Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 1.872
Filtrer
1.
Curr Opin Microbiol ; 81: 102540, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39226817

RÉSUMÉ

RNA polymerase (RNAP), the central enzyme of transcription, intermittently pauses during the elongation stage of RNA synthesis. Pausing provides an opportunity for regulatory events such as nascent RNA folding or the recruitment of transregulators. NusG (Spt5 in eukaryotes and archaea) regulates RNAP pausing and is the only transcription factor conserved across all cellular life. NusG is a multifunctional protein: its N-terminal domain (NGN) binds to RNAP, and its C-terminal KOW domain in bacteria interacts with transcription regulators such as ribosomes and termination factors. In Escherichia coli, NusG acts as an antipausing factor. However, recent studies have revealed that NusG has distinct transcriptional regulatory roles specific to bacterial clades with clinical implications. Here, we focus on NusG's dual roles in the regulation of pausing.


Sujet(s)
Protéines Escherichia coli , Escherichia coli , Facteurs élongation chaîne peptidique , Protéines Escherichia coli/métabolisme , Protéines Escherichia coli/génétique , Facteurs élongation chaîne peptidique/métabolisme , Facteurs élongation chaîne peptidique/génétique , Escherichia coli/génétique , Escherichia coli/métabolisme , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique , DNA-directed RNA polymerases/métabolisme , DNA-directed RNA polymerases/génétique , Facteurs d'élongation transcriptionnelle/métabolisme , Facteurs d'élongation transcriptionnelle/génétique , Régulation de l'expression des gènes bactériens , Transcription génétique , Bactéries/génétique , Bactéries/métabolisme
2.
Mol Cell ; 84(15): 2856-2869.e9, 2024 Aug 08.
Article de Anglais | MEDLINE | ID: mdl-39121843

RÉSUMÉ

RNA polymerase II (RNA Pol II)-mediated transcription is a critical, highly regulated process aided by protein complexes at distinct steps. Here, to investigate RNA Pol II and transcription-factor-binding and dissociation dynamics, we generated endogenous photoactivatable-GFP (PA-GFP) and HaloTag knockins using CRISPR-Cas9, allowing us to track a population of molecules at the induced Hsp70 loci in Drosophila melanogaster polytene chromosomes. We found that early in the heat-shock response, little RNA Pol II and DRB sensitivity-inducing factor (DSIF) are reused for iterative rounds of transcription. Surprisingly, although PAF1 and Spt6 are found throughout the gene body by chromatin immunoprecipitation (ChIP) assays, they show markedly different binding behaviors. Additionally, we found that PAF1 and Spt6 are only recruited after positive transcription elongation factor (P-TEFb)-mediated phosphorylation and RNA Pol II promoter-proximal pause escape. Finally, we observed that PAF1 may be expendable for transcription of highly expressed genes where nucleosome density is low. Thus, our live-cell imaging data provide key constraints to mechanistic models of transcription regulation.


Sujet(s)
Protéines de Drosophila , Drosophila melanogaster , RNA polymerase II , Transcription génétique , Facteurs d'élongation transcriptionnelle , RNA polymerase II/métabolisme , RNA polymerase II/génétique , Animaux , Drosophila melanogaster/génétique , Drosophila melanogaster/métabolisme , Protéines de Drosophila/génétique , Protéines de Drosophila/métabolisme , Facteurs d'élongation transcriptionnelle/métabolisme , Facteurs d'élongation transcriptionnelle/génétique , Protéines du choc thermique HSP70/métabolisme , Protéines du choc thermique HSP70/génétique , Facteur B d'élongation transcriptionnelle positive/métabolisme , Facteur B d'élongation transcriptionnelle positive/génétique , Régions promotrices (génétique) , Systèmes CRISPR-Cas , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique , Chromosomes polytènes/génétique , Chromosomes polytènes/métabolisme , Régulation de l'expression des gènes , Phosphorylation , Liaison aux protéines , Réaction de choc thermique/génétique , Protéines nucléaires/métabolisme , Protéines nucléaires/génétique , Nucléosomes/métabolisme , Nucléosomes/génétique
3.
Nat Commun ; 15(1): 7520, 2024 Aug 30.
Article de Anglais | MEDLINE | ID: mdl-39214958

RÉSUMÉ

After an RNA polymerase reaches a terminator, instead of dissociating from the template, it may diffuse along the DNA and recommence RNA synthesis from the previous or a different promoter. Magnetic tweezers were used to monitor such secondary transcription and determine the effects of low forces assisting or opposing translocation, protein roadblocks, and transcription factors. Remarkably, up to 50% of Escherichia coli (E. coli) RNA polymerases diffused along the DNA after termination. Force biased the direction of diffusion (sliding) and the velocity increased rapidly with force up to 0.7 pN and much more slowly thereafter. Sigma factor 70 (σ70) likely remained associated with the DNA promoting sliding and enabling re-initiation from promoters in either orientation. However, deletions of the α-C-terminal domains severely limited the ability of RNAP to turn around between successive rounds of transcription. The addition of elongation factor NusG, which competes with σ70 for binding to RNAP, limited additional rounds of transcription. Surprisingly, sliding RNA polymerases blocked by a DNA-bound lac repressor could slowly re-initiate transcription and were not affected by NusG, suggesting a σ-independent pathway. Low forces effectively biased promoter selection suggesting a prominent role for topological entanglements that affect RNA polymerase translocation.


Sujet(s)
DNA-directed RNA polymerases , Protéines Escherichia coli , Escherichia coli , Régions promotrices (génétique) , Facteur sigma , DNA-directed RNA polymerases/métabolisme , DNA-directed RNA polymerases/génétique , Escherichia coli/génétique , Escherichia coli/métabolisme , Protéines Escherichia coli/métabolisme , Protéines Escherichia coli/génétique , Facteur sigma/métabolisme , Facteur sigma/génétique , Facteur sigma/composition chimique , Transcription génétique , Facteurs de transcription/métabolisme , Domaines protéiques , Facteurs élongation chaîne peptidique/métabolisme , Facteurs élongation chaîne peptidique/génétique , ADN bactérien/métabolisme , ADN bactérien/génétique , Facteurs d'élongation transcriptionnelle/métabolisme , Facteurs d'élongation transcriptionnelle/génétique , Facteurs d'élongation transcriptionnelle/composition chimique , Répresseurs lac/métabolisme , Répresseurs lac/génétique
4.
Sci Adv ; 10(35): eado1432, 2024 Aug 30.
Article de Anglais | MEDLINE | ID: mdl-39196923

RÉSUMÉ

The histone acylation reader eleven-nineteen leukemia (ENL) plays a pivotal role in sustaining oncogenesis in acute leukemias, particularly in mixed-lineage leukemia-rearranged (MLL-r) leukemia. ENL relies on its reader domain to recognize histone lysine acylation promoting oncogenic gene expression and leukemia progression. Here, we report the development of MS41, a highly potent and selective von Hippel-Lindau-recruiting ENL degrader that effectively inhibits the growth of ENL-dependent leukemia cells. MS41-induced ENL degradation reduces the chromatin occupancy of ENL-associated transcription elongation machinery, resulting in the suppression of key oncogenic gene expression programs and the activation of differentiation genes. MS41 is well-tolerated in vivo and substantially suppresses leukemia progression in a xenograft mouse model of MLL-r leukemia. Notably, MS41 also induces the degradation of mutant ENL proteins identified in Wilms' tumors. Our findings emphasize the therapeutic potential of pharmacological ENL degradation for treating ENL-dependent cancers, making MS41 not only a valuable chemical probe but also potential anticancer therapeutic for further development.


Sujet(s)
Évolution de la maladie , Leucémies , Humains , Animaux , Souris , Lignée cellulaire tumorale , Leucémies/génétique , Leucémies/anatomopathologie , Leucémies/traitement médicamenteux , Leucémies/métabolisme , Facteurs d'élongation transcriptionnelle/métabolisme , Facteurs d'élongation transcriptionnelle/génétique , Tests d'activité antitumorale sur modèle de xénogreffe , Régulation de l'expression des gènes dans la leucémie/effets des médicaments et des substances chimiques , Protéolyse/effets des médicaments et des substances chimiques , Protéine Von Hippel-Lindau supresseur de tumeur/génétique , Protéine Von Hippel-Lindau supresseur de tumeur/métabolisme , Prolifération cellulaire/effets des médicaments et des substances chimiques
5.
Mol Cell ; 84(16): 3011-3025.e7, 2024 Aug 22.
Article de Anglais | MEDLINE | ID: mdl-39116874

RÉSUMÉ

The histone variant macroH2A is generally linked to transcriptionally inactive chromatin, but how macroH2A regulates chromatin structure and functions in the transcriptional process remains elusive. This study reveals that while the integration of human macroH2A1.2 into nucleosomes does not affect their stability or folding dynamics, it notably hinders the maintenance of facilitates chromatin transcription's (FACT's) function. We show that FACT effectively diminishes the stability of macroH2A1.2-nucleosomes and expedites their depletion subsequent to the initial unfolding process. Furthermore, we identify the residue S139 in macroH2A1.2 as a critical switch to modulate FACT's function in nucleosome maintenance. Genome-wide analyses demonstrate that FACT-mediated depletion of macroH2A-nucleosomes allows the correct localization of macroH2A, while the S139 mutation reshapes macroH2A distribution and influences stimulation-induced transcription and cellular response in macrophages. Our findings provide mechanistic insights into the intricate interplay between macroH2A and FACT at the nucleosome level and elucidate their collective role in transcriptional regulation and immune response of macrophages.


Sujet(s)
Histone , Nucléosomes , Transcription génétique , Facteurs d'élongation transcriptionnelle , Humains , Nucléosomes/métabolisme , Nucléosomes/génétique , Histone/métabolisme , Histone/génétique , Facteurs d'élongation transcriptionnelle/génétique , Facteurs d'élongation transcriptionnelle/métabolisme , Protéines HMG/métabolisme , Protéines HMG/génétique , Animaux , Protéines de liaison à l'ADN/métabolisme , Protéines de liaison à l'ADN/génétique , Macrophages/métabolisme , Mutation , Assemblage et désassemblage de la chromatine , Souris , Chromatine/métabolisme , Chromatine/génétique , Régulation de l'expression des gènes , Cellules RAW 264.7 , Liaison aux protéines , Cellules HEK293
6.
Int J Mol Sci ; 25(16)2024 Aug 16.
Article de Anglais | MEDLINE | ID: mdl-39201615

RÉSUMÉ

It is well known that modifiers play a role in ameliorating or exacerbating disease phenotypes in patients and carriers of recessively inherited disorders such as sickle cell disease and thalassemia. Here, we give an overview of the literature concerning a recently described association in carriers of SUPT5H Loss-of-Function variants with a beta-thalassemia-like phenotype including the characteristic elevated levels of HbA2. That SUPT5H acts as modifier in beta-thalassemia carriers became evident from three reported cases in whom combined heterozygosity of SUPT5H and HBB gene variants was observed to resemble a mild beta-thalassemia intermedia phenotype. The different SUPT5H variants and hematologic parameters reported are collected and reviewed to provide insight into the possible effects on hematologic expression, as well as potential disease mechanisms in carriers and patients.


Sujet(s)
Protéines nucléaires , Facteurs d'élongation transcriptionnelle , bêta-Thalassémie , Humains , bêta-Thalassémie/génétique , Hétérozygote , Mutation perte de fonction , Phénotype , Protéines nucléaires/génétique , Facteurs d'élongation transcriptionnelle/génétique
7.
BMC Res Notes ; 17(1): 219, 2024 Aug 06.
Article de Anglais | MEDLINE | ID: mdl-39103906

RÉSUMÉ

OBJECTIVE: In past work in budding yeast, we identified a nucleosomal region required for proper interactions between the histone chaperone complex yFACT and transcribed genes. Specific histone mutations within this region cause a shift in yFACT occupancy towards the 3' end of genes, a defect that we have attributed to impaired yFACT dissociation from DNA following transcription. In this work we wished to assess the contributions of DNA sequences at the 3' end of genes in promoting yFACT dissociation upon transcription termination. RESULTS: We generated fourteen different alleles of the constitutively expressed yeast gene PMA1, each lacking a distinct DNA fragment across its 3' end, and assessed their effects on occupancy of the yFACT component Spt16. Whereas most of these alleles conferred no defects on Spt16 occupancy, one did cause a modest increase in Spt16 binding at the gene's 3' end. Interestingly, the same allele also caused minor retention of RNA Polymerase II (Pol II) and altered nucleosome occupancy across the same region of the gene. These results suggest that specific DNA sequences at the 3' ends of genes can play roles in promoting efficient yFACT and Pol II dissociation from genes and can also contribute to proper chromatin architecture.


Sujet(s)
Nucléosomes , RNA polymerase II , Protéines de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Nucléosomes/métabolisme , Nucléosomes/génétique , RNA polymerase II/métabolisme , RNA polymerase II/génétique , Protéines de Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , Facteurs d'élongation transcriptionnelle/génétique , Facteurs d'élongation transcriptionnelle/métabolisme , Chaperons d'histones/génétique , Chaperons d'histones/métabolisme , ADN fongique/génétique , ADN fongique/métabolisme , Allèles , Séquence nucléotidique , Régulation de l'expression des gènes fongiques , Transcription génétique
8.
J Neurosci ; 44(37)2024 Sep 11.
Article de Anglais | MEDLINE | ID: mdl-39138000

RÉSUMÉ

Familial dysautonomia (FD) is a rare sensory and autonomic neuropathy that results from a mutation in the ELP1 gene. Virtually all patients report gastrointestinal (GI) dysfunction and we have recently shown that FD patients have a dysbiotic gut microbiome and altered metabolome. These findings were recapitulated in an FD mouse model and moreover, the FD mice had reduced intestinal motility, as did patients. To understand the cellular basis for impaired GI function in FD, the enteric nervous system (ENS; both female and male mice) from FD mouse models was analyzed during embryonic development and adulthood. We show here that not only is Elp1 required for the normal formation of the ENS, but it is also required in adulthood for the regulation of both neuronal and non-neuronal cells and for target innervation in both the mucosa and in intestinal smooth muscle. In particular, CGRP innervation was significantly reduced as was the number of dopaminergic neurons. Examination of an FD patient's gastric biopsy also revealed reduced and disoriented axons in the mucosa. Finally, using an FD mouse model in which Elp1 was deleted exclusively from neurons, we found significant changes to the colon epithelium including reduced E-cadherin expression, perturbed mucus layer organization, and infiltration of bacteria into the mucosa. The fact that deletion of Elp1 exclusively in neurons is sufficient to alter the intestinal epithelium and perturb the intestinal epithelial barrier highlights a critical role for neurons in regulating GI epithelium homeostasis.


Sujet(s)
Dysautonomie familiale , Système nerveux entérique , Homéostasie , Muqueuse intestinale , Animaux , Système nerveux entérique/métabolisme , Dysautonomie familiale/génétique , Dysautonomie familiale/anatomopathologie , Souris , Homéostasie/génétique , Mâle , Femelle , Humains , Muqueuse intestinale/métabolisme , Souris knockout , Souris de lignée C57BL , Mutation , Facteurs d'élongation transcriptionnelle , Protéines et peptides de signalisation intracellulaire
9.
Cell ; 187(18): 5010-5028.e24, 2024 Sep 05.
Article de Anglais | MEDLINE | ID: mdl-39094570

RÉSUMÉ

Faithful transfer of parental histones to newly replicated daughter DNA strands is critical for inheritance of epigenetic states. Although replication proteins that facilitate parental histone transfer have been identified, how intact histone H3-H4 tetramers travel from the front to the back of the replication fork remains unknown. Here, we use AlphaFold-Multimer structural predictions combined with biochemical and genetic approaches to identify the Mrc1/CLASPIN subunit of the replisome as a histone chaperone. Mrc1 contains a conserved histone-binding domain that forms a brace around the H3-H4 tetramer mimicking nucleosomal DNA and H2A-H2B histones, is required for heterochromatin inheritance, and promotes parental histone recycling during replication. We further identify binding sites for the FACT histone chaperone in Swi1/TIMELESS and DNA polymerase α that are required for heterochromatin inheritance. We propose that Mrc1, in concert with FACT acting as a mobile co-chaperone, coordinates the distribution of parental histones to newly replicated DNA.


Sujet(s)
Réplication de l'ADN , Épigenèse génétique , Hétérochromatine , Histone , Protéines de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Histone/métabolisme , Hétérochromatine/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/génétique , Protéines de liaison à l'ADN/métabolisme , Protéines de liaison à l'ADN/génétique , Protéines du cycle cellulaire/métabolisme , Protéines du cycle cellulaire/génétique , Protéines HMG/métabolisme , Protéines HMG/génétique , Facteurs d'élongation transcriptionnelle/métabolisme , Facteurs d'élongation transcriptionnelle/génétique , Chaperons d'histones/métabolisme , Chaperons moléculaires/métabolisme , DNA polymerase I/métabolisme , DNA polymerase I/génétique
10.
Elife ; 132024 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-38976490

RÉSUMÉ

RNA polymerase II (RNAPII) transcription initiates bidirectionally at many human protein-coding genes. Sense transcription usually dominates and leads to messenger RNA production, whereas antisense transcription rapidly terminates. The basis for this directionality is not fully understood. Here, we show that sense transcriptional initiation is more efficient than in the antisense direction, which establishes initial promoter directionality. After transcription begins, the opposing functions of the endonucleolytic subunit of Integrator, INTS11, and cyclin-dependent kinase 9 (CDK9) maintain directionality. Specifically, INTS11 terminates antisense transcription, whereas sense transcription is protected from INTS11-dependent attenuation by CDK9 activity. Strikingly, INTS11 attenuates transcription in both directions upon CDK9 inhibition, and the engineered recruitment of CDK9 desensitises transcription to INTS11. Therefore, the preferential initiation of sense transcription and the opposing activities of CDK9 and INTS11 explain mammalian promoter directionality.


Sujet(s)
Kinase-9 cycline-dépendante , Régions promotrices (génétique) , Initiation de la transcription , Humains , Kinase-9 cycline-dépendante/métabolisme , Kinase-9 cycline-dépendante/génétique , Régulation de l'expression des gènes , Protéines nucléaires , RNA polymerase II/métabolisme , RNA polymerase II/génétique , Transcription génétique , Facteurs d'élongation transcriptionnelle
11.
J Transl Med ; 22(1): 692, 2024 Jul 29.
Article de Anglais | MEDLINE | ID: mdl-39075464

RÉSUMÉ

BACKGROUND: Molecularly targeted therapies have recently become a hotspot in the treatment of LUAD, with ongoing efforts to identify new effective targets due to individual variability. Among these potential targets, the mitochondrial transcription elongation factor (TEFM) stands out as a crucial molecule involved in mitochondrial synthetic transcriptional processing. Dysregulation of TEFM has been implicated in the development of various diseases; however, its specific role in LUAD remains unclear. METHODS: We conducted a comprehensive analysis of TEFM expression in LUAD, leveraging data from the TCGA database. Subsequently, we validated these findings using clinical specimens obtained from the First Affiliated Hospital of Soochow University, employing western blotting and qRT-PCR techniques. Further experimental validation was performed through the transfection of cells with TEFM overexpression, knockdown, and knockout lentiviruses. The effects of TEFM on LUAD were evaluated both in vitro and in vivo using a range of assays, including CCK-8, colony formation, EdU incorporation, Transwell migration, Tunel assay, flow cytometry, JC-1 staining, and xenograft tumour models. RESULTS: Our investigation uncovered that TEFM exhibited elevated expression levels in LUAD and exhibited co-localization with mitochondria. Overexpression of TEFM facilitated malignant processes in LUAD cells, whereas its silencing notably curbed these behaviors and induced mitochondrial depolarization, along with ROS production, culminating in apoptosis. Moreover, the absence of TEFM substantially influenced the expression of mitochondrial transcripts and respiratory chain complexes. Results from nude mouse xenograft tumors further validated that inhibiting TEFM expression markedly hindered tumor growth. CONCLUSION: TEFM promotes LUAD malignant progression through the EMT pathway and determines apoptosis by affecting the expression of mitochondrial transcripts and respiratory chain complexes, providing a new therapeutic direction for LUAD-targeted therapy.


Sujet(s)
Apoptose , Mitochondries , Facteurs d'élongation transcriptionnelle , Humains , Animaux , Mitochondries/métabolisme , Lignée cellulaire tumorale , Facteurs d'élongation transcriptionnelle/métabolisme , Facteurs d'élongation transcriptionnelle/génétique , Apoptose/génétique , Tumeurs du poumon/anatomopathologie , Tumeurs du poumon/génétique , Tumeurs du poumon/métabolisme , Tumeurs du poumon/thérapie , Souris nude , Régulation de l'expression des gènes tumoraux , Prolifération cellulaire , Carcinome pulmonaire non à petites cellules/anatomopathologie , Carcinome pulmonaire non à petites cellules/génétique , Carcinome pulmonaire non à petites cellules/métabolisme , Carcinome pulmonaire non à petites cellules/thérapie , Mouvement cellulaire , Tests d'activité antitumorale sur modèle de xénogreffe , Souris , Espèces réactives de l'oxygène/métabolisme , Thérapie moléculaire ciblée , Femelle , Mâle
12.
Structure ; 32(9): 1488-1497.e5, 2024 Sep 05.
Article de Anglais | MEDLINE | ID: mdl-38959899

RÉSUMÉ

LoaP is a member of the universal NusG protein family. Previously, we reported that unlike other characterized homologs, LoaP binds RNA sequence-specifically, recognizing a stem-loop in the 5'-untranslated region of operons it regulates. To elucidate how this NusG homolog acquired this ability, we now determined the co-crystal structure of Thermoanaerobacter pseudethanolicus LoaP bound to its cognate 26-nucleotide dfn RNA element. Our structure reveals that the LoaP C-terminal KOW domain recognizes the helical portion of the RNA by docking into a broadened major groove, while a protruding ß-hairpin of the N-terminal NusG-like domain binds the UNCG tetraloop capping the stem-loop. Major-groove RNA recognition is unusual and is made possible by conserved features of the dfn hairpin. Superposition with structures of other NusG proteins implies that LoaP can bind concurrently to the dfn RNA and the transcription elongation complex, suggesting a new level of co-transcriptional regulation by proteins of this conserved family.


Sujet(s)
Protéines bactériennes , Liaison aux protéines , Protéines bactériennes/métabolisme , Protéines bactériennes/composition chimique , Protéines bactériennes/génétique , Cristallographie aux rayons X , Sites de fixation , Modèles moléculaires , Thermoanaerobacter/métabolisme , Thermoanaerobacter/génétique , ARN bactérien/métabolisme , ARN bactérien/composition chimique , ARN bactérien/génétique , Conformation d'acide nucléique , Facteurs d'élongation transcriptionnelle/métabolisme , Facteurs d'élongation transcriptionnelle/composition chimique , Facteurs d'élongation transcriptionnelle/génétique
13.
J Biol Chem ; 300(8): 107566, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39002676

RÉSUMÉ

Mixed lineage leukemia-fusion proteins (MLL-FPs) are believed to maintain gene activation and induce MLL through aberrantly stimulating transcriptional elongation, but the underlying mechanisms are incompletely understood. Here, we show that both MLL1 and AF9, one of the major fusion partners of MLL1, mainly occupy promoters and distal intergenic regions, exhibiting chromatin occupancy patterns resembling that of RNA polymerase II in HEL, a human erythroleukemia cell line without MLL1 rearrangement. MLL1 and AF9 only coregulate over a dozen genes despite of their co-occupancy on thousands of genes. They do not interact with each other, and their chromatin occupancy is also independent of each other. Moreover, AF9 deficiency in HEL cells decreases global TBP occupancy while decreases CDK9 occupancy on a small number of genes, suggesting an accessory role of AF9 in CDK9 recruitment and a possible major role in transcriptional initiation via initiation factor recruitment. Importantly, MLL1 and MLL-AF9 occupy promoters and distal intergenic regions, exhibiting identical chromatin occupancy patterns in MLL cells, and MLL-AF9 deficiency decreased occupancy of TBP and TFIIE on major target genes of MLL-AF9 in iMA9, a murine acute myeloid leukemia cell line inducibly expressing MLL-AF9, suggesting that it can also regulate initiation. These results suggest that there is no difference between MLL1 and MLL-AF9 with respect to location and size of occupancy sites, contrary to what people have believed, and that MLL-AF9 may also regulate transcriptional initiation in addition to widely believed elongation.


Sujet(s)
Kinase-9 cycline-dépendante , Histone-lysine N-methyltransferase , Protéine de la leucémie myéloïde-lymphoïde , Protéines de fusion oncogènes , Humains , Protéine de la leucémie myéloïde-lymphoïde/métabolisme , Protéine de la leucémie myéloïde-lymphoïde/génétique , Kinase-9 cycline-dépendante/métabolisme , Kinase-9 cycline-dépendante/génétique , Animaux , Souris , Histone-lysine N-methyltransferase/métabolisme , Histone-lysine N-methyltransferase/génétique , Protéines de fusion oncogènes/métabolisme , Protéines de fusion oncogènes/génétique , Régulation de l'expression des gènes dans la leucémie , Lignée cellulaire tumorale , Chromatine/métabolisme , Chromatine/génétique , Protéines de liaison à l'ADN/métabolisme , Protéines de liaison à l'ADN/génétique , Régions promotrices (génétique) , Initiation de la transcription , Facteurs d'élongation transcriptionnelle
14.
PLoS One ; 19(6): e0298965, 2024.
Article de Anglais | MEDLINE | ID: mdl-38829854

RÉSUMÉ

Familial Dysautonomia (FD) is a rare disease caused by ELP1 exon 20 skipping. Here we clarify the role of RNA Polymerase II (RNAPII) and chromatin on this splicing event. A slow RNAPII mutant and chromatin-modifying chemicals that reduce the rate of RNAPII elongation induce exon skipping whereas chemicals that create a more relaxed chromatin exon inclusion. In the brain of a mouse transgenic for the human FD-ELP1 we observed on this gene an age-dependent decrease in the RNAPII density profile that was most pronounced on the alternative exon, a robust increase in the repressive marks H3K27me3 and H3K9me3 and a decrease of H3K27Ac, together with a progressive reduction in ELP1 exon 20 inclusion level. In HEK 293T cells, selective drug-induced demethylation of H3K27 increased RNAPII elongation on ELP1 and SMN2, promoted the inclusion of the corresponding alternative exons, and, by RNA-sequencing analysis, induced changes in several alternative splicing events. These data suggest a co-transcriptional model of splicing regulation in which age-dependent changes in H3K27me3/Ac modify the rate of RNAPII elongation and affect processing of ELP1 alternative exon 20.


Sujet(s)
Épissage alternatif , Chromatine , Dysautonomie familiale , Exons , RNA polymerase II , RNA polymerase II/métabolisme , RNA polymerase II/génétique , Dysautonomie familiale/génétique , Dysautonomie familiale/métabolisme , Humains , Exons/génétique , Animaux , Chromatine/métabolisme , Chromatine/génétique , Souris , Cellules HEK293 , Histone/métabolisme , Souris transgéniques , Facteurs d'élongation transcriptionnelle/génétique , Facteurs d'élongation transcriptionnelle/métabolisme , Cinétique , Épissage des ARN , Protéines de tissu nerveux/génétique , Protéines de tissu nerveux/métabolisme
15.
Nucleic Acids Res ; 52(10): 6017-6035, 2024 Jun 10.
Article de Anglais | MEDLINE | ID: mdl-38709902

RÉSUMÉ

Archaeal transcription is carried out by a multi-subunit RNA polymerase (RNAP) that is highly homologous in structure and function to eukaryotic RNAP II. Among the set of basal transcription factors, only Spt5 is found in all domains of life, but Spt5 has been shaped during evolution, which is also reflected in the heterodimerization of Spt5 with Spt4 in Archaea and Eukaryotes. To unravel the mechanistic basis of Spt4/5 function in Archaea, we performed structure-function analyses using the archaeal transcriptional machinery of Pyrococcus furiosus (Pfu). We report single-particle cryo-electron microscopy reconstructions of apo RNAP and the archaeal elongation complex (EC) in the absence and presence of Spt4/5. Surprisingly, Pfu Spt4/5 also binds the RNAP in the absence of nucleic acids in a distinct super-contracted conformation. We show that the RNAP clamp/stalk module exhibits conformational flexibility in the apo state of RNAP and that the enzyme contracts upon EC formation or Spt4/5 engagement. We furthermore identified a contact of the Spt5-NGN domain with the DNA duplex that stabilizes the upstream boundary of the transcription bubble and impacts Spt4/5 activity in vitro. This study, therefore, provides the structural basis for Spt4/5 function in archaeal transcription and reveals a potential role beyond the well-described support of elongation.


Sujet(s)
Protéines d'archée , DNA-directed RNA polymerases , Modèles moléculaires , Élongation de la transcription , Facteurs d'élongation transcriptionnelle , Protéines d'archée/composition chimique , Protéines d'archée/métabolisme , Protéines d'archée/génétique , Protéines chromosomiques nonhistones/composition chimique , Protéines chromosomiques nonhistones/génétique , Protéines chromosomiques nonhistones/métabolisme , Cryomicroscopie électronique , DNA-directed RNA polymerases/métabolisme , DNA-directed RNA polymerases/composition chimique , DNA-directed RNA polymerases/génétique , Liaison aux protéines , Pyrococcus furiosus/enzymologie , Pyrococcus furiosus/génétique , Facteurs d'élongation transcriptionnelle/métabolisme , Facteurs d'élongation transcriptionnelle/composition chimique , Facteurs d'élongation transcriptionnelle/génétique
16.
Proc Natl Acad Sci U S A ; 121(21): e2405827121, 2024 May 21.
Article de Anglais | MEDLINE | ID: mdl-38748572

RÉSUMÉ

The RNA polymerase II (Pol II) elongation rate influences poly(A) site selection, with slow and fast Pol II derivatives causing upstream and downstream shifts, respectively, in poly(A) site utilization. In yeast, depletion of either of the histone chaperones FACT or Spt6 causes an upstream shift of poly(A) site use that strongly resembles the poly(A) profiles of slow Pol II mutant strains. Like slow Pol II mutant strains, FACT- and Spt6-depleted cells exhibit Pol II processivity defects, indicating that both Spt6 and FACT stimulate the Pol II elongation rate. Poly(A) profiles of some genes show atypical downstream shifts; this subset of genes overlaps well for FACT- or Spt6-depleted strains but is different from the atypical genes in Pol II speed mutant strains. In contrast, depletion of histone H3 or H4 causes a downstream shift of poly(A) sites for most genes, indicating that nucleosomes inhibit the Pol II elongation rate in vivo. Thus, chromatin-based control of the Pol II elongation rate is a potential mechanism, distinct from direct effects on the cleavage/polyadenylation machinery, to regulate alternative polyadenylation in response to genetic or environmental changes.


Sujet(s)
Chromatine , Histone , Polyadénylation , RNA polymerase II , Protéines de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Facteurs d'élongation transcriptionnelle , RNA polymerase II/métabolisme , RNA polymerase II/génétique , Chromatine/métabolisme , Chromatine/génétique , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/génétique , Histone/métabolisme , Facteurs d'élongation transcriptionnelle/métabolisme , Facteurs d'élongation transcriptionnelle/génétique , Nucléosomes/métabolisme , Nucléosomes/génétique , Élongation de la transcription , Protéines de liaison à l'ADN/métabolisme , Protéines de liaison à l'ADN/génétique , Chaperons d'histones/métabolisme , Chaperons d'histones/génétique , Poly A/métabolisme
17.
Biochim Biophys Acta Gene Regul Mech ; 1867(2): 195032, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38692564

RÉSUMÉ

Small non-coding 6S RNA mimics DNA promoters and binds to the σ70 holoenzyme of bacterial RNA polymerase (RNAP) to suppress transcription of various genes mainly during the stationary phase of cell growth or starvation. This inhibition can be relieved upon synthesis of short product RNA (pRNA) performed by RNAP from the 6S RNA template. Here, we have shown that pRNA synthesis depends on specific contacts of 6S RNA with RNAP and interactions of the σ finger with the RNA template in the active site of RNAP, and is also modulated by the secondary channel factors. We have adapted a molecular beacon assay with fluorescently labeled σ70 to analyze 6S RNA release during pRNA synthesis. We found the kinetics of 6S RNA release to be oppositely affected by mutations in the σ finger and in the CRE pocket of core RNAP, similarly to the reported role of these regions in promoter-dependent transcription. Secondary channel factors, DksA and GreB, inhibit pRNA synthesis and 6S RNA release from RNAP, suggesting that they may contribute to the 6S RNA-mediated switch in transcription during stringent response. Our results demonstrate that pRNA synthesis depends on a similar set of contacts between RNAP and 6S RNA as in the case of promoter-dependent transcription initiation and reveal that both processes can be regulated by universal transcription factors acting on RNAP.


Sujet(s)
DNA-directed RNA polymerases , Protéines Escherichia coli , ARN bactérien , Facteur sigma , Transcription génétique , DNA-directed RNA polymerases/métabolisme , Facteur sigma/métabolisme , Facteur sigma/génétique , Protéines Escherichia coli/métabolisme , Protéines Escherichia coli/génétique , ARN bactérien/métabolisme , ARN bactérien/génétique , Régions promotrices (génétique) , ARN non traduit/métabolisme , ARN non traduit/génétique , Escherichia coli/génétique , Escherichia coli/métabolisme , Régulation de l'expression des gènes bactériens , Liaison aux protéines , Facteurs d'élongation transcriptionnelle
18.
Nat Commun ; 15(1): 4460, 2024 May 25.
Article de Anglais | MEDLINE | ID: mdl-38796517

RÉSUMÉ

In plants, the plant-specific RNA polymerase V (Pol V) transcripts non-coding RNAs and provides a docking platform for the association of accessory proteins in the RNA-directed DNA methylation (RdDM) pathway. Various components have been uncovered that are involved in the process of DNA methylation, but it is still not clear how the transcription of Pol V is regulated. Here, we report that the conserved RNA polymerase II (Pol II) elongator, SPT6L, binds to thousands of intergenic regions in a Pol II-independent manner. The intergenic enrichment of SPT6L, interestingly, co-occupies with the largest subunit of Pol V (NRPE1) and mutation of SPT6L leads to the reduction of DNA methylation but not Pol V enrichment. Furthermore, the association of SPT6L at Pol V loci is dependent on the Pol V associated factor, SPT5L, rather than the presence of Pol V, and the interaction between SPT6L and NRPE1 is compromised in spt5l. Finally, Pol V RIP-seq reveals that SPT6L is required to maintain the amount and length of Pol V transcripts. Our findings thus uncover the critical role of a Pol II conserved elongator in Pol V mediated DNA methylation and transcription, and shed light on the mutual regulation between Pol V and II in plants.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Méthylation de l'ADN , DNA-directed RNA polymerases , Régulation de l'expression des gènes végétaux , RNA polymerase II , Arabidopsis/génétique , Arabidopsis/métabolisme , Protéines d'Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , DNA-directed RNA polymerases/métabolisme , DNA-directed RNA polymerases/génétique , Mutation , RNA polymerase II/métabolisme , RNA polymerase II/génétique , ARN des plantes/métabolisme , ARN des plantes/génétique , Transcription génétique , Facteurs d'élongation transcriptionnelle/métabolisme , Facteurs d'élongation transcriptionnelle/génétique
19.
Nat Commun ; 15(1): 4128, 2024 May 15.
Article de Anglais | MEDLINE | ID: mdl-38750015

RÉSUMÉ

Mechanisms of functional cross-talk between global transcriptional repression and efficient DNA damage repair during genotoxic stress are poorly known. In this study, using human AF9 as representative of Super Elongation Complex (SEC) components, we delineate detailed mechanisms of these processes. Mechanistically, we describe that Poly-Serine domain-mediated oligomerization is pre-requisite for AF9 YEATS domain-mediated TFIID interaction-dependent SEC recruitment at the promoter-proximal region for release of paused RNA polymerase II. Interestingly, during genotoxic stress, CaMKII-mediated phosphorylation-dependent nuclear export of AF9-specific deacetylase HDAC5 enhances concomitant PCAF-mediated acetylation of K339 residue. This causes monomerization of AF9 and reduces TFIID interaction for transcriptional downregulation. Furthermore, the K339 acetylation-dependent enhanced AF9-DNA-PKc interaction leads to phosphorylation at S395 residue which reduces AF9-SEC interaction resulting in transcriptional downregulation and efficient repair of DNA damage. After repair, nuclear re-entry of HDAC5 reduces AF9 acetylation and restores its TFIID and SEC interaction to restart transcription.


Sujet(s)
Altération de l'ADN , Réparation de l'ADN , Histone deacetylases , Maturation post-traductionnelle des protéines , Transcription génétique , Humains , Acétylation , Phosphorylation , Histone deacetylases/métabolisme , Histone deacetylases/génétique , RNA polymerase II/métabolisme , Facteur de transcription TFIID/métabolisme , Facteur de transcription TFIID/génétique , Facteur de transcription TFIID/composition chimique , Multimérisation de protéines , Cellules HEK293 , Cellules HeLa , Facteurs d'élongation transcriptionnelle/métabolisme , Facteurs d'élongation transcriptionnelle/génétique , Facteurs d'élongation transcriptionnelle/composition chimique
20.
Mol Cell ; 84(11): 2053-2069.e9, 2024 Jun 06.
Article de Anglais | MEDLINE | ID: mdl-38810649

RÉSUMÉ

Facilitates chromatin transcription (FACT) is a histone chaperone that supports transcription through chromatin in vitro, but its functional roles in vivo remain unclear. Here, we analyze the in vivo functions of FACT with the use of multi-omics analysis after rapid FACT depletion from human cells. We show that FACT depletion destabilizes chromatin and leads to transcriptional defects, including defective promoter-proximal pausing and elongation, and increased premature termination of RNA polymerase II. Unexpectedly, our analysis revealed that promoter-proximal pausing depends not only on the negative elongation factor (NELF) but also on the +1 nucleosome, which is maintained by FACT.


Sujet(s)
Chromatine , Protéines HMG , Nucléosomes , Régions promotrices (génétique) , RNA polymerase II , Transcription génétique , Facteurs d'élongation transcriptionnelle , RNA polymerase II/métabolisme , RNA polymerase II/génétique , Humains , Facteurs d'élongation transcriptionnelle/métabolisme , Facteurs d'élongation transcriptionnelle/génétique , Chromatine/métabolisme , Chromatine/génétique , Nucléosomes/métabolisme , Nucléosomes/génétique , Protéines HMG/métabolisme , Protéines HMG/génétique , Protéines de liaison à l'ADN/métabolisme , Protéines de liaison à l'ADN/génétique , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique , Cellules HeLa , Assemblage et désassemblage de la chromatine , Cellules HEK293 , Élongation de la transcription , Terminaison de la transcription
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE