Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 16.340
Filtrer
1.
Carbohydr Polym ; 344: 122524, 2024 Nov 15.
Article de Anglais | MEDLINE | ID: mdl-39218547

RÉSUMÉ

The paper reports new multifunctional plant biostimulant formulations obtained via in situ hydrogelation of chitosan with salicylaldehyde in the presence of a mimetic naphthalimide-based strigolactone, in specific conditions. Various analytical techniques (FTIR, 1H NMR, SEM, POM, TGA, WRXD) were employed to understand the particularities of the hydrogelation mechanism and its consequences on the formulations' properties. Further, in order to evaluate their potential for the targeted application, the swelling in media of pH characteristic for different soils, water holding capacity, soil biodegradability, in vitro release of the strigolactone mimic and impact on tomatoes plant growth in laboratory conditions were investigated and discussed. It was found that the strigolactone mimic has the ability to bond to the chitosan matrix via physical forces, favoring a prolonged release. Moreover, the combination of chitosan with the strigolactone mimic in an optimal mass ratio triggered a synergistic effect on the plant growth, up to 4 times higher compared to the neat control soil.


Sujet(s)
Chitosane , Lactones , Solanum lycopersicum , Chitosane/composition chimique , Lactones/composition chimique , Solanum lycopersicum/effets des médicaments et des substances chimiques , Solanum lycopersicum/croissance et développement , Aldéhydes/composition chimique , Facteur de croissance végétal/pharmacologie , Facteur de croissance végétal/composition chimique , Hydrogels/composition chimique , Composés hétérocycliques 3 noyaux/composition chimique , Concentration en ions d'hydrogène , Sol/composition chimique
2.
Physiol Plant ; 176(5): e14500, 2024.
Article de Anglais | MEDLINE | ID: mdl-39221482

RÉSUMÉ

Angelica sinensis, a traditional Chinese medicinal plant, has been primarily reported due to its nutritional value. Pigmentation in this plant is an important appearance trait that directly affects its commercial value. To understand the mechanism controlling purpleness in A. sinensis, hormonal and transcriptomic analyses were performed in three different tissues (leave, root and stem), using two cultivars with contrasting colors. The two-dimensional data set provides dynamic hormonal and gene expression networks underpinning purpleness in A. sinensis. We found abscisic acid as a crucial hormone modulating anthocyanin biosynthesis in A. sinensis. We further identified and validated 7 key genes involved in the anthocyanin biosynthesis pathway and found a specific module containing ANS as a hub gene in WGCNA. Overexpression of a candidate pigment regulatory gene, AsANS (AS08G02092), in transgenic calli of A. sinensis resulted in increased anthocyanin production and caused purpleness. Together, these analyses provide an important understanding of the molecular networks underlying A. sinensis anthocyanin production and its correlation with plant hormones, which can provide an important source for breeding.


Sujet(s)
Angelica sinensis , Anthocyanes , Analyse de profil d'expression de gènes , Régulation de l'expression des gènes végétaux , Facteur de croissance végétal , Protéines végétales , Angelica sinensis/génétique , Angelica sinensis/métabolisme , Anthocyanes/biosynthèse , Anthocyanes/métabolisme , Facteur de croissance végétal/métabolisme , Protéines végétales/génétique , Protéines végétales/métabolisme , Transcriptome/génétique , Pigmentation/génétique , Acide abscissique/métabolisme , Pigments biologiques/métabolisme , Racines de plante/génétique , Racines de plante/métabolisme
3.
Sci Rep ; 14(1): 20411, 2024 Sep 02.
Article de Anglais | MEDLINE | ID: mdl-39223242

RÉSUMÉ

Wheat is an important staple crop not only in Pakistan but all over the globe. Although the area dedicated to wheat cultivation expands annually, the quantity of wheat harvested is declining due to various biotic and abiotic factors. Global wheat production and output have suffered as a result of the drought, which is largely driven by a lack of water and environmental factors. Organic fertilizers have been shown to reduce the severity of drought. The current research was conducted in semi-arid climates to mitigate the negative effects of drought on wheat during its critical tillering (DTS), flowering (DFS), and grain filling (DGFS) stages through the application of three different abscisic acid treatments: ABA0 (0 mgL-1) control, ABA1 (100 mgL-1) and ABA2 (200 mgL-1). Wheat growth and yield characteristics were severely harmed by drought stress across all critical development stages, with the DGFS stage being particularly vulnerable and leading to a considerable loss in yield. Plant height was increased by 24.25%, the number of fertile tillers by 25.66%, spike length by 17.24%, the number of spikelets per spike by 16.68%, grain count per spike by 11.98%, thousand-grain weight by 14.34%, grain yield by 26.93% and biological yield by 14.55% when abscisic acid (ABA) was applied instead of the control treatment. Moreover, ABA2 increased the more physiological indices (water use efficiency (36.12%), stomatal conductance (44.23%), chlorophyll a (24.5%), chlorophyll b (29.8%), transpiration rate (23.03%), photosynthetic rate (24.84%), electrolyte leakage (- 38.76%) hydrogen peroxide (- 18.09%) superoxide dismutase (15.3%), catalase (20.8%), peroxidase (- 18.09%), and malondialdehyde (- 13.7%)) of drought-stressed wheat as compared to other treatments. In the case of N, P, and K contents in grain were maximally improved with the application of ABA2. Through the use of principal component analysis, we were able to correlate our results across scales and provide an explanation for the observed effects of ABA on wheat growth and production under arid conditions. Overall, ABA application at a rate of 200 mgL-1 is an effective technique to boost wheat grain output by mitigating the negative effects of drought stress.


Sujet(s)
Acide abscissique , Sécheresses , Triticum , Acide abscissique/métabolisme , Triticum/croissance et développement , Triticum/effets des médicaments et des substances chimiques , Triticum/métabolisme , Triticum/physiologie , Chlorophylle/métabolisme , Stress physiologique , Photosynthèse/effets des médicaments et des substances chimiques , Facteur de croissance végétal/métabolisme , Facteur de croissance végétal/pharmacologie
4.
Plant Mol Biol ; 114(5): 95, 2024 Sep 03.
Article de Anglais | MEDLINE | ID: mdl-39223419

RÉSUMÉ

The regulation mechanism of bamboo height growth has always been one of the hotspots in developmental biology. In the preliminary work of this project, the function of LBD transcription factor regulating height growth was firstly studied. Here, a gene PheLBD12 regulating height growth was screened. PheLBD12-overexpressing transgenic rice had shorter internodes, less bioactive gibberellic acid (GA3), and were more sensitive to GA3 than wild-type (WT) plants, which implied that PheLBD12 involve in gibberellin (GA) pathway. The transcript levels of OsGA2ox3, that encoding GAs deactivated enzyme, was significantly enhanced in PheLBD12-overexpressing transgenic rice. The transcript levels of OsAP2-39, that directly regulating the expression of EUI1 to reduce GA levels, was also significantly enhanced in PheLBD12-overexpressing transgenic rice. Expectedly, yeast one-hybrid assays, Dual-luciferase reporter assay and EMSAs suggested that PheLBD12 directly interacted with the promoter of OsGA2ox3 and OsAP2-39. Together, our results reveal that PheLBD12 regulates plant height growth by modulating GA catabolism. Through the research of this topic, it enriches the research content of LBD transcription factors and it will theoretically enrich the research content of height growth regulation.


Sujet(s)
Régulation de l'expression des gènes végétaux , Gibbérellines , Oryza , Protéines végétales , Végétaux génétiquement modifiés , Facteurs de transcription , Oryza/génétique , Oryza/croissance et développement , Oryza/métabolisme , Gibbérellines/métabolisme , Protéines végétales/génétique , Protéines végétales/métabolisme , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme , Régions promotrices (génétique)/génétique , Facteur de croissance végétal/métabolisme
5.
Sci Rep ; 14(1): 20117, 2024 08 29.
Article de Anglais | MEDLINE | ID: mdl-39209970

RÉSUMÉ

Gibberellin (GA3) is an important plant hormone involved in many physiological and developmental processes in plants. However, the physiological mechanism of GA3 on the regulation yield and grain shell thickness of Tartary buckwheat is still unclear. In this study, the thick-shelled cultivar "Jinqiao 2" and thin-shelled cultivar "Miku 18" were used to study the effects of different concentrations (0, 50, and 100 mg L-1) of exogenous GA3 and chlorocholine chloride (CCC, GA3 synthesis inhibitor) on the cellulose content, amylase, and sucrose synthase (SS) activity in grain shell and the yield of Tartary buckwheat. The application of exogenous GA3 can improve the cellulose content and the activity of amylase and SS in the grain shell of the two Tartary buckwheat varieties. It can also increase the main stem node number, main stem branch number, grains per plant, and yield. Compared with the control treatment (CK, 0 mg L-1), the 100 mg/L exogenous GA3 treatment increased the number of grains per plant, grain weight per plant, 1000-grain weight, and yield of Jinqiao 2 by 20.1%, 41.9%, 13%, and 34.7%, respectively. These items of Miku 18 were increased by 26%, 15.2%, 10.2%, and 23.8%. The application of CCC reduced the activity of amylase and SS and cellulose content in grain shell. In addition, it decreased the main stem node number, main stem branch number, grains per plant, and yield of Tartary buckwheat. In summary, exogenous GA3 treatment not only improved the yield of Tartary buckwheat but also increased the thickness of grain shell by enhancing the activity of amylase and SS and promoting the synthesis and accumulation of cellulose. The results can provide theoretical references for clarifying the physiological mechanism of the difference in shell thickness between Tartary buckwheat varieties.


Sujet(s)
Amylases , Fagopyrum , Gibbérellines , Fagopyrum/métabolisme , Fagopyrum/effets des médicaments et des substances chimiques , Fagopyrum/croissance et développement , Gibbérellines/pharmacologie , Gibbérellines/métabolisme , Amylases/métabolisme , Cellulose/métabolisme , Glucosyltransferases/métabolisme , Facteur de croissance végétal/pharmacologie , Facteur de croissance végétal/métabolisme , Protéines végétales/métabolisme
6.
Int J Mol Sci ; 25(16)2024 Aug 10.
Article de Anglais | MEDLINE | ID: mdl-39201415

RÉSUMÉ

The crosstalk of phytohormones in the regulation of growth and development and the response of plants to environmental stresses is a cutting-edge research topic, especially in crop species. In this paper, we study the role and crosstalk between abscisic acid (ABA), ethylene (ET), and jasmonate (JA) in the control of germination and seedling growth in water or in standard nutrient solution and under salt stress (supplemented with 100-200 mM NaCl). The roles of ET and JA were studied using squash ET- and JA-deficient mutants aco1a and lox3a, respectively, while the crosstalk between ET, JA, and ABA was determined by comparing the expression of the key ABA, JA, and ET genes in wild-type (WT) and mutant genotypes under standard conditions and salt stress. Data showed that ET and JA are positive regulators of squash germination, a function that was found to be mediated by downregulating the ABA biosynthesis and signaling pathways. Under salt stress, aco1a germinated earlier than WT, while lox3a showed the same germination rate as WT, indicating that ET, but not JA, restricts squash germination under unfavorable salinity conditions, a function that was also mediated by upregulation of ABA. ET and JA were found to be negative regulators of plant growth during seedling establishment, although ET inhibits both the aerial part and the root, while JA inhibits only the root. Both aco1a and lox3a mutant roots showed increased tolerance to salt stress, a phenotype that was found to be mainly mediated by JA, although we cannot exclude that it is also mediated by ABA.


Sujet(s)
Acide abscissique , Cucurbita , Cyclopentanes , Éthylènes , Régulation de l'expression des gènes végétaux , Germination , Oxylipines , Facteur de croissance végétal , Stress salin , Cyclopentanes/métabolisme , Germination/effets des médicaments et des substances chimiques , Éthylènes/métabolisme , Acide abscissique/métabolisme , Oxylipines/métabolisme , Cucurbita/croissance et développement , Cucurbita/génétique , Cucurbita/métabolisme , Facteur de croissance végétal/métabolisme , Plant/croissance et développement , Plant/métabolisme , Plant/génétique , Plant/effets des médicaments et des substances chimiques , Transduction du signal , Protéines végétales/métabolisme , Protéines végétales/génétique
7.
Int J Mol Sci ; 25(16)2024 Aug 21.
Article de Anglais | MEDLINE | ID: mdl-39201733

RÉSUMÉ

The BTB (Broad-complex, tramtrack, and bric-a-brac) gene family, characterized by a highly conserved BTB domain, is implicated in a spectrum of biological processes, encompassing growth and development, as well as stress responses. Characterization and functional studies of BTB genes in poplar are still limited, especially regarding their response to hormones and biotic/abiotic stresses. In this study, we conducted an HMMER search in conjunction with BLASTp and identified 95 BTB gene models in Populus trichocarpa. Through domain motif and phylogenetic relationship analyses, these proteins were classified into eight families, NPH3, TAZ, Ankyrin, only BTB, BACK, Armadillo, TPR, and MATH. Collinearity analysis of poplar BTB genes with homologs in six other species elucidated evolutionary relationships and functional conservations. RNA-seq analysis of five tissues of poplar identified BTB genes as playing a pivotal role during developmental processes. Comprehensive RT-qPCR analysis of 11 BTB genes across leaves, roots, and xylem tissues revealed their responsive expression patterns under diverse hormonal and biotic/abiotic stress conditions, with varying degrees of regulation observed in the results. This study marks the first in-depth exploration of the BTB gene family in poplar, providing insights into the potential roles of BTB genes in hormonal regulation and response to stress.


Sujet(s)
Régulation de l'expression des gènes végétaux , Famille multigénique , Phylogenèse , Facteur de croissance végétal , Protéines végétales , Populus , Stress physiologique , Populus/génétique , Populus/métabolisme , Stress physiologique/génétique , Protéines végétales/génétique , Protéines végétales/métabolisme , Facteur de croissance végétal/métabolisme , Facteur de croissance végétal/génétique , Génome végétal , Analyse de profil d'expression de gènes
8.
Int J Mol Sci ; 25(16)2024 Aug 22.
Article de Anglais | MEDLINE | ID: mdl-39201814

RÉSUMÉ

Sugarcane smut, caused by the fungus Sporisorium scitamineum (Sydow), significantly affects sugarcane crops worldwide. Infected plants develop whip-like structures known as sori. Significant variations in these whip lengths are commonly observed, but the physiological and molecular differences causing these morphological differences remain poorly documented. To address this, we employed conventional microbe isolation, metagenomic, and metabolomic techniques to investigate smut-infected sugarcane stems and whips of varying lengths. Metagenomics analysis revealed a diverse fungal community in the sugarcane whips, with Sporisorium and Fusarium genera notably present (>1%) in long whips. Isolation techniques confirmed these findings. Ultra-performance liquid chromatography analysis (UHPLC-MS/MS) showed high levels of gibberellin hormones (GA3, GA1, GA4, GA8, and GA7) in long whips, with GA4 and GA7 found exclusively in long whips and stems. Among the prominent genera present within long whips, Fusarium was solely positively correlated with these gibberellin (GA) hormones, with the exception of GA8, which was positively correlated with Sporisorium. KEGG enrichment analysis linked these hormones to pathways like diterpenoid biosynthesis and plant hormone signal transduction. These findings suggest that Fusarium may influence GA production leading to whip elongation. Our study reveals fungal dynamics and gibberellin responses in sugarcane smut whips. Future research will explore the related molecular gibberellin synthesis mechanisms.


Sujet(s)
Gibbérellines , Maladies des plantes , Saccharum , Gibbérellines/métabolisme , Saccharum/microbiologie , Saccharum/métabolisme , Maladies des plantes/microbiologie , Fusarium/métabolisme , Fusarium/génétique , Fusarium/pathogénicité , Facteur de croissance végétal/métabolisme , Métagénomique/méthodes
9.
Genes (Basel) ; 15(8)2024 Jul 26.
Article de Anglais | MEDLINE | ID: mdl-39202350

RÉSUMÉ

To explore the regulatory mechanism of endogenous hormones in the synthesis of anthocyanins in Anoectochilus roxburghii (Wall.) Lindl (A. roxburghii) under different light intensities, this study used metabolomics and transcriptomics techniques to identify the key genes and transcription factors involved in anthocyanin biosynthesis. We also analyzed the changes in and correlations between plant endogenous hormones and anthocyanin metabolites under different light intensities. The results indicate that light intensity significantly affects the levels of anthocyanin glycosides and endogenous hormones in leaves. A total of 38 anthocyanin-related differential metabolites were identified. Under 75% light transmittance (T3 treatment), the leaves exhibited the highest anthocyanin content and differentially expressed genes such as chalcone synthase (CHS), flavonol synthase (FLS), and flavonoid 3'-monooxygenase (F3'H) exhibited the highest expression levels. Additionally, 13 transcription factors were found to have regulatory relationships with 7 enzyme genes, with 11 possessing cis-elements responsive to plant hormones. The expression of six genes and two transcription factors was validated using qRT-PCR, with the results agreeing with those obtained using RNA sequencing. This study revealed that by modulating endogenous hormones and transcription factors, light intensity plays a pivotal role in regulating anthocyanin glycoside synthesis in A. roxburghii leaves. These findings provide insights into the molecular mechanisms underlying light-induced changes in leaf coloration and contribute to our knowledge of plant secondary metabolite regulation caused by environmental factors.


Sujet(s)
Anthocyanes , Régulation de l'expression des gènes végétaux , Lumière , Métabolome , Orchidaceae , Feuilles de plante , Protéines végétales , Transcriptome , Anthocyanes/biosynthèse , Anthocyanes/génétique , Anthocyanes/métabolisme , Orchidaceae/génétique , Orchidaceae/métabolisme , Orchidaceae/effets des radiations , Protéines végétales/génétique , Protéines végétales/métabolisme , Métabolome/effets des radiations , Feuilles de plante/génétique , Feuilles de plante/métabolisme , Feuilles de plante/effets des radiations , Facteur de croissance végétal/métabolisme , Facteur de croissance végétal/génétique , Analyse de profil d'expression de gènes/méthodes , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme
10.
Genes (Basel) ; 15(8)2024 Aug 02.
Article de Anglais | MEDLINE | ID: mdl-39202378

RÉSUMÉ

Capsicum annuum L. is extensively cultivated in subtropical and temperate regions globally, respectively, when grown in a medium with 8 holding significant economic importance. Despite the availability of genome sequences and editing tools, gene editing in peppers is limited by the lack of a stable regeneration and transformation method. This study assessed regeneration and transformation protocols in seven chili pepper varieties, including CM334, Zunla-1, Zhongjiao6 (ZJ6), 0818, 0819, 297, and 348, in order to enhance genetic improvement efforts. Several explants, media compositions, and hormonal combinations were systematically evaluated to optimize the in vitro regeneration process across different chili pepper varieties. The optimal concentrations for shoot formation, shoot elongation, and rooting in regeneration experiments were determined as 5 mg/L of 6-Benzylaminopurine (BAP) with 5 mg/L of silver nitrate (AgNO3), 0.5 mg/L of Gibberellic acid (GA3), and 1 mg/L of Indole-3-butyric acid (IBA), respectively. The highest regeneration rate of 41% was observed from CM334 cotyledon explants. Transformation optimization established 300 mg/L of cefotaxime for bacterial control, with a 72-h co-cultivation period at OD600 = 0.1. This study optimizes the protocols for chili pepper regeneration and transformation, thereby contributing to genetic improvement efforts.


Sujet(s)
Capsicum , Régénération , Capsicum/génétique , Capsicum/croissance et développement , Capsicum/effets des médicaments et des substances chimiques , Régénération/génétique , Régénération/effets des médicaments et des substances chimiques , Pousses de plante/croissance et développement , Pousses de plante/génétique , Pousses de plante/effets des médicaments et des substances chimiques , Facteur de croissance végétal/pharmacologie , Transformation génétique , Gibbérellines/pharmacologie , Végétaux génétiquement modifiés/génétique , Végétaux génétiquement modifiés/croissance et développement , Composés benzyliques , Purines/pharmacologie , Édition de gène/méthodes , Cotylédon/génétique , Cotylédon/croissance et développement , Cotylédon/effets des médicaments et des substances chimiques , Amélioration des plantes/méthodes , Indoles
11.
J Environ Manage ; 367: 121979, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39088904

RÉSUMÉ

Cadmium (Cd) is readily absorbed by tobacco and accumulates in the human body through smoke inhalation, posing threat to human health. While there have been many studies on the negative impact of cadmium in tobacco on human health, the specific adaptive mechanism of tobacco roots to cadmium stress is not well understood. In order to comprehensively investigate the effects of Cd stress on the root system of tobacco, the combination of transcriptomic, biochemical, and physiological methods was utilized. In this study, tobacco growth was significantly inhibited by 50 µM of Cd, which was mainly attributed to the destruction of root cellular structure. By comparing the transcriptome between CK and Cd treatment, there were 3232 up-regulated deferentially expressed genes (DEGs) and 3278 down-regulated DEGs. The obvious differential expression of genes related to the nitrogen metabolism, metal transporters and the transcription factors families. In order to mitigate the harmful effects of Cd, the root system enhances Cd accumulation in the cell wall, thereby reducing the Cd content in the cytoplasm. This result may be mediated by plant hormones and transcription factor (TF). Correlational statistical analysis revealed significant negative correlations between IAA and GA with cadmium accumulation, indicated by correlation coefficients of -0.91 and -0.93, respectively. Conversely, ABA exhibited a positive correlation with a coefficient of 0.96. In addition, it was anticipated that 3 WRKY TFs would lead to a reduction in Cd accumulation. Our research provides a theoretical basis for the systematic study of the specific physiological processes of plant roots under Cd stress.


Sujet(s)
Cadmium , Facteur de croissance végétal , Facteurs de transcription , Transcriptome , Cadmium/toxicité , Cadmium/métabolisme , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique , Transcriptome/effets des médicaments et des substances chimiques , Facteur de croissance végétal/métabolisme , Nicotiana/génétique , Nicotiana/effets des médicaments et des substances chimiques , Stress physiologique , Racines de plante/effets des médicaments et des substances chimiques , Racines de plante/métabolisme , Régulation de l'expression des gènes végétaux/effets des médicaments et des substances chimiques
12.
Plant Cell Rep ; 43(9): 212, 2024 Aug 11.
Article de Anglais | MEDLINE | ID: mdl-39127969

RÉSUMÉ

KEY MESSAGE: Auxin (AUX) promotion of apple fruit ripening is ethylene-dependent, and AUX-MdARF17-MdERF003 plays a role in AUX-promoted ethylene synthesis in apple. Phytohormones play important roles in plant growth and fleshy fruit ripening, and the phytohormone auxin (AUX) can either promote or inhibit the ripening of fleshy fruits. Although AUX can influence ethylene (ETH) synthesis in apple (Malus domestica) fruits by affecting ETH system II, this mechanism remains to be explored. Here, we identified an ETH response factor (ERF) family transcription factor, MdERF003, whose expression could be activated by naphthalene acetic acid. The transient silencing of MdERF003 inhibited ETH synthesis in fruits, and MdERF003 could bind to the MdACS1 promoter. To explore the upstream target genes of MdERF003, we screened the MdARF family members by yeast one-hybrid assays of the MdERF003 promoter, and found that the transcription factor MdARF17, which showed AUX-promoted expression, could bind to the MdERF003 promoter and promote its expression. Finally, we silenced MdERF003 in apple fruits overexpressing MdARF17 and found that MdERF003 plays a role in MdARF17-promoted ETH synthesis in apple. Thus, AUX-MdARF17-MdERF003 promotes ETH synthesis in apple fruits.


Sujet(s)
Éthylènes , Fruit , Régulation de l'expression des gènes végétaux , Acides indolacétiques , Malus , Protéines végétales , Facteurs de transcription , Malus/génétique , Malus/métabolisme , Éthylènes/métabolisme , Protéines végétales/métabolisme , Protéines végétales/génétique , Fruit/génétique , Fruit/métabolisme , Fruit/croissance et développement , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique , Acides indolacétiques/métabolisme , Régions promotrices (génétique)/génétique , Facteur de croissance végétal/métabolisme , Végétaux génétiquement modifiés
13.
Physiol Plant ; 176(4): e14473, 2024.
Article de Anglais | MEDLINE | ID: mdl-39129661

RÉSUMÉ

The jasmonic acid (JA) signaling pathway plays an important role in plant responses to abiotic stresses. The PEAPOD (PPD) and jasmonate ZIM-domain (JAZ) protein in the JA signaling pathway belong to the same family, but their functions in regulating plant defense against salt stress remain to be elucidated. Here, Gossypium arboreum PPD2 was overexpressed in Arabidopsis thaliana and systematically silenced in cotton for exploring its function in regulating plant defense to salt stress. The GaPPD2-overexpressed Arabidopsis thaliana plants significantly increased the tolerance to salt stress compared to the wild type in both medium and soil, while the GaPPD2-silenced cotton plants showed higher sensitivity to salt stress than the control in pots. The antioxidant activities experiment showed that GaPPD2 may mitigate the accumulation of reactive oxygen species by promoting superoxide dismutase accumulation, consequently improving plant resilience to salt stress. Through the exogenous application of MeJA (methy jasmonate) and the protein degradation inhibitor MG132, it was found that GaPPD2 functions in plant defense against salt stress and is involved in the JA signaling pathway. The RNA-seq analysis of GaPPD2-overexpressed A. thaliana plants and receptor materials showed that the differentially expressed genes were mainly enriched in antioxidant activity, peroxidase activity, and plant hormone signaling pathways. qRT-PCR results demonstrated that GaPPD2 might positively regulate plant defense by inhibiting GH3.2/3.10/3.12 expression and activating JAZ7/8 expression. The findings highlight the potential of GaPPD2 as a JA signaling component gene for improving the cotton plant resistance to salt stress and provide insights into the mechanisms underlying plant responses to environmental stresses.


Sujet(s)
Arabidopsis , Cyclopentanes , Régulation de l'expression des gènes végétaux , Gossypium , Oxylipines , Protéines végétales , Racines de plante , Stress salin , Gossypium/génétique , Gossypium/physiologie , Gossypium/effets des médicaments et des substances chimiques , Cyclopentanes/métabolisme , Cyclopentanes/pharmacologie , Oxylipines/métabolisme , Oxylipines/pharmacologie , Protéines végétales/génétique , Protéines végétales/métabolisme , Arabidopsis/génétique , Arabidopsis/physiologie , Arabidopsis/effets des médicaments et des substances chimiques , Racines de plante/génétique , Racines de plante/croissance et développement , Racines de plante/physiologie , Racines de plante/effets des médicaments et des substances chimiques , Régulation de l'expression des gènes végétaux/effets des médicaments et des substances chimiques , Végétaux génétiquement modifiés , Tolérance au sel/génétique , Facteur de croissance végétal/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques
14.
Curr Microbiol ; 81(10): 304, 2024 Aug 12.
Article de Anglais | MEDLINE | ID: mdl-39133243

RÉSUMÉ

Soil is the backbone of the agricultural economy of any country. Soil salinity refers to the higher concentration of soluble salts in the soil. Soil salinity is a ruinous abiotic stress that has emerged as a threatening issue for food security. High salt concentration causes an ionic imbalance that hampers water uptake, affecting photosynthesis and other metabolic processes, ultimately resulting in inferior seed germination and stunted plant growth. A wide range of strategies have been adopted to mitigate the harmful effects of salinity such as efficient irrigation techniques, soil reclamation, habitat restoration, flushing, leaching or using salt-tolerant crops, but all the methods have one or more limitations. An alternative and effective strategy is the exploitation of salt-tolerant plant growth-promoting bacteria (ST-PGPB) to mitigate salt stress and improve crop productivity. ST-PGPB can survive in salinity-tainted environments and perform their inherent plant growth-promoting and biocontrol functions effectively. Additionally, ST-PGPB can rescue plants via stress-responsive mechanisms including production of growth regulators, maintenance of osmotic balance, aminocyclopropane-1-carboxylate (ACC) deaminase activity, exopolysaccharides (EPS) activity, improvement in photosynthesis activity, synthesis of compatible solutes, antioxidant activity and regulation of salt overly sensitive (SOS) signaling pathway. Several well-known ST-PGPB, specifically Azospirillum, Bacillus, Burkholderia, Enterobacter, Pseudomonas and Pantoea, are used as bioinoculants to improve the growth of different crops. The application of ST-PGPB allows plants to cope with salt stress by boosting their defense mechanisms. This review highlights the impact of salinity stress on plant growth and the potential of ST-PGPB as a biofertilizer to improve crop productivity under salt stress.


Sujet(s)
Bactéries , Développement des plantes , Microbiologie du sol , Bactéries/métabolisme , Bactéries/classification , Salinité , Produits agricoles/microbiologie , Produits agricoles/croissance et développement , Tolérance au sel , Facteur de croissance végétal/métabolisme , Sol/composition chimique
15.
Plant Cell Rep ; 43(9): 219, 2024 Aug 19.
Article de Anglais | MEDLINE | ID: mdl-39155298

RÉSUMÉ

KEY MESSAGE: Exogenous application of 24-epibrassinolide can alleviate oxidative damage, improve photosynthetic capacity, and regulate carbon and nitrogen assimilation, thus improving the tolerance of grapevine (Vitis vinifera L.) to drought stress. Brassinosteroids (BRs) are a group of plant steroid hormones in plants and are involved in regulating plant tolerance to drought stress. This study aimed to investigate the regulation effects of BRs on the carbon and nitrogen metabolism in grapevine under drought stress. The results indicated that drought stress led to the accumulation of superoxide radicals and hydrogen peroxide and an increase in lipid peroxidation. A reduction in oxidative damage was observed in EBR-pretreated plants, which was probably due to the improved antioxidant concentration. Moreover, exogenous EBR improved the photosynthetic capacity and sucrose phosphate synthase activity, and decreased the sucrose synthase, acid invertase, and neutral invertase, resulting in improved sucrose (190%) and starch (17%) concentrations. Furthermore, EBR pretreatment strengthened nitrate reduction and ammonium assimilation. A 57% increase in nitrate reductase activity and a 13% increase in glutamine synthetase activity were observed in EBR pretreated grapevines. Meanwhile, EBR pretreated plants accumulated a greater amount of proline, which contributed to osmotic adjustment and ROS scavenging. In summary, exogenous EBR enhanced drought tolerance in grapevines by alleviating oxidative damage and regulating carbon and nitrogen metabolism.


Sujet(s)
Brassinostéroïdes , Résistance à la sécheresse , Photosynthèse , Stéroïdes hétérocycliques , Vitis , Antioxydants/métabolisme , Antioxydants/pharmacologie , Brassinostéroïdes/métabolisme , Brassinostéroïdes/pharmacologie , Carbone/métabolisme , Glucosyltransferases/métabolisme , Glutamate-ammonia ligase/métabolisme , Peroxyde d'hydrogène/métabolisme , Peroxydation lipidique/effets des médicaments et des substances chimiques , Nitrate reductase/métabolisme , Azote/métabolisme , Stress oxydatif/effets des médicaments et des substances chimiques , Photosynthèse/effets des médicaments et des substances chimiques , Facteur de croissance végétal/métabolisme , Facteur de croissance végétal/pharmacologie , Protéines végétales/métabolisme , Protéines végétales/génétique , Stéroïdes hétérocycliques/métabolisme , Stéroïdes hétérocycliques/pharmacologie , Stress physiologique/effets des médicaments et des substances chimiques , Vitis/effets des médicaments et des substances chimiques , Vitis/métabolisme , Vitis/physiologie
16.
Physiol Plant ; 176(4): e14481, 2024.
Article de Anglais | MEDLINE | ID: mdl-39164920

RÉSUMÉ

Potatoes (Solanum tuberosum L.) are one of the world's major staple crops. In stored potatoes, Pectobacterium carotovorum subsp carotovorum causes soft rot. As a result of the rapid spread of the disease during post-harvest storage, potato production suffers huge losses. By detecting disease early and controlling it promptly, losses can be minimized. The profile of volatiles of plants can be altered by phytopathogens. Identifying unique volatile organic compounds (VOCs) as biomarkers for early disease detection has attracted considerable research attention. This study compared the VOC profiles of healthy and soft rot inoculated potatoes (cv. "Kufri Pukhraj") over a time course using gas chromatography-mass spectrometry (GC-MS). It was found that there was a differential emission of 27 VOCs between healthy non-inoculated potatoes and soft rot inoculated potatoes. Among 27 VOCs, only five (1-octen-3-ol, 2-methylisoborneol, 3-octanone, 1,4-dimethyladamantane, and 2-methyl-2-bornene) were found exclusively in soft rot inoculated potatoes, suggesting them potential biomarker for non-destructive prediction of soft rot disease in potatoes. Reactive oxygen species (H2O2) and phytohormone methyl-jasmonate (MeJa) levels increased transiently on infection with soft rot. The analysis of the primary metabolism of soft rot infected tubers at three different stages suggests metabolic reprogramming that occurs at the early stage of infection, possibly leading to biomarker volatile emission. Based on these results, it appears that the initial potato-soft rot bacteria interaction initiates metabolic reprogramming mainly through H2O2 and the MeJa signalling pathway. In asymptomatic potatoes, these biomarkers may be promising candidates for non-destructive detection of soft rot at an early stage. These biomarkers can be used to develop an e-nose sensor to predict soft rot in the future.


Sujet(s)
Marqueurs biologiques , Maladies des plantes , Facteur de croissance végétal , Solanum tuberosum , Composés organiques volatils , Solanum tuberosum/microbiologie , Solanum tuberosum/métabolisme , Composés organiques volatils/métabolisme , Composés organiques volatils/analyse , Maladies des plantes/microbiologie , Marqueurs biologiques/métabolisme , Facteur de croissance végétal/métabolisme , Facteur de croissance végétal/analyse , Chromatographie gazeuse-spectrométrie de masse/méthodes , Cyclopentanes/métabolisme , Pectobacterium carotovorum/pathogénicité , Pectobacterium carotovorum/physiologie , Oxylipines/métabolisme , Oxylipines/analyse , Tubercules/microbiologie , Tubercules/métabolisme
17.
Physiol Plant ; 176(4): e14492, 2024.
Article de Anglais | MEDLINE | ID: mdl-39166265

RÉSUMÉ

Genomic DNA methylation patterns play a crucial role in the developmental processes of plants and mammals. In this study, we aimed to investigate the significant effects of epigenetic mechanisms on the development of soybean seedlings and metabolic pathways. Our analyses show that 5-azaC-treatment affects radicle development from two Days After Imbibition (DAI), as well as both shoot and root development. We examined the expression levels of key genes related to DNA methylation and demethylation pathways, such as DRM2, which encodes RNA-directed DNA Methylation (RdDM) pathway, SAM synthase, responsible for methyl group donation, and ROS1, a DNA demethylase. In treated seedling roots, we observed an increase in DRM2 expression and a decrease in ROS1 expression. Additionally, 5-azaC treatment altered protein accumulation, indicating epigenetic control over stress response while inhibiting nitrogen assimilation, urea cycle, and glycolysis-related proteins. Furthermore, it influenced the levels of various phytohormones and metabolites crucial for seedling growth, such as ABA, IAA, ethylene, polyamines (PUT and Cad), and free amino acids, suggesting that epigenetic changes may shape soybean responses to pathogens, abiotic stress, and nutrient absorption. Our results assist in understanding how hypomethylation shapes soybean responses to pathogens, abiotic stress, and nutrient absorption crucial for seedling growth, suggesting that the plant's assimilation of carbon and nitrogen, along with hormone pathways, may be influenced by epigenetic changes.


Sujet(s)
Méthylation de l'ADN , Glycine max , Voies et réseaux métaboliques , Facteur de croissance végétal , Méthylation de l'ADN/génétique , Glycine max/génétique , Glycine max/métabolisme , Glycine max/croissance et développement , Facteur de croissance végétal/métabolisme , Voies et réseaux métaboliques/génétique , Voies et réseaux métaboliques/effets des médicaments et des substances chimiques , Régulation de l'expression des gènes végétaux/effets des médicaments et des substances chimiques , Plant/génétique , Plant/croissance et développement , Plant/métabolisme , Racines de plante/génétique , Racines de plante/métabolisme , Racines de plante/croissance et développement , Épigenèse génétique , Protéines végétales/métabolisme , Protéines végétales/génétique
18.
Nat Commun ; 15(1): 6906, 2024 Aug 12.
Article de Anglais | MEDLINE | ID: mdl-39134551

RÉSUMÉ

The yield of pearl millet, a resilient cereal crop crucial for African food security, is severely impacted by the root parasitic weed Striga hermonthica, which requires host-released hormones, called strigolactones (SLs), for seed germination. Herein, we identify four SLs present in the Striga-susceptible line SOSAT-C88-P10 (P10) but absent in the resistant 29Aw (Aw). We generate chromosome-scale genome assemblies, including four gapless chromosomes for each line. The Striga-resistant Aw lacks a 0.7 Mb genome segment containing two putative CARLACTONOIC ACID METHYLTRANSFERASE1 (CLAMT1) genes, which may contribute to SL biosynthesis. Functional assays show that P10CLAMT1b produces the SL-biosynthesis intermediate methyl carlactonoate (MeCLA) and that MeCLA is the precursor of P10-specific SLs. Screening a diverse pearl millet panel confirms the pivotal role of the CLAMT1 section for SL diversity and Striga susceptibility. Our results reveal a reason for Striga susceptibility in pearl millet and pave the way for generating resistant lines through marker-assisted breeding or direct genetic modification.


Sujet(s)
Génome végétal , Lactones , Pennisetum , Striga , Striga/génétique , Lactones/métabolisme , Pennisetum/génétique , Pennisetum/métabolisme , Protéines végétales/génétique , Protéines végétales/métabolisme , Chromosomes de plante/génétique , Maladies des plantes/parasitologie , Maladies des plantes/génétique , Methyltransferases/métabolisme , Methyltransferases/génétique , Mauvaises herbes/génétique , Mauvaises herbes/métabolisme , Résistance à la maladie/génétique , Facteur de croissance végétal/métabolisme
19.
Physiol Plant ; 176(4): e14478, 2024.
Article de Anglais | MEDLINE | ID: mdl-39149803

RÉSUMÉ

Plants have, throughout evolution, developed a hydrophobic cuticle to protect them from various stresses in the terrestrial environment. The cuticle layer is mainly composed of cutin and cuticular wax, a mixture of very-long-chain fatty acids and their derivatives. With the progress of transcriptome sequencing and other research methods, the key enzymes, transporters and regulatory factors in wax synthesis and metabolism have been gradually identified, especially the study on the regulation of wax metabolism by transcription factors and others in response to plant stress has become a hot topic. Drought is a major abiotic stress that limits plant growth and crop productivity. Plant epidermal wax prevents non-stomatal water loss and improves water use efficiency to adapt to arid environments. In this study, the ways of wax synthesis, transport, metabolism and regulation at different levels are reviewed. At the same time, the regulation of wax by different transcription factors and plant hormones in response to drought is elaborated, and key research questions and important directions for future solutions are proposed to enhance the potential application of epidermal wax in agriculture and the environment.


Sujet(s)
Sécheresses , Régulation de l'expression des gènes végétaux , Facteur de croissance végétal , Stress physiologique , Facteurs de transcription , Cires , Cires/métabolisme , Facteur de croissance végétal/métabolisme , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique , Épiderme végétal/métabolisme , Épiderme végétal/physiologie , Protéines végétales/métabolisme , Protéines végétales/génétique
20.
PeerJ ; 12: e17882, 2024.
Article de Anglais | MEDLINE | ID: mdl-39184384

RÉSUMÉ

Plants and bacteria are co-evolving and interact with one another in a continuous process. This interaction enables the plant to assimilate the nutrients and acquire protection with the help of beneficial bacteria known as plant growth-promoting bacteria (PGPB). These beneficial bacteria naturally produce bioactive compounds that can assist plants' stress tolerance. Moreover, they employ various direct and indirect processes to induce plant growth and protect plants against pathogens. The direct mechanisms involve phytohormone production, phosphate solubilization, zinc solubilization, potassium solubilization, ammonia production, and nitrogen fixation while, the production of siderophores, lytic enzymes, hydrogen cyanide, and antibiotics are included under indirect mechanisms. This property can be exploited to prepare bioformulants for biofertilizers, biopesticides, and biofungicides, which are convenient alternatives for chemical-based products to achieve sustainable agricultural practices. However, the application and importance of PGPB in sustainable agriculture are still debatable despite its immense diversity and plant growth-supporting activities. Moreover, the performance of PGPB varies greatly and is dictated by the environmental factors affecting plant growth and development. This review emphasizes the role of PGPB in plant growth-promoting activities (stress tolerance, production of bioactive compounds and phytohormones) and summarises new formulations and opportunities.


Sujet(s)
Bactéries , Développement des plantes , Facteur de croissance végétal , Stress physiologique , Développement des plantes/effets des médicaments et des substances chimiques , Développement des plantes/physiologie , Facteur de croissance végétal/métabolisme , Bactéries/métabolisme , Bactéries/croissance et développement , Adaptation physiologique , Plantes/microbiologie , Plantes/métabolisme , Microbiologie du sol
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE