 and an increase in mitochondrial fragmentation in rats with AMI. Additionally, we observed upregulation of fibrosis-associated signature proteins and collagen proteins expression. Through the use of vitro Ang II stimulation we observed a downregulation of SIRT3 expression, an increase in mitochondrial fragmentation, and an increase in the proliferation and migration of CFs. Opposite effects were observed when SIRT3 was overexpressed. Additive mitochondrial division agonists were found to stimulate the proliferation and migration of CFs, however, SIRT3 expression was unchanged. Interference with SRV2 and SIRT3 revealed that SIRT3 effectively prevented the expression of SRV2/Drp1, resulting in the inhibition of mitochondrial division and the suppression of CFs proliferative migration. CONCLUSION: In summary, SIRT3 can suppress myocardial fibrosis after acute myocardial infarction by regulating SRV2/Drp1-mediated mitochondrial division.


Sujet(s)
Fibroblastes , Dynamique mitochondriale , Infarctus du myocarde , Myocarde , Sirtuine-3 , Animaux , Mâle , Rats , Prolifération cellulaire , Modèles animaux de maladie humaine , Fibroblastes/métabolisme , Fibroblastes/anatomopathologie , Fibrose , Dynamique mitochondriale/effets des médicaments et des substances chimiques , Infarctus du myocarde/anatomopathologie , Infarctus du myocarde/métabolisme , Myocarde/anatomopathologie , Myocarde/métabolisme , Rat Sprague-Dawley , Sirtuine-3/métabolisme , Sirtuine-3/génétique , Sirtuines
18.
Int J Mol Sci ; 25(14)2024 Jul 21.
Article de Anglais | MEDLINE | ID: mdl-39063194

RÉSUMÉ

Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative diseases, and they affect millions of people worldwide, particularly older individuals. Therefore, there is a clear need to develop novel drug targets for the treatment of age-related neurodegenerative diseases. Emerging evidence suggests that mitochondrial dysfunction and reactive oxygen species (ROS) generation play central roles in the onset and progression of neurodegenerative diseases. Mitochondria are key regulators of respiratory function, cellular energy adenosine triphosphate production, and the maintenance of cellular redox homeostasis, which are essential for cell survival. Mitochondrial morphology and function are tightly regulated by maintaining a balance among mitochondrial fission, fusion, biogenesis, and mitophagy. In this review, we provide an overview of the main functions of mitochondria, with a focus on recent progress highlighting the critical role of ROS-induced oxidative stress, dysregulated mitochondrial dynamics, mitochondrial apoptosis, mitochondria-associated inflammation, and impaired mitochondrial function in the pathogenesis of age-related neurodegenerative diseases, such as AD and PD. We also discuss the potential of mitochondrial fusion and biogenesis enhancers, mitochondrial fission inhibitors, and mitochondria-targeted antioxidants as novel drugs for the treatment of these diseases.


Sujet(s)
Mitochondries , Dynamique mitochondriale , Maladies neurodégénératives , Espèces réactives de l'oxygène , Humains , Espèces réactives de l'oxygène/métabolisme , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Maladies neurodégénératives/métabolisme , Maladies neurodégénératives/traitement médicamenteux , Maladies neurodégénératives/anatomopathologie , Animaux , Dynamique mitochondriale/effets des médicaments et des substances chimiques , Stress oxydatif/effets des médicaments et des substances chimiques , Antioxydants/usage thérapeutique , Antioxydants/pharmacologie , Maladie de Parkinson/métabolisme , Maladie de Parkinson/traitement médicamenteux , Maladie de Parkinson/anatomopathologie
19.
Cardiovasc Diabetol ; 23(1): 261, 2024 Jul 18.
Article de Anglais | MEDLINE | ID: mdl-39026280

RÉSUMÉ

Mitochondria play a central role in cellular energy metabolism, and their dysfunction is increasingly recognized as a critical factor in the pathogenesis of diabetes-related cardiac pathophysiology, including vulnerability to ischemic events that culminate in myocardial infarction on the one hand and ventricular arrhythmias on the other. In diabetes, hyperglycemia and altered metabolic substrates lead to excessive production of reactive oxygen species (ROS) by mitochondria, initiating a cascade of oxidative stress that damages mitochondrial DNA, proteins, and lipids. This mitochondrial injury compromises the efficiency of oxidative phosphorylation, leading to impaired ATP production. The resulting energy deficit and oxidative damage contribute to functional abnormalities in cardiac cells, placing the heart at an increased risk of electromechanical dysfunction and irreversible cell death in response to ischemic insults. While cardiac mitochondria are often considered to be relatively autonomous entities in their capacity to produce energy and ROS, their highly dynamic nature within an elaborate network of closely-coupled organelles that occupies 30-40% of the cardiomyocyte volume is fundamental to their ability to exert intricate regulation over global cardiac function. In this article, we review evidence linking the dynamic properties of the mitochondrial network to overall cardiac function and its response to injury. We then highlight select studies linking mitochondrial ultrastructural alterations driven by changes in mitochondrial fission, fusion and mitophagy in promoting cardiac ischemic injury to the diabetic heart.


Sujet(s)
Cardiomyopathies diabétiques , Métabolisme énergétique , Mitochondries du myocarde , Ischémie myocardique , Stress oxydatif , Humains , Mitochondries du myocarde/métabolisme , Mitochondries du myocarde/anatomopathologie , Animaux , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/physiopathologie , Cardiomyopathies diabétiques/anatomopathologie , Cardiomyopathies diabétiques/étiologie , Ischémie myocardique/métabolisme , Ischémie myocardique/physiopathologie , Ischémie myocardique/anatomopathologie , Dynamique mitochondriale , Mitophagie , Espèces réactives de l'oxygène/métabolisme , Myocytes cardiaques/métabolisme , Myocytes cardiaques/anatomopathologie , Transduction du signal
20.
J Cell Mol Med ; 28(14): e18375, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-39039796

RÉSUMÉ

Celastrol, a bioactive molecule extracted from the plant Tripterygium wilfordii Hook F., possesses anti-inflammatory, anti-obesity and anti-tumour properties. Despite its efficacy in improving erythema and scaling in psoriatic mice, the specific therapeutic mechanism of celastrol in atopic dermatitis (AD) remains unknown. This study aims to examine the role and mechanism of celastrol in AD using TNF-α-stimulated HaCaT cells and DNCB-induced Balb/c mice as in vitro and in vivo AD models, respectively. Celastrol was found to inhibit the increased epidermal thickness, reduce spleen and lymph node weights, attenuate inflammatory cell infiltration and mast cell degranulation and decrease thymic stromal lymphopoietin (TSLP) as well as various inflammatory factors (IL-4, IL-13, TNF-α, IL-5, IL-31, IL-33, IgE, TSLP, IL-17, IL-23, IL-1ß, CCL11 and CCL17) in AD mice. Additionally, celastrol inhibited Ezrin phosphorylation at Thr567, restored mitochondrial network structure, promoted translocation of Drp1 to the cytoplasm and reduced TNF-α-induced cellular reactive oxygen species (ROS), mitochondrial ROS (mtROS) and mitochondrial membrane potential (MMP) production. Interestingly, Mdivi-1 (a mitochondrial fission inhibitor) and Ezrin-specific siRNAs lowered inflammatory factor levels and restored mitochondrial reticular formation, as well as ROS, mtROS and MMP production. Co-immunoprecipitation revealed that Ezrin interacted with Drp1. Knocking down Ezrin reduced mitochondrial fission protein Drp1 phosphorylation and Fis1 expression while increasing the expression of fusion proteins Mfn1 and Mfn2. The regulation of mitochondrial fission and fusion by Ezrin was confirmed. Overall, celastrol may alleviate AD by regulating Ezrin-mediated mitochondrial fission and fusion, which may become a novel therapeutic reagent for alleviating AD.


Sujet(s)
Cytokines , Protéines du cytosquelette , Eczéma atopique , Souris de lignée BALB C , Dynamique mitochondriale , Triterpènes pentacycliques , Triterpènes , Animaux , Dynamique mitochondriale/effets des médicaments et des substances chimiques , Triterpènes pentacycliques/pharmacologie , Eczéma atopique/traitement médicamenteux , Eczéma atopique/anatomopathologie , Eczéma atopique/métabolisme , Humains , Triterpènes/pharmacologie , Souris , Cytokines/métabolisme , Protéines du cytosquelette/métabolisme , Protéines du cytosquelette/génétique , Lymphopoïétine stromale thymique , Modèles animaux de maladie humaine , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Espèces réactives de l'oxygène/métabolisme , Facteur de nécrose tumorale alpha/métabolisme , Cellules HaCaT , Phosphorylation/effets des médicaments et des substances chimiques
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE